首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Responses of apple leaf stomata: a model for single leaves and a whole tree   总被引:5,自引:4,他引:1  
Abstract. An empirical model of stomatal response to environmental factors was developed from measurements of stomatal conductance ( g s) made in a leaf chamber under controlled conditions. Results presented in a companion paper (Warrit, Landsberg & Thorpe, 1980) indicated that the model could be written in terms of only two factors, photon flux density ( Q p) and leaf to air vapour pressure gradient ( D ). The response of Q p was hyperbolic and that to D linear; combining these the equation of the model is where g r is a reference conductance, α is the slope of the response to D and β indicates the sensitivity of g s response to Q p. Values of α were 0.20 and 0.30 kPa−1 in June and August; the corresponding values of β were 59 and 79 μmol m−2 s−1.
The model was tested against mean values of g s obtained with a porometer in the field, using environmental measurements as inputs. Correspondence between measured and calculated values was good. Transpiration rates were calculated from the Penman-Monteith equation, with stomatal resistance values calculated from the model, and compared with gravimetric measurements of tree water use. It was shown that transpiration could be calculated with acceptable accuracy. The effects of variations in stomatal resistance on transpiration rates under a range of conditions were explored using the model and the Penman- Monteith equation.  相似文献   

2.
Stomatal response to humidity: implications for transpiration   总被引:1,自引:1,他引:0  
Abstract. Transpiration rates from apple leaves are analysed in terms of the ratio of latent heat flux (λ E ) to leaf net radiation ( Q 1) and the climatological resistance ( ri ). Increases in stomatal resistance with increasing leaf to air vapour pressure gradient ( D ), described by an empirical model, are incorporated in the analysis. This humidity effect causes the proportion of energy dissipated as latent heat to fall as Q 1 increases, so that leaf transpiration rates in high energy environments are likely to be similar to those in lower energy environments. Boundary layer resistance ( r a) exerts an increasingly important effect on transpiration rates as Q 1 increases. At constant Q 1 stomatal closure in response to increasing D results in very small changes in leaf temperature ( T 1) across a wide range of ambient vapour pressure deficits (δ e ); r a is then the major factor determining T 1. The implications of these results are discussed.  相似文献   

3.
 The use of stem sap flow data to estimate diurnal whole-tree transpiration and canopy stomatal conductance depends critically upon knowledge of the time lag between transpiration and water flux through the stem. In this study, the time constant for water movement in stems of 12-year-old Pinus taeda L. individuals was estimated from analysis of time series data of stem water flux and canopy transpiration computed from mean daytime canopy conductance, and diurnal vapor pressure deficit and solar radiation measurements. Water uptake through stems was measured using a constant-heat sapflow probe. Canopy transpiration was correlated to stem uptake using a resistance-capacitance equation that incorporates a time constant parameter. A least-squares auto-regression determined the parameters of the resistance-capacitance equation. The time constants for ten loblolly pine trees averaged 48.0 (SE = 2.0) min and the time lag for the diurnal frequency averaged 47.0 (SE = 2.0) min. A direct-cross correlation analysis between canopy transpiration and sap flow time series showed maximum correlation at an approximately 30 min lag. Residuals (model-predicted minus actual stem flow data) increased with increasing soil moisture depletion. While the time constants did not vary significantly within the range of tree sizes studied, hydraulic resistance and capacitance terms were individually dependent on stem cross-sectional area: capacitance increased and resistance decreased with stem volume. This result may indicate an inverse adjustment of resistance and capacitance to maintain a similar time constant over the range of tree sizes studied.  相似文献   

4.
Photosynthesis and transpiration of an isolated tree: model and validation   总被引:5,自引:3,他引:2  
Abstract. A model for the distribution of radiation incident on leaves in an isolated apple tree is presented. The simulated area of shadow cast by a tree compared well with measured values. The radiation model is combined with leaf models of photosynthesis and stomatal behaviour to simulate diurnal variations in the exchanges of carbon dioxide and water by the tree. Satisfactory correspondence was obtained when observed rates of transpiration and photosynthesis were compared with simulations. Further simulations indicated the diurnal patterns of transpiration and photosynthesis to be expected for trees with various shapes and leaf areas.  相似文献   

5.
Total water and osmotic potential, turgor pressure and transpiration rate were measured on scions of Picea pungens (Englemann) during union development. In controlled environments, declines in water potential were correlated with lower transpiration rates to about −2.0 MPa. Water potentials below −2.0 MPa resulted in graft failure and were associated with sharply increased transpiration rates. Bulk turgor pressures remained high in the needles during this period of declining water potential and increasing transpiration. Transpiration rates of successful and unsuccessful greenhouse grafts were not significantly different during union development. Transpiration rates of these grafts were highest around dawn, then declined throughout the day only to increase again after sunset. High bulk needle turgor values (1.3 MPa), maintained by osmotic adjustment, may prevent stomatal closure of Picea scions at water potentials below −2.0 MPa.  相似文献   

6.
树高对马占相思整树水分利用的效应   总被引:1,自引:0,他引:1  
利用Granier热消散探针,于2004年观测了华南丘陵坡地常见绿化先锋树种马占相思(22年生)的树干液流,同时监测林冠上方的光合有效辐射、气温、相对湿度和0~30 cm的土壤体积含水量.结合树木的形态特征、液流密度和简化的Whitehead & Jarvis公式,分别计算了整树蒸腾、冠层气孔导度和叶面积/边材面积比值,分析了树高对整树蒸腾、冠层气孔导度和叶面积/边材面积比值的影响.结果表明:土壤水分充足时,马占相思整树蒸腾随树高呈二次多项式增加(P<0.01),冠层气孔导度日变化均呈“单峰”格型;在所有光合有效辐射范围内,高树的参比冠层气孔导度和冠层气孔导度对水汽压亏缺的敏感性均高于矮树;叶面积/边材面积比值为(1.837±0.048) m2·cm-2,并与树高呈幂函数关系.随着树木高度的增加,马占相思没有发生明显的水力限制和补偿.  相似文献   

7.
Effect of Wind on the Transpiration of Young Trees   总被引:3,自引:0,他引:3  
DIXON  M.; GRACE  J. 《Annals of botany》1984,53(6):811-819
The effects of wind on the transpiration rates of four plantspecies, Pinus sylvestris L., Quercus robur L., Fagus sylvaticaL. and Sorbus aucuparia L., were studied in a controlled environmentwind tunnel. Transpiration declined with increasing wind speedin a manner consistent with predictions of the Penman-Monteithequation. The stomatal resistance declined with increasing windspeed in two species and increased in one, but this effect wassmaller than reported in other studies. In all cases the magnitudeof the stomatal response was over-shadowed by the decliningleaf to air vapour pressure difference. Pinus sylvestris L., Quercus robur L., Fagus sylvatica L., Sorbus aucuparia L., wind, transpiration, cooling curve technique, stomatal resistance, aerodynamic resistance, Penman-Monteith equation  相似文献   

8.
Abstract. An Ohm's law analogy is frequently employed to calculate parameters of leaf gas exchange. For example, resistance to water vapour loss is calculated as the quotient of vapour pressure difference (VPD) and vapour loss by transpiration. In the present research, this electrical analogy was extended. Steady-state transpiration as a function of VPD, assayed in leaflets of Vicia faba using gas exchange techniques, was compared with steady-state K+ current magnitude as a function of voltage in isolated guard cell protoplasts of Vicia faba, assayed using the patch clamping technique in the whole cell configuration. An electrophysiological model originally developed to explain the kinetics of current changes following step changes in voltage across a cell membrane was used to fit the kinetics of transpiration changes following step changes in VPD applied to leaflets of Vicia faba. Following step increases in VPD, transpiration exhibited an initial increase, reflecting the increased driving force for water loss and, for large step increases in VPD, a transient decrease in stomatal resistance. Transpiration subsequently declined, reflecting stomatal closure. By analogy to electrophysiological responses, it is hypothesized that the humidity parameter that is sensed by guard cells is VPD. Two models based on epidermal water relations were also applied to transpiration kinetics. In the first model, the transient increase in transpiration following a step increase in VPD was attributed partially to an increase in the Physical driving force (VPD) and partially to a transient decrease in stomatal resistance resulting from reduced epidermal backpressure. In the second model, the transient decrease in stomatal resistance was attributed to a direct response of the guard cells to VPD. Both models based on water relations gave good fits of the data, emphasizing the need for further study regarding the metabolic nature of the guard cell response to humidity.  相似文献   

9.
马占相思林冠层气孔导度对环境驱动因子的响应   总被引:16,自引:4,他引:12  
利用Granier热消散探针在2003年10月测定了广东鹤山丘陵地马占相思林14株样树的树干液流,同时监测林冠上方的光合有效辐射、空气湿度和气温,结合树木的形态和林分的结构特征,计算马占相思的整树蒸腾(E)、林分总蒸腾(Et)以及冠层平均气孔导度(gc),分析树形特征与整树水分利用的关系、冠层气孔导度对光合有效辐射(PAR)和空气水汽压亏缺(D)的响应.结果表明,整树蒸腾与胸径(P<0.0001)、边材面积(P<0.0001)和冠幅(P=0.0007)以自然对数的形式、与树高(P=0.014)以幂函数的形式呈现显著正相关.冠层气孔导度最大值(gcmax)随D的上升呈对数函数下降(P<0.0001),对光合有效辐射的响应则呈双曲线函数增加(P<0.0001).液流测定系统能提供连续和准确的整树和林分蒸腾速率值,经严格数学推导公式计算,最终可求出冠层气孔导度,是研究森林水分利用与环境因子相互关系的有效方法.  相似文献   

10.
The wet and dry seasons in tropical rain forests can differ in precipitation, soil moisture and irradiance more significantly than often assumed. This could potentially affect the water relations of many tree species that may exhibit either increased transpiration in the dry season as a response to the increased irradiance or decreased transpiration as a result of decreases in soil moisture and increases in atmospheric vapor pressure deficit (VPD). Atmospheric data, soil moisture data and sap fluxes in Iriartea deltoidea palms were measured in eastern Ecuador during the wet and dry seasons. There were no differences between total daily sap fluxes in I. deltoidea palms during the wet and dry seasons; however, evaporative demand was significantly higher in the dry season and therefore, transpiration was more restricted by stomatal closure during the dry season than the wet season. This is likely the result of larger atmospheric VPD during the dry season compared with the wet season and possibly the result of reduced soil moisture availability. Additionally, based on published tree abundances in this area, measured sap fluxes in I. deltoidea were scaled up to the hectare level. Transpiration from I. deltoidea palms was estimated to be around 0.03 mm/d, which could represent about 1 percent of total transpiration in this area of the Amazon rain forest. If climate change predictions for more lengthy tropical dry periods are realized, greater stomatal control of dry-season sap flux has the potential to become even more prevalent in tropical species.  相似文献   

11.
Field studies were conducted to determine the potential of altering endogenous hormones and photosynthetic characteristics and intraspecific variation in sensitivity of 10 wheat (Triticum aestivum) cultivars (four tolerant, two middle sensitive and four sensitive) to enhanced ultraviolet-B (UV-B, 280–315 nm) radiation under field conditions. The supplemental UV-B radiation was 5.00 kJ m2, simulating a depletion of 20% stratospheric ozone. Responses were cultivar-specific. Out of the 10 tested wheat cultivars, six showed significant decrease in IAA content. UV-B radiation significantly increased ZR content in two wheat cultivars and significantly decreased in five cultivars. ABA content of three wheat cultivars was increased significantly, while that of five cultivars was decreased significantly. UV-B radiation significantly increased the stomatal conductance of three cultivars, and significantly decreased that of four cultivars. Intercellular CO2 concentrations were significantly increased in five cultivars and significantly decreased in one cultivar (Mianyang 20). Transpiration rate of three cultivars significantly increased, while that of three cultivars significantly decreased. UV-B radiation significantly decreased the net photosynthetic rate of six cultivars. Intraspecific differences were found for the different measured parameters. For seven measured parameters, UV-B radiation had significant effects on five wheat cultivars, while no effect on the others. Significant correlations were observed between net photosynthetic rate and stomatal conductance, intercellular CO2 concentrations and transpiration rate in eight cultivars. UV-B radiation might change stomatal conductance, intercellular CO2 concentrations and transpiration rate, thus resulting in changes in net photosynthetic rate.  相似文献   

12.
13.
Transpiration rates of single leaves of Pelargonium and wheatwere measured under constant conditions of light, temperature,and air flow. Concurrently, stomatal movement was followed withthe resistance porometer during cycles of changing water contentof the leaf and changes induced by light and darkness. Stomatalmovement was found to exert a large controlling influence onthe transpiration rate, whereas water content had an extremelysmall or negligible effect. An approximately inverse linearrelation between transpiration rate and logarithm of resistanceto viscous flow through the leaf is believed to be the resultantof an inverse curvilinear relationship between the diffusiveconductance of the stomata and log. leaf resistance and thedecreasing difference of vapour pressure arising from the highertranspiration rates with increasing stomatal conductances. Nevertheless,the relation demonstrates that the transpiration rate is influencedby the degree of stomatal opening throughout its entire range. There was some evidence of lower transpiration rates duringand after recovery from wilting than before wilting. This isattributed to a decrease in a cell-wall conductance, the evaporatingsurface being located within the cell wall. During wilting partiallyirreversible contraction of the cell wall occurs. There wasalso evidence of slow changes in cell volume at full turgidityattributable to plastic flow. These occurred when the leaf wastransferred from environments of a high to low potential forevaporation. Extensive movement of the stomata followed changes in leaf water,passive opening resulting from decrease and closure from increaseof leaf water. It is suggested that the direction and extentof stomatal changes induced by water deficits is a consequenceof the rate of change of leaf water content and not of the absolutevalues. The stomata also showed an enhanced tendency to closein dry moving air following a period of wilting even after theleaf had regained turgidity.  相似文献   

14.
鹤山人工马占相思林水分生态研究   总被引:32,自引:1,他引:32       下载免费PDF全文
 通过对马占相思叶片的蒸腾速率、气孔导度及其相应环境因子的测定,探讨鹤山丘陵人工马占相思林的水分生理生态特征。结果表明:蒸腾速率和气孔导度具有明显的日变化,两者的变化趋势相似,在夏季的日变化曲线呈双峰型,冬季呈单峰型;夏季的蒸腾速率最高,在冬季最低,仅占夏季的27.6%;马占相思林的蒸腾耗水量在旱季和雨季有明显的差异,旱季的蒸腾耗水量占雨季的25.5%,年蒸腾量为1625.1mm,占同期降水量的78.3%;马占相思林的蒸腾量接近热带雨林。  相似文献   

15.
Optimal Control of Gas Exchange during Drought: Empirical Evidence   总被引:1,自引:0,他引:1  
The optimal regulation model by Mäkelä, Berningerand Hari (Annals of Botany 77: 461–467, 1996) was appliedto data for photosynthesis and transpiration of Scots pine duringa 22-d drought period. There was a clear decrease in photosynthesisand transpiration during that period. The agreement betweenmodel and photosynthesis data was good. The residuals of photosynthesiswere not systematic with respect to temperature, irradianceor water vapour deficit. However, the model initially overestimatedtranspiration by 50%, although there was a clear linear relationshipbetween measured and estimated values. The results suggest thatthere was no decrease in photosynthetic capacity during theperiod, but a decrease in stomatal conductance was responsiblefor the changes in photosynthesis and transpiration. The observationsare similar to results in the literature. Transpiration; photosynthesis; stomatal conductance; drought; Pinus sylvestris  相似文献   

16.
松嫩草地全叶马兰夏季与秋季光合及蒸腾作用的比较   总被引:2,自引:0,他引:2  
杜红梅  王德利  孙伟 《应用生态学报》2002,13(12):1600-1604
在生长季晴天条件下,夏季和秋季松嫩草地全叶马兰的光合,蒸腾作用的日变化均为双峰曲线,但不同季节有所差异,夏季日均净光合速率与蒸腾速率均高于秋季,光合和蒸腾作用与环境因子的植物内部因子之间有密切关系。分析表明,叶片净光合速率与有效光辐射呈极显著相关,与气孔阻力,胞间CO2呈负相关;蒸腾速率与有效光辐射呈极显著相关,与叶温,饱和差呈正相关,与气孔阻力,胞间CO2浓度呈负相关,有效光辐射是影响光合和蒸腾作用诸因子中的主导因子,而气孔阻力变化则在调节光合和蒸腾中起着重要作用,蒸腾速率午降主要由于光辐射强,叶温高,湿度低,植物体缺水,气孔部分关闭所致。  相似文献   

17.
 采用LI—6000便携式光合分析系统对毛乌素沙区主要植物种油蒿、中间锦鸡儿、旱柳进行了不同时期光合作用,蒸腾作用日进程的测定,并同步测定有效光辐射、空气相对湿度、叶温、气温、胞间CO2浓度、气孔阻力、叶片水势及土壤水势等因子;结果表明:不同时期、不同植物种其光合、蒸腾特征各异;植物的光合、蒸腾与环境因子和植物内部因子之间有密切关系,其中有效光辐射是影响光合作用、蒸腾作用诸因子中的主导因子,而气孔阻力变化则在调节光合和蒸腾中起着重要作用;不同植物种间气孔对环境条件变化的响应程度不同,以中间锦鸡儿最为灵敏;3种植物的水分利用效率表明,中间锦鸡儿的水分利用效率较油蒿、旱柳为高。  相似文献   

18.
A model is presented which solves simultaneously for leaf-scale stomatal conductance, CO2 assimilation and the energy balance as a function of leaf position within canopies of well-watered vegetation. Fluxes and conductances were calculated separately for sunlit and shaded leaves. A linear dependence of photosynthetic capacity on leaf nitrogen content was assumed, while leaf nitrogen content and light intensity were assumed to decrease exponentially within canopies. Separate extinction coefficients were used for diffuse and direct beam radiation. An efficient Gaussian integration technique was used to compute fluxes and mean conductances for the canopy. The multilayer model synthesizes current knowledge of radiation penetration, leaf physiology and the physics of evaporation and provides insights into the response of whole canopies to multiple, interacting factors. The model was also used to explore sources of variation in the slopes of two simple parametric models (nitrogen- and light-use efficiency), and to set bounds on the magnitudes of the parameters. For canopies low in total N, daily assimilation rates are ~10% lower when leaf N is distributed uniformly than when the same total N is distributed according to the exponentially decreasing profile of absorbed radiation. However, gains are negligible for plants with high N concentrations. Canopy conductance, Gc should be calculated as Gc=Aσ(fslgsl+fshgsh), where Δ is leaf area index, fsi and fsh are the fractions of sunlit and shaded leaves at each level, and gsi and gsh are the corresponding stomatal conductances. Simple addition of conductances without this weighting causes errors in transpiration calculated using the ‘big-leaf’ version of the Penman-Monteith equation. Partitioning of available energy between sensible and latent heat is very responsive to the parameter describing the sensitivity of stomata to the atmospheric humidity deficit. This parameter also affects canopy conductance, but has a relatively small impact on canopy assimilation. Simple parametric models are useful for extrapolating understanding from small to large scales, but the complexity of real ecosystems is thus subsumed in unexplained variations in parameter values. Simulations with the multilayer model show that both nitrogen- and radiation-use efficiencies depend on plant nutritional status and the diffuse component of incident radiation, causing a 2- to 3-fold variation in these efficiencies.  相似文献   

19.
基于热扩散方法测定树木蒸腾的潜在误差分析   总被引:2,自引:1,他引:2  
蒸腾作为植被蒸散的主要分量,是植物水分生理生态学研究的核心内容,其测定方法的研究备受关注.热扩散方法是测量树木蒸腾的最优方法之一.大量研究表明,应用热扩散方法测定的单株树木蒸腾量以及扩展到林分尺度蒸腾耗水量均相对准确,但在测定过程以及测定值与蒸腾真实值之间存在着潜在误差.本文综述了热扩散方法在树干液流通量密度测定以及从温差测定点到单株、从单株到林分尺度扩展过程中存在的潜在误差,展望了我国开展热扩散方法潜在误差分析的主要研究方向,并提出了解决其潜在测量误差的方法.  相似文献   

20.
The relationship between leaf resistance to water vapour diffusion and each of the factors leaf water potential, light intensity and leaf temperature was determined for leaves on seedling apple trees (Malus sylvestris Mill. cv. Granny Smith) in the laboratory. Leaf cuticular resistance was also determined and transpiration was measured on attached leaves for a range of conditions. Leaf resistance was shown to be independent of water potential until potential fell below — 19 bars after which leaf resistance increased rapidly. Exposure of leaves to CO2-free air extended the range for which resistance was independent of water potential to — 30 bars. The light requirement for minimum leaf resistance was 10 to 20 W m?2 and at light intensities exceeding these, leaf resistance was unaffected by light intensity. Optimum leaf temperature for minimum diffusion resistance was 23 ± 2°C. The rate of change measured in leaf resistance in leaves given a sudden change in leaf temperature increased as the magnitude of the temperature change increased. For a sudden change of 1°C in leaf temperature, diffusion resistance changed at a rate of 0.01 s cm?1 min?1 whilst for a 9°C leaf temperature change, diffusion resistance changed at a rate of 0.1 s cm?1 min?1. Cuticular resistance of these leaves was 125 s cm?1 which is very high compared with resistances for open stomata of 1.5 to 4 s cm?1 and 30 to 35 s cm?1 for stomata closed in the dark. Transpiration was measured in attached apple leaves enclosed in a leaf chamber and exposed to a range of conditions of leaf temperature and ambient water vapour density. Peak transpiration of approximately 5 × 10?6 g cm?2 s?1 occurred at a vapour density gradient from the leaf to the air of 12 to 14 g m?3 after which transpiration declined due presumably to increased stomatal resistance. Leaves in CO2-free air attained a peak transpiration of 11 × 10?6 g cm?2 s?1 due to lower values of leaf resistance in CO2 free air. Transpiration then declined in these leaves due to development of an internal leaf resistance (of up to 2 s cm?1). The internal resistance was masked in leaves at normal CO2 concentrations by the increase in stomatal resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号