首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experiments were conducted to determine whether symbiotic bacteroids of Bradyrhizobium japonicum produce exopolysaccharide within soybean (Glycine max [L.] Merr. cv `Lee 74') nodules. B. japonicum strains RT2, a derivative of USDA 110 with resistance to streptomycin and rifampicin, and RT176-1, a mutant deficient in exopolysaccharide synthesis, were used. Although aerobically cultured RT2 produced 1550 micrograms of exopolysaccharide per 1010 cells, root nodules formed by RT2 contained only 55.7 micrograms of polysaccharide per 1010 bacteroids, indicating that little exopolysaccharide synthesis occurred within the nodules. The polysaccharide level of RT2 nodules was about equal to that of nodules containing the exopolysaccharide mutant RT176-1 (61.0 micrograms per 1010 bacteroids). Gas chromatographic analysis showed that the sugar composition of polysaccharide from nodules of RT2 or RT176-1 was almost the same as that of polysaccharide from unnodulated root tissue, but differed strikingly from that of rhizobial exopolysaccharide from aerobic cultures. Thus, the host plant and not the bacteroids was probably the source of most or all of the polysaccharide in the nodule extracts. Also, bacteroids from nodules failed to bind soybean lectin, confirming the absence of an exopolysaccharide capsule.  相似文献   

2.
3.
Crude bean root extracts of Phaseolus vulgaris were tested for inhibition of the growth of several polysaccharide mutants of Rhizobium etli biovar phaseoli CE3. Mutants deficient only in exopolysaccharide and some mutants deficient only in the O-antigen of the lipopolysaccharide were no more sensitive than the wild-type strain to the extracts, whereas mutants defective in both lipopolysaccharide and exopolysaccharide were much more sensitive. The inhibitory activity was found at much higher levels in roots and nodules than in stems or leaves. Inoculation with either wild-type or polysaccharide-deficient R. etli did not appear to affect the level of activity. Sequential extractions of the crude root material with petroleum ether, ethyl acetate, methanol, and water partitioned inhibitory activity into each solvent except methanol. The major inhibitors in the petroleum ether and ethyl acetate extracts were purified by C18 high-performance liquid chromatography. These compounds all migrated very similarly in both liquid and thin-layer chromatography but were distinguished by their mass spectra. Absorbance spectra and fluorescence properties suggested that they were coumestans, one of which had the mass spectrum and nuclear magnetic resonances of coumestrol. These results are discussed with regard to the hypothesis that one role of rhizobial polysaccharides is to protect against plant toxins encountered during nodule development.  相似文献   

4.
Rhizobium etli CE3 bacteroids were isolated from Phaseolus vulgaris root nodules. The lipopolysaccharide (LPS) from the bacteroids was purified and compared with the LPS from laboratory-cultured R. etli CE3 and from cultures grown in the presence of anthocyanin. Comparisons were made of the O-chain polysaccharide, the core oligosaccharide, and the lipid A. Although LPS from CE3 bacteria and bacteroids are structurally similar, it was found that bacteroid LPS had specific modifications to both the O-chain polysaccharide and lipid A portions of their LPS. Cultures grown with anthocyanin contained modifications only to the O-chain polysaccharide. The changes to the O-chain polysaccharide consisted of the addition of a single methyl group to the 2-position of a fucosyl residue in one of the five O-chain trisaccharide repeat units. This same change occurred for bacteria grown in the presence of anthocyanin. This methylation change correlated with the inability of bacteroid LPS and LPS from anthocyanin-containing cultures to bind the monoclonal antibody JIM28. The core oligosaccharide region of bacteroid LPS and from anthocyanin-grown cultures was identical to that of LPS from normal laboratory-cultured CE3. The lipid A from bacteroids consisted exclusively of a tetraacylated species compared with the presence of both tetra- and pentaacylated lipid A from laboratory cultures. Growth in the presence of anthocyanin did not affect the lipid A structure. Purified bacteroids that could resume growth were also found to be more sensitive to the cationic peptides, poly-l-lysine, polymyxin-B, and melittin.  相似文献   

5.
Production of exopolysaccharides by Rhizobium has been linked with efficient invasion and nodulation of leguminous plant roots by the bacteria. Exopolysaccharide-deficient (exo) mutants of Rhizobium fredii USDA 191 were isolated following Tn5-insertion mutagenesis. Five phenotypically unique exo mutants were investigated for exopolysaccharide synthesis and their ability to nodulate soybeans. The exopolysaccharides produced by these mutants were analysed for polysaccharide composition by column chromatography and thin-layer chromatography. Two mutants designed exo-3 and exo-5 were deficient in both neutral glucan and exopolysaccharide synthesis, but each induced some functional nodules on Glycine max (Peking). The remaining three mutants (exo-1, exo-2 and exo-4) synthesized neutral glucans at levels higher or lower than those in wild-type and exhibited partial exopolysaccharide deficiencies. The data imply that neither exopolysaccharides nor neutral glucans are essential for the induction of determinate nodules by R. fredii.  相似文献   

6.
The Rhizobium leguminosarum biovar viciae genome contains several genes predicted to determine surface polysaccharides. Mutants predicted to affect the initial steps of polysaccharide synthesis were identified and characterized. In addition to the known cellulose (cel) and acidic exopolysaccharide (EPS) (pss) genes, we mutated three other loci; one of these loci (gmsA) determines glucomannan synthesis and one (gelA) determines a gel-forming polysaccharide, but the role of the other locus (an exoY-like gene) was not identified. Mutants were tested for attachment and biofilm formation in vitro and on root hairs; the mutant lacking the EPS was defective for both of these characteristics, but mutation of gelA or the exoY-like gene had no effect on either type of attachment. The cellulose (celA) mutant attached and formed normal biofilms in vitro, but it did not form a biofilm on root hairs, although attachment did occur. The cellulose-dependent biofilm on root hairs appears not to be critical for nodulation, because the celA mutant competed with the wild-type for nodule infection. The glucomannan (gmsA) mutant attached and formed normal biofilms in vitro, but it was defective for attachment and biofilm formation on root hairs. Although this mutant formed nodules on peas, it was very strongly outcompeted by the wild type in mixed inoculations, showing that glucomannan is critical for competitive nodulation. The polysaccharide synthesis genes around gmsA are highly conserved among other rhizobia and agrobacteria but are absent from closely related bacteria (such as Brucella spp.) that are not normally plant associated, suggesting that these genes may play a wide role in bacterium-plant interactions.  相似文献   

7.
Spontaneous mutants of Rhizobium meliloti L5-30 defective in motility or chemotaxis were isolated and compared against the parent with respect to symbiotic competence. Each of the mutants was able to generate normal nodules on the host plant alfalfa (Medicago sativa), but had slightly delayed nodule formation, diminished nodulation in the initially susceptible region of the host root, and relatively low representation in nodules following co-inoculation with equal numbers of the parent. When inoculated in growth pouches with increasing dosages of the parental strain, the number of nodules formed in the initially susceptible region of the root increased sigmoidally, with an optimum concentration of about 105 to 106 bacteria/plant. The dose-response behavior of the nonmotile and nonchemotactic mutants was similar, but they required 10- to 30-fold higher concentrations of bacteria to generate the same number of nodules. The distribution frequencies of nodules at different positions along the primary root were very similar for the mutants and parent, indicating that reduced nodulation by the mutants in dose-response experiments probably reflects reduced efficiency of nodule initiation rather than developmentally delayed nodule initiation. The number of bacteria that firmly adsorbed to the host root surface during several hours of incubation was 5- to 20-fold greater for the parent than the mutants. The mutants were also somewhat less effective than their parent as competitors in root adsorption assays. It appears that motility and chemotaxis are quantitatively important traits that facilitate the initial contact and adsorption of symbiotic rhizobia to the host root surface, increase the efficiency of nodule initiation, and increase the rate of infection development.  相似文献   

8.
Bacterial nodulation factors (NFs) are essential signaling molecules for the initiation of a nitrogen-fixing symbiosis in legumes. NFs are perceived by the plant and trigger both local and distant responses, such as curling of root hairs and cortical cell divisions. In addition to their requirement at the start, NFs are produced by bacteria that reside within infection threads. To analyze the role of NFs at later infection stages, several phases of nodulation were studied by detailed light and electron microscopy after coinoculation of adventitious root primordia of Sesbania rostrata with a mixture of Azorhizobium caulinodans mutants ORS571-V44 and ORS571-X15. These mutants are deficient in NF production or surface polysaccharide synthesis, respectively, but they can complement each other, resulting in functional nodules occupied by ORS571-V44. The lack of NFs within the infection threads was confirmed by the absence of expression of an early NF-induced marker, leghemoglobin 6 of S. rostrata. NF production within the infection threads is shown to be necessary for proper infection thread growth and for synchronization of nodule formation with bacterial invasion. However, local production of NFs by bacteria that are taken up by the plant cells at the stage of bacteroid formation is not required for correct symbiosome development.  相似文献   

9.
The occurrence in Azospirillum brasilense of genes that code for exopolysaccharide (EPS) synthesis was investigated through complementation studies of Rhizobium meliloti Exo- mutants. These mutants are deficient in the synthesis of the major acidic EPS of Rhizobium species and form empty, non-nitrogen-fixing root nodules on alfalfa (J. A. Leigh, E. R. Signer, and G. C. Walker, Proc. Natl. Acad. Sci. USA 82:6231-6235, 1985). We demonstrated that the exoC mutation of R. meliloti could be corrected for EPS production by several cosmid clones of a clone bank of A. brasilense ATCC 29145. However, the EPS produced differed in structure from the wild-type R. meliloti EPS, and the symbiotic deficiency of the exoC mutation was not reversed by any of these cosmid clones. The exoB mutation could be corrected not only for EPS production but also for the ability to form nitrogen-fixing nodules on alfalfa by one particular cosmid clone of A. brasilense. Tn5 insertions in the cloned DNA were isolated and used to construct Azospirillum mutants with mutations in the corresponding loci by marker exchange. It was found that these mutants failed to produce the wild-type high-molecular-weight EPS, but instead produced EPSs of lower molecular weight.  相似文献   

10.
The LATD gene of the model legume, Medicago truncatula, is required for the normal function of three meristems, i.e. the primary root, lateral roots and nitrogen-fixing nodules. In latd mutants, primary root growth eventually arrests, resulting in a disorganized root tip lacking a presumptive meristem and root cap columella cells. Lateral root organs are more severely affected; latd lateral roots and nodules arrest immediately after emerging from the primary root, and reveal a lack of organization. Here we show that the plant hormone, abscisic acid (ABA), can rescue the latd root, but not nodule, meristem defects. Growth on ABA is sufficient to restore formation of small, cytoplasm-rich cells in the presumptive meristem region, rescue meristem organization and root growth and formation of root cap columella cells. In contrast, inhibition of ethylene synthesis or signaling fails to restore latd primary root growth. We find that latd mutants have normal levels of ABA, but exhibit reduced sensitivity to the hormone in two other ABA-dependent processes: seed germination and stomatal closure. Together, these observations demonstrate that the latd mutant is defective in the ABA response and indicate a role for LATD-dependent ABA signaling in M. truncatula root meristem function.  相似文献   

11.
In this paper studies on the role of flavonoids in pea root nodule development are reported. Flavonoid synthesis was followed by localizing chalcone synthase (CHS) mRNA in infected pea roots and in root nodules. In a nodule primordium, CHS mRNA is present in all cells of the primordium. Therefore it is hypothesized that the Rhizobium Nod factor induces cell division in the root cortex by stimulating the production of flavonoids that function as auxin transport inhibitors. In nodules CHS mRNA is predominantly present in a region at the apex of the nodule consisting of meristematic and cortical cells. These cells are not infected by Rhizobium. Therefore it is postulated that CHS plays a role in nodule development rather than in a defence response. In roots CHS mRNA is located at a similar position as in nodules, suggesting that CHS has the same function in both root and nodule development. When nodules are formed by mutants of Rhizobium leguminosarum bv. viciae that are unable to secrete β(1-2) glucan and to synthesize the O-antigen containing LPS I, CHS genes are also expressed in regions of the nodule that are infected by Rhizobium. It is postulated that the impaired development of nodules formed by these mutants is due to an induction of a plant defence response.  相似文献   

12.
In this study, we characterized four Tn5 mutants derived from Rhizobium leguminosarum RBL5515 with respect to synthesis and secretion of cellulose fibrils, extracellular polysaccharides (EPS), capsular polysaccharides, and cyclic beta-(1,2)-glucans. One mutant, strain RBL5515 exo-344::Tn5, synthesizes residual amounts of EPS, the repeating unit of which lacks the terminal galactose molecule and the substituents attached to it. On basis of the polysaccharide production pattern of strain RBL5515 exo-344::Tn5, the structural features of the polysaccharides synthesized, and the results of an analysis of the enzyme activities involved, we hypothesize that this strain is affected in a galactose transferase involved in the synthesis of EPS only. All four mutants failed to nodulate plants belonging to the pea cross-inoculation group; on Vicia sativa they induced root hair deformation and rare abortive infection threads. All of the mutants appeared to be pleiotropic, since in addition to defects in the synthesis of EPS, lipopolysaccharide, and/or capsular polysaccharides significant increases in the synthesis and secretion of cyclic beta-(1,2)-glucans were observed. We concluded that it is impossible to correlate a defect in the synthesis of a particular polysaccharide with nodulation characteristics.  相似文献   

13.
A polysaccharide produced by Bradyrhizobium japonicum bacteroids in nodules (NPS) on soybean (Glycine max [L.] Merr.) roots is different in composition and structure from the extracellular polysaccharide produced in culture by this organism. Isogenic strains either capable or incapable of NPS synthesis supported similar rates of plant growth and nitrogenase activity, indicating that polysaccharide deposition was not detrimental. The possibility that NPS may have some protective or nutritional role for bacteroids was considered. Analysis of disintegrating nodules over periods of 1 to 3 months indicated greater recovery of viable bacteria from NPS+ nodules prior to the breakdown of NPS. During and after the breakdown of NPS, the decline in viable bacteria was similar for NPS+ and NPS- strains. Bacteroid destruction in senescing nodules may be accelerated by exposure to proteolytic enzymes in host cytoplasm; however, highly purified NPS had no significant effect on the in vitro activity of partially purified proteases, so protection of bacteroids via this mechanism is unlikely. B. japonicum USDA 438 did not utilize NPS as a carbon source for growth in liquid culture. In vitro assays of NPS depolymerase activity in cultured bacteria and bacteroids were negative using a variety of strains, all of which contained extracellular polysaccharide depolymerase. It seems highly unlikely that B. japonicum can utilize the polysaccharide it synthesizes in nodules, and NPS breakdown in senescing nodules is probably caused by saprophytic fungi.  相似文献   

14.
Infection of alfalfa with Rhizobium meliloti exo mutants deficient in exopolysaccharide results in abnormal root nodules that are devoid of bacteria and fail to fix nitrogen. Here we report further characterization of these abnormal nodules. Tightly curled root hairs or shepherd's crooks were found after inoculation with Rm 1021-derived exo mutants, but curling was delayed compared with wild-type Rm 1021. Infection threads were initiated in curled root hairs by mutants as well as by wild-type R. meliloti, but the exo mutant-induced threads aborted within the peripheral cells of the developing nodule. Also, nodules elicited by Rm 1021-derived exo mutants were more likely to develop on secondary roots than on the primary root. In contrast with wild-type R. meliloti-induced nodules, the exo mutant-induced nodules lacked a well defined apical meristem, presumably due to the abortion of the infection threads. The relationship of these findings to the physiology of nodule development is discussed.  相似文献   

15.
Root-nodule development in legumes is an inducible developmental process initially triggered by perception of lipochitin-oligosaccharide signals secreted by the bacterial microsymbiont. In nature, rhizobial colonization and invasion of the legume root is therefore a prerequisite for formation of nitrogen-fixing root nodules. Here, we report isolation and characterization of chemically induced spontaneously nodulating mutants in a model legume amenable to molecular genetics. Six mutant lines of Lotus japonicus were identified in a screen for spontaneous nodule development under axenic conditions, i.e., in the absence of rhizobia. Spontaneous nodules do not contain rhizobia, bacteroids, or infection threads. Phenotypically, they resemble ineffective white nodules formed by some bacterial mutants on wild-type plants or certain plant mutants inoculated with wild-type Mesorhizobium loti. Spontaneous nodules formed on mutant lines show the ontogeny and characteristic histological features described for rhizobia-induced nodules on wild-type plants. Physiological responses to nitrate and ethylene are also maintained, as elevated levels inhibit spontaneous nodulation. Activation of the nodule developmental program in spontaneous nodules was shown for the early nodulin genes Enod2 and Nin, which are both upregulated in spontaneous nodules as well as in rhizobial nodules. Both monogenic recessive and dominant spontaneous nodule formation (snf) mutations were isolated in this mutant screen, and map positions were determined for three loci. We suggest that future molecular characterization of these mutants will identify key plant determinants involved in regulating nodulation and provide new insight into plant organ development.  相似文献   

16.
Mutants of Shewanella oneidensis MR-1 that adapted to an electrode-respiring condition were selected from a random transposon-insertion mutant library to obtain active current-generating mutants and identify relevant cellular components. The mutants were selected in the presence of an electrode (poised at +0.2 V vs. an Ag/AgCl reference electrode) as the sole electron acceptor, and they were isolated on agar plates. Transposon-insertion sites in the isolated mutants were identified by inverse PCR coupled to sequence analyses. Southern blotting using a transposon probe was also performed to detect mutants that grew abundantly on the electrode. These analyses revealed that in many isolated mutants transposons were inserted in genes relevant to the synthesis of cell-surface structures, including SO_3350 (pilus synthesis), SO_3171 (polysaccharide synthesis), SO_3174 (polysaccharide synthesis), and SO_0165 (general secretion pathway). In microbial fuel cells, some of these (the SO_3350 and SO_4704 mutants) generated higher electrical outputs than wild-type MR-1, while the others generated lower outputs. The results suggest that cell-surface structures have a large influence on microbial current generation.  相似文献   

17.
The peribacteroid membrane (PBM) of symbiosomes from pea root nodules developed in the presence of boron (+B) was labelled by anti-rhamnogalacturonan II (RGII) (anti-rhamnogalacturonan II pectin polysaccharide) antiserum. However, in nodules from plants grown at low boron (-B), anti-RGII pectin polysaccharide did not stain PBMs. Given that RGII pectin binds to borate, and that symbiosomes differentiate aberrantly in -B nodules because of abnormal vesicle traffic, anti-RGII pectin polysaccharide antigens were further analysed. Following electrophoresis and electroblotting, anti-RGII pectin polysaccharide immunostained three bands in +B but not in -B nodule-derived PBMs. A similar banding pattern was observed after the immunostaining of membrane fractions from uninfected roots, indicating that anti-RGII pectin polysaccharide antigens are common to both peribacteroid and plasma membranes. Protease treatment of samples led to disappearance of anti-RGII pectin polysaccharide labelling, indicating that the three immunostained bands correspond to proteins or glycoproteins. The immunochemical study of RGII antigen distribution during nodule development showed that it is strongly present on the PBM of dividing (undifferentiated) symbiosomes but progressively disappeared during symbiosome maturation. In B-deficient nodules, PBMs were never decorated with RGII antigens, and there was an abnormal targeting of vesicles containing pectic polysaccharide (homogalacturanan) to cell membranes. Overall, these results indicate that RGII, boron and certain membrane (glyco)-proteins may interact closely and function cooperatively in membrane processes associated with symbiosome division and general cell growth.  相似文献   

18.
Plants enter into symbiotic relationships with bacteria that allow survival in nutrient-limiting environments. The bacterium Mesorhizobium loti enters into a symbiosis with the legume host, Lotus japonicus, which results in the formation of novel plant structures called root nodules. The bacteria colonize the nodules, and are internalized into the cytoplasm of the plant cells, where they reduce molecular dinitrogen for the plant. Symbiosis between M. loti and L. japonicus requires bacterial synthesis of secreted and cell-surface polysaccharides. We previously reported the identification of an unusual sulphate-modified form of capsular polysaccharide (KPS) in M. loti. To better understand the physiological function of sulphated KPS, we isolated the sulphotransferase responsible for KPS sulphation from M. loti extracts, determined its amino acid sequence and identified the corresponding M. loti open reading frame, mll7563 (which we have named kpsS). We demonstrated that partially purified KpsS functions as a fucosyl sulphotransferase in vitro. Furthermore, mutants deficient for this gene exhibit a lack of KPS sulphation and a decreased rate of nodule formation on L. japonicus. Interestingly, the kpsS gene product shares no significant amino acid similarity with previously identified sulphotransferases, but exhibited sequence identity to open reading frames of unknown function in diverse bacteria that interact with eukaryotes.  相似文献   

19.
20.
Spontaneous mutants with altered capsule synthesis were isolated from a marked strain of the symbiont,Rhizobium japonicum. Differential centrifugation was used to enrich serially for mutants incapable of forming capsules. The desired mutants were detected by altered colony morphology and altered ability to bind host plant lectin. Three mutants failed to form detectable capsules at any growth phase when cultured in vitro or in association with the host (soybean,Glycine max (L.) Merr.) roots. These mutants were all capable of nodulating and attaching to soybean roots, indicating that the presence of a capsule physically surrounding the bacterium is not required for attachment or for infection and nodulation. Nodulation by several of the mutants was linearly proportional to the amount of acidic exopolysaccharide that they released into the culture medium during the exponential growth phase, indicating that such polysaccharide synthesis is important and perhaps required for nodulation. Two of the mutants appeared to synthesize normal lectin-binding capsules when cultured in association with host roots, but not when cultured in vitro. Nodulation by these mutants appeared to depend on how rapidly after inoculation they synthesized capsular polysaccharide.Abbreviations CPS capsular polysaccharide - EPS exopolysaccharide - FITC fluorescein isothiocyanate Contribution No. 719 of the C.F. Kettering Research Laboratory  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号