首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Gallbladder fluid and electrolyte transport was investigatedin vitro. In guinea pig gallbladder, equimolar substitution of acetate, propionate, butyrate or valerate for HCO3 was increasingly effective in stimulating fluid absorption. The stimulatory potency of these compounds was a function of their chloroform water partition coefficients. The stimulatory effects of the isomers isobutyrate and isovalerate were less than predicted from their partition coefficients. Acidification of the gallbladder lumen, however, was strictly dependent on the partition coefficients for all of the above fatty acids. Unidirectional22Na fluxes were measured in rabbit and guinea pig gallbladders under short-circuit conditions. In the presence of butyrate stimulation of net Na flux was due entirely to an increase in the mucosal-to-serosal Na flux. Stimulation by butyrate was abolished by its omission from the mucosal bathing solution. The transepithelial electrical potential difference in both rabbit and guinea pig gallbladder became more lumen positive following mucosal but not serosal addition of butyrate. Net14C-butyrate fluxes were too small to account for stimulation of Na absorption in either species. Butyrate stimulation of Na absorption by guinea pig gallbladder was abolished by increasing the bathing pH from 7.4 to 8.1. Tris buffer (25mm) partially inhibited butyrate-dependent gallbladder fluid absorption by rabbit and guinea pig at pH 6.4 and 7.0, respectively, and completely at pH 8.4. These results reveal a marked similarity between butyrate and HCO3 stimulation of gallbladder NaCl and fluid absorption. The results are best explained by a double ion-exchange model, in which butyrate (HCO3) in the mucosal solution acts to maintain the intracellular supply of H+ and butyrate (HCO3) for countertransport of Na and Cl, respectively.  相似文献   

2.
Summary Fluid transport and net fluxes of Na, K, Cl and HCO3 by guinea pig gallbladder were investigatedin vitro. A perfused gallbladder preparation was devised to simultaneously study unidirectional fluxes of22Na and36Cl. The net Cl flux exceeded the net Na flux during fluid absorption in the presence of HCO3. This Cl excess was counter-balanced by a net HCO3 secretion: a HCO3–Cl exchange. PGE1 reversed the direction of fluid transport and abolished the net Cl flux. The magnitude of the HCO3 secretion remained unchanged, but shifted from a HCO3–Cl exchange to a net secretion of NaHCO3 and KHCO3. Furosemide inhibited both the HCO3–Cl exchange and HCO3 secretion after PGE1 without influencing fluid absorption. Ouabain inhibited the HCO3–Cl exchange as well as fluid absorption; only the effect on the HCO3 secretion was entirely reversible. Secreted HCO3 appeared not to be derived from metabolic sources since HCO3 secretion was abolished in a HCO3-free bathing medium. HCO3 secretion was also dependent on the Na concentration of the bathing fluid. Three lines of evidence are presented in favor of an active HCO3 secretion in guinea pig gallbladder. HCO3 is secreted against: (i) a chemical gradient, (ii) an electrical gradient and (iii) the direction of fluid movement under control conditions.  相似文献   

3.
Summary Previous studies have led to the suggestion that salt and water absorption by rabbit and guinea pig gallbladders exposed to Amphotericin B proceeds by a rheogenic Na pump at the basolateral cell membrane. The present studyin vitro was designed to further characterize transport properties of rabbit and guinea pig gallbladders under control conditions and to identify the properties of gallbladder mucosa which are altered by Amphotericin B to allow for the induced serosa-positive electrical potential differences (PD). Potassium is required in the bathing solution at a low concentration to maintain normal tissue O2 consumption, fluid absorption and the ability of the tissue to develop the maximum Amphotericin B-induced PD; the relative effectiveness of alkali metal cations in substituting for K is KRb>Cs>Li>Na. The carrier mechanism for coupled influx of Na and Cl across the mucosal border of gallbladder appears to be functional in the presence of Amphotericin B; in addition, the diffusional influx of chloride is not significantly altered by the antibiotic. The primary action of Amphotericin B which appears to modify rabbit and guinea pig gallbladders from having transmural PD's of less than ±1 mV to having serosa-positive PD's of 5–30 mV is an increase in the mucosal cell membrane permeability to Na. This permeability change has the effect of partially uncoupling NaCl influx. A rheogenic Na pump mechanism at the basolateral membrane, presumably in operation under control conditions also, may account for the PD.  相似文献   

4.
Summary The Na+ requirement for active, electrogenic Cl absorption byAmphiuma small intestine was studied by tracer techniques and double-barreled Cl-sensitive microelectrodes. Addition of Cl to a Cl-free medium bathingin vitro intestinal segments produced a saturable (K m =5.4mm) increase in shortcircuit current (I sc) which was inhibitable by 1mm SITS. The selectivity sequence for the anion-evoked current was Cl=Br>SCN>NO 3 >F=I. Current evoked by Cl reached a maximum with increasing medium Na concentration (K m =12.4mm). Addition of Na+, as Na gluconate (10mm), to mucosal and serosal Na+-free media stimulated the Cl current and simultaneously increased the absorptive Cl flux (J ms Cl ) and net flux (J net Cl ) without changing the secretory Cl flux (J sm Cl ). Addition of Na+ only to the serosal fluid stimulatedJ ms Cl much more than Na+ addition only to the mucosal fluid in paired tissues. Serosal DIDS (1mm) blocked the stimulation. Serosal 10mm Tris gluconate or choline gluconate failed to stimulateJ ms Cl . Intracellular Cl activity (a Cl i ) in villus epithelial cells was above electrochemical equilibrium indicating active Cl uptake. Ouabain (1mm) eliminated Cl accumulation and reduced the mucosal membrane potential m over 2 to 3 hr. In contrast, SITS had no effect on Cl accumulation and hyperpolarized the mucosal membrane. Replacement of serosal Na+ with choline eliminated Cl accumulation while replacement of mucosal Na+ had no effect. In conclusion by two independent methods active electrogenic Cl absorption depends on serosal rather than mucosal Na+. It is concluded that Cl enters the cell via a primary (rheogenic) transport mechanism. At the serosal membrane the Na+ gradient most likely energizes H+ export and regulates mucosal Cl accumulation perhaps by influencing cell pH or HCO 3 concentration.  相似文献   

5.
Summary The transepithelial fluxes, conductances and permeabilities of Li+, Na+, K+, Cs+, NH 4 + and H3CNH 3 + were studied under ionic concentrations ranging from 12 to 250mm inBufo arenarum gallbladders. When these measurements are carefully corrected in order to get only the component due to the paracellular cation channels, the following results are obtained: (1) The permeability ratios (cationic/anionic) are a decreasing function of salt concentration. (2) The partial conductances through paracellular cationic channels show nonlinear saturable concentration kinetics. (3) Moreover, partial conductance kinetics of K+, Cs+ and NH 4 + present a maximum followed, at higher concentratons, by a negative-slope region. (4) The selectivity sequences obtained from biionic potentials do not agree with those obtained from partial conductance measurements. (5) The unidirectional22Na tracer flux (serosal to mucosal) is inhibited by 63% when the K+ symmetrical concentration in the bathing solutions is raised from 25 to 200mm. (6) When the unidirectional42K fluxes (serosal to mucosal) at 200mm KCl Na-free solutions are compared with K+ partial conductance by means of the Hodgkin and Keynes (Hodgkin, A.L., Keynes, R.D. 1955.J. Physiol London 128:61–88) expression, then factor is 2.0. These results indicate that cations do not follow the independence principle and behave as in single-file diffusion multi-ion pores when crossing the paracellular cation channels ofBufo arenarum gallbladder epithelium.  相似文献   

6.
Summary The conductance of the apical membrane of the toad urinary bladder was studied under voltage-clamp conditions at hyperpolarizing potentials (mucosa negative to serosa). The serosal medium contained high KCl concentrations to reduce the voltage and electrical resistance across the basal-lateral membrane, and the mucosal solution was Na free, or contained amiloride, to eliminate the conductance of the apical Na channels. As the mucosal potential (V m) was made more negative the slope conductance of the epithelium increased, reaching a maximum at conductance of the epithelium increased, reaching a maximum atV m=–100 mV. This rectifying conductance activated with a time constant of 2 msec whenV m was changed abruptly from 0 to –100 mV, and remained elevated for at least 10 min, although some decrease of current was observed. ReturningV m to+100 mV deactivated the conductance within 1 msec. Ion substitution experiments showed that the rectified current was carried mostly by cations moving from cell to mucosa. Measurement of K flux showed that the current could be accounted for by net movement of K across the apical membrane, implying a voltage-dependent conductance to K (G K). Mucosal addition of the K channel blockers TEA and Cs had no effect onG K, while 29mm Ba diminished it slightly. Mucosal Mg (29mm) also reducedG K, while Ca (29mm) stimulated it.G K was blocked by lowering the mucosal pH with an apparent pK1 of 4.5. Quinidine (0.5mm in the serosal bath) reducedG K by 80%.G K was stimulated by ADH (20 mU/ml), 8-Br-cAMP (1mm), carbachol (100 m), aldosterone (5×10–7 m for 18 hr), intracellular Li and extracellular CO2.  相似文献   

7.
Summary The Na conductance of the apical membrane of the toad urinary bladder was measured at different concentrations of Na both in the external medium and in the cell. Bladders were bathed in high K-sucrose medium to reduce basal-lateral resistance and voltage, and the transepithelial currents measured under voltage-clamp conditions. Amiloride was used as a specific blocker of the apical Na channel. At constant external Na, the internal Na concentration was increased by blocking the basallateral Na pump with ouabain. With high Na activity in the mucosal medium (86mm), increases in intracellular Na activity from 10 to over 40mm increased the amiloride-sensitive slope conductance at zero voltage while apical Na permeability, estimated from current-voltage plots using the constant field equation, decreased by less than 20%. Lowering the serosal Ca concentration from 1 to 0.1mm had no effect on the change inP Na with increasing Nac, but increasing serosal Ca to 5mm enhanced the reduction inP Na with increasing Na c , presumably by increasing Ca influx into the cell.P Na was also reduced by serosal vanadate (0.5mm), a putative blocker of ATP-dependent Ca extrusion from the cell, and by acute exposure to CO2, which presumably acidifies the cytoplasm. Current-voltage relationships of the amiloridesensitive transport pathway were also measured in the absence of a Na gradient across the apical membrane. These plots show that outward current passes through the channels somewhat less easily than does inward current. The shape of theI-V relationships was not significantly altered by changes in cellular Na, Ca or H, indicating that the effects of these ions onP Na are voltage independent.  相似文献   

8.
Summary Intracellular C1, K and Na activities (a Cl i ,a k i anda Na i ) and transmucosal membrane potential (E m) in epithelial cells ofNecturus gallbladder were measured at different external Na concentrations ([Na]o), with liquid ion-exchanger and conventional microelectrodes. Bladders were mounted in a divided chamber at 23°C between identical HCO3-free Ringer solutions containing 5mm K. The pH was 7.2. Tris was substituted for Na. Measurements were made under steady-state conditions as determined by the constancy of the transepithelial potential difference. Both,a Cl i anda Na i increased in a saturable fashion with [Na]o.E m did not change significantly. Average values (±sem) under normal conditions ([Na]o=100mm) fora Cl i ,a Na i andE m were 16.8±0.8mm (n=9), 9.7±0.6mm (n=10) and –52.6±0.6 mV (n=26), respectively. In Na-free mediaa Cl i declined to its equilibrium value.a K i (96±2mm;n=7) did not change when [Na]o was varied between 100 and 10mm but decreased to 80±3mm (n=4) in Na-free media.Transmembrane electrochemical potential differences, , for Cl and Na were calculated at four different [Na]o levels. A highly significant linear relation between and was found, indicating that Cl and Na transport are energetically linked. The results support the view that the energy necessary for intracellular Cl accumulation is derived from the simultaneous dissipation of the chemical potential gradient of Na across the apical membrane and that the coupled entry mechanism is electroneutral.  相似文献   

9.
Summary The effect of amiloride on the sensitivity to Na of the mucosal border of toad urinary bladder was investigated by recording Na concentration-dependent transepithelial potential difference (V t ) and the intracellular potential. When mucosal Na concentration was normal, amiloride added to the mucosal solution at 10–4 m markedly reduced the mucosal membrane potential (V m ) and altered the potential profile from a two-step type to a well type. Similar changes were observed when Na was totally eliminated from the mucosal medium. The serosal membrane potential was insensitive to amiloride and elimination of mucosal Na. In the absence of amiloride, theV t could be described by the Goldman-Hodgkin-Katz equation in the range of mucosal Na concentration from 0 to 16mm, and amiloride extended this concentration range. By using the Goldman-Hodgkin-Katz equation, Na permeability was calculated from the data ofV t 's obtained in the allowed ranges of Na concentration and compared before and after the addition of amiloride. The results show that Na permeability decreases to 1/600 of control when the maximum dose of amiloride (10–4 m) is applied. The relationship between Na permeability and amiloride concentration is well explained on the basis of assumptions that amiloride binds to the Na site of the mucosal border in one-to-one fashion and in a competitive manner with Na and that Na permeability reduces in proportion to increase in number of the sites bound with amiloride.  相似文献   

10.
Summary Exposing the apical membrane of toad urinary bladder to the ionophore nystatin lowers its resistance to less than 100 cm2. The basolateral membrane can then be studied by means of transepithelial measurements. If the mucosal solution contains more than 5mm Na+, and serosal Na+ is substituted by K+, Cs+, or N-methyl-d-glucamine, the basolateral membrane expresses what appears to be a large Na+ conductance, passing strong currents out of the cell. This pathway is insensitive to ouabain or vanadate and does not require serosal or mucosal Ca2+. In Cl-free SO 4 2– Ringer's solution it is the major conductive pathway in the basolateral membrane even though the serosal side has 60mm K+. This pathway can be blocked by serosal amiloride (K i=13.1 m) or serosal Na+ ions (K i 10 to 20mm). It also conducts Li+ and shows a voltage-dependent relaxation with characteristic rates of 10 to 20 rad sec–1 at 0 mV.  相似文献   

11.
Summary Models for active Cl transport across epithelia are often assumed to be universal although they are based on detailed studies of a relatively small number of epithelia from vertebrate animals. Epithelial Cl transport is also important in many invertebrates, but little is known regarding its cellular mechanisms. We used short-circuit current, tracer fluxes and ion substitutions to investigate the basic properties of Cl absorption by locust hindgut, an epithelium which is ideally suited for transport studies. Serosal addition of 1mm adenosine 35-cyclic monophosphate (cAMP), a known stimulant of Cl transport in this tissue, increased short-circuit current (I sc) and net reabsorptive36Cl flux (J net Cl ) by 1000%. Cl absorption did not exhibit an exchange diffusion component and was highly selective over all anions tested except Br. Several predictions of Na- and HCO3-coupled models for Cl transport were tested: Cl-dependentI sc was not affected by sodium removal (<0.05mm) during the first 75 min. Also, a large stimulation ofJ net Cl was elicited by cAMP when recta were bathed for 6 hr in nominally Na-free saline (<0.001 to 0.2mm) and there was no correlation between Cl transport rate and the presence of micromolar quantities of Na contamination. Increased unidirectional influx of36Cl into rectal tissue during cAMP-stimulation was not accompanied by a comparable uptake of22Na.J net Cl was independent of exogenous CO2 and HCO3, but was strongly dependent on the presence of K. These results suggest that the major fraction of Cl transport across this insect epithelium occurs by an unusual K-dependent mechanism that does not directly require Na or HCO3.  相似文献   

12.
Summary Near-instantaneous current-voltage relationships and shot-noise analysis of amiloride-induced current fluctuations were used to estimate apical membrane permeability to Na (P Na), intraepithelial Na activity (Na c ), single-channel Na currents (i) and the number of open (conducting) apical Na channels (N0), in the urinary bladder of the toad (Bufo marinus). To facilitate voltageclamping of the apical membrane, the serosal plasma membranes were depolarized by substitution of a high KCl (85mm) sucrose (50mm) medium for the conventional Na-Ringer's solution on the serosal side.Aldosterone (5×10–7 m, serosal side only) elicited proportionate increases in the Na-specific current (I Na and inP Na, with no significant change in the dependence ofP Na on mucosal Na (Na o ).P Na and the control ofP Na by aldosterone were substrate-dependent: In substrate-depleted bladders, pretreatment with aldosterone markedly augmented the response to pyruvate (7.5×10–3 m) which evoked coordinate and equivalent increases inI Na andP Na.The aldosterone-dependent increase inP Na was a result of an equivalent increase in the area density of conducting apical Na channels. The computed single-channel current did not change. We propose that, following aldosterone-induced protein synthesis, there is a reversible metabolically-dependent recruitment of preexisting Na channels from a reservoir of electrically undetectable channels. The results do not exclude the possibility of a complementary induction of Na-channel synthesis.  相似文献   

13.
Summary Na and Cl fluxes and short-circuit current (I sc) in rabbit ileum have been studied as a function of ionic concentrations in HCO3-free solutions. Both net Na flux (J net Na ) andI sc show similar saturation functions of [Na] at fixed [Cl]. They show no significant difference between zero and 112mm Na but at 140mm NaI sc is significantly greater than theJ net Na . Net Cl transport, secretion, is observed only at 140mm Na and is approximately equivalent to the difference between theI sc andJ net Na . The transcellular mucosa-to-serosa Na fluxes measured at 140 and 70mm Na do not differ significantly from the correspondingI sc. The net Cl flux varies with [Cl] at fixed [Na] whileI sc is virtually not affected by [Cl]. These results suggest that the absorptive Na transport process is electrogenic and responsible for theI sc and that the secretory fluxes of Na and Cl are coupled, require high [Na], vary with [Cl], and do not contribute toI sc. K-free solution abolishes theI sc after a prolonged lag. Finally, the effect of a low resistance shunt pathway on active Na absorption is examined with a four-compartment model.Deceased (October 16, 1974).  相似文献   

14.
Summary The apical membrane of the rabbit corneal endothelium contains a potassium-selective ionic channel. In patch-clamp recordings, the probability of finding the channel in the open state (P o) depends on the presence of either HCO 3 or Cl in the bathing medium. In a methane sulfonate-containing bath,P o is <0.05 at all physiologically relevant transmembrane voltages. With 0mm [HCO 3 ] o at +60 mV,P o was 0.085 and increased to 0.40 when [HCO 3 ] o was 15mm. With 4mm [Cl] o at +60 mV,P o was 0.083 and with 150mm Cl,P o increased to 0.36. LowP o's are also found when propionate, sulphate, bromide, and nitrate are the primary bath anions. The mechanism of action of the anion-stimulated K+ channel gating is not yet known, but a direct action of pH seems unlikely. The alkalinization of cytoplasm associated with the addition of 10mm (NH4)2SO4 to the bath and the acidification accompanying its removal do not result in channel activation nor does the use of Nigericin to equilibrate intracellular pH with that of the bath over the pH range of 6.8 to 7.8. Channel gating also is not affected by bathing the internal surface of the patch with cAMP, cGMP, GTP--s, Mg2+ or ATP. Blockers of Na/H+ exchange, Na+–HCO 3 cotransport, Na+–K+ ATPase and carbonic anhydrase do not block the HCO 3 stimulation ofP o. Several of the properties of the channel could explain some of the previously reported voltage changes that occur in corneal endothelial cells stimulated by extracellular anions.  相似文献   

15.
Summary Active HCO 3 t- secretion in the anterior rectal salt gland of the mosquito larva,Aedes dorsalis, is mediated by a 11 Cl/HCO 3 exchanger. The cellular mechanisms of HCO 3 and Cl transport are examined using ion- and voltage-sensitive microelectrodes in conjunction with a microperfused preparation which allowed rapid saline changes. Addition of DIDS or acetazolamide to, or removal of CO2 and HCO 3 from, the serosal bath caused large (20 to 50 mV) hyperpolarizations of apical membrane potential (V a) and had little effect on basolateral potential (V bl). Changes in luminal Cl concentration alteredV a in a repid, linear manner with a slope of 42.2 mV/decaloga Cl l –. Intracellular Cl activity was 23.5mm and was approximately 10mm lower than that predicted for a passive distribution across the apical membrane. Changes in serosal Cl concentration had no effect onV bl, indicating an electrically silent basolateral Cl exit step. Intracellular pH in anterior rectal cells was 7.67 and the calculated was 14.4mm. These results show that under control conditions HCO3 enters the anterior rectal cell by an active mechanism against an electrochemical gradient of 77.1 mV and exits the cell at the apical membrane down a favorable electrochemical gradient of 27.6 mV. A tentative cellular model is proposed in which Cl enters the apical membrane of the anterior rectal cells by passive, electrodiffusive movement through a Cl-selective channel, and HCO 3 exits the cell by an active or passive electrogenic transport mechanism. The electrically silent nature of basolateral Cl exit and HCO3 entry, and the effects of serosal addition of the Cl/HCO3 exchange inhibitor, DIDS, on and transepithelial potential (V ic) suggest strongly that the basolateral membrane is the site of a direct coupling between Cl and HCO 3 movements.  相似文献   

16.
Summary In intact ileal mucosa, uptake of SO4 across the brush border membrane requires the presence of Na and is saturable, withK1/2=1.3mm at 140mm Na (P.L. Smith, S.A. Orellana & M. Field, 1981.J. Membrane Biol. 63:199–206). The present study examines the substrate specificities and transport stoichiometry of the Na-dependent SO4 uptake process. The effects of variations in medium anion and cation composition on lumen-to-epithelium influx of SO4 (J me SO4 ) were determined under short-circuit conditions.J me SO4 is inhibited by thiosulfate, but not by phosphate, methylsulfate, vanadate or taurocholate. Cl is weakly inhibitory. Uptake of SO4 is poorly supported by Li, and is unaffected by K, indicating a specific dependence on Na. At low SO4 concentration (0.22mm),J me SO4 is a hyperbolic function of medium Na concentration; the corresponding Hill plot is linear with a slope of 1.0, suggesting a transport stoichiometry of 1 Na: 1 SO4. At high SO4 concentration (6.7mm), the Na-dependent SO4 velocity curve is sigmoidal and yields a Hill plot which is again linear but has a slope of 1.56, suggesting transport of more than 1 Na per SO4. SO4 uptake in presence of Na exhibits a dependence on medium pH. At 0.22mm SO4 and 140mm Na,J me SO4 was doubled by lowering pH from 7.4 to 6.8. However, at 6.7mm SO4 and 140mm Na, changing pH had no effect onJ me SO4 over the range 6.8 to 8.5. The pH dependence ofJ me SO4 at 6.7mm SO4 was restored when medium Na was lowered to 3mm, suggesting that pH sensitivity is a function of the concentration of preformed NaSO 4 ion pair. The results suggest that SO4 influx across the ileal brush border occurs by electroneutral Na+/NaSO 4 or Na+/H+/SO 4 2– cotransport, the former being favored by high concentrations of Na and SO4.  相似文献   

17.
A Cl/HCO3 exchanger mediates HCO3 extrusion across rat jejunal basolateral membrane. Previous studies demonstrated that anion antiport activity is positively affected by Na, but evidence was given that this cation is not translocated by the carrier protein. Basolateral membranes isolated from rat jejunum were used to give more insight on Na effect. Uptake studies, performed together with vesicle sidedness determinations, indicated that the greatest stimulation of Cl-dependent HCO3 uptake occurs when Na is present at both vesicle surfaces. The kinetic dependence of Cl/HCO3 exchange on equal intra- and extravesicular Na concentration showed a hyperbolic relationship, and the calculated kinetic parameters were V max=0.153 ± 0.006 nmol mg protein-1 sec-1, K m =23.0 Mm. Ion replacement studies indicated that Na can be partially substituted only by Li and not by other monovalent cations. Results of this study suggest that Na could act as a nonessential activator of the Cl/HCO3 exchanger. A possible role of the Na-sensitive modifier site in the physiology of jejunal enterocyte is suggested.  相似文献   

18.
Summary The optical sectioning video imaging technique was used for measurements of the volume of mitochondria-rich (m.r.) cells of the isolated epithelium of toad skin. Under short-circuit conditions, cell volume decreased by about 14% in response to bilateral exposure to Cl-free (gluconate substitution) solutions, apical exposure to ouabain resulted in a large increase in volume, which could be prevented either by the simultaneous application of amiloride in the apical solution or by the exposure of the epithelium to bilateral Cl-free solutions. Unilateral exposure to a Cl-free solution did not prevent ouabain-induced cell swelling. It is concluded that m.r. cells have an amiloride-blockable Na conductance in the apical membrane, a ouabain-sensitive Na pump in the basolateral membrane, and a passive Cl permeability in both membranes. From the initial rate of ouabain-induced cell volume increase the active Na current carried by a single m.r. cell was estimated to be 9.9±1.3 pA. Voltage clamping of the preparation in the physiological range of potentials (0 to –100 mV, serosa grounded) resulted in a cell volume increase with a time course similar to that of the stimulation of the voltage-dependent activation were prevented by exposure of the tissue to a Cl-free apical solution. The steady-state volume of the m.r. cells increased with the clamping voltage, and at –100 mV the volume was about 1.15 times that under short-circuit conditions. The rate of volume increase during current passage was significantly decreased by lowering the serosal K concentration (K i ) to 0.5mm, but was independent of whether K i was 2.4, 5, or 10mm. This indicates that the K conductance of the serosal membrane becomes rate limiting for the uptake of KCl when K i is significantly lower than its physiological value. It is concluded that the voltage-activated Cl currents flow through the m.r. cells and that swelling is caused by an uptake of Cl ions from the apical bath and K ions from the serosal bath. Bilateral exposure of the tissue to hypo- or hypertonic bathing solutions changed cell volume without detectable changes in the Cl conductance. The volume response to external osmotic perturbations followed that of an osmometer with an osmotically inactive volume of 21%. Using this value and the change in cell volume in response to bilateral Cl-free solutions, we calculated an intracellular steady-state Cl concentration of 19.8±1.7mm (n=6) of the short-circuited cell.  相似文献   

19.
Summary The pig kidney cell line LLC-PK1 cultured on a collagen coated membrane filter formed a continuous sheet of oriented asymmetrical epithelial cells joined by occluding junctions. A transepithelial electrical potential (PD) and short-circuit current (SCC) were dependent on the presence of Na and sugar in the apical bathing solution. In the presence of 5.5mm d-glucose, a PD of 2.8 mV, apical surface negative, a SCC of 13 A cm–2 and transepithelial resistance of 211 ohm·cm2 were recorded. The SCC was promptly reduced by the addition of phlorizin to the apical bath but unaffected when placed in the basolateral bath. The effect on SCC of various sugars was compared by the concentrations required for half-maximal SCC: 0.13mm -methyl-d-glucoside, 0.28mm d-glucose, 0.65mm -methyl-d-glucoside, 0.77mm 6-deoxy-d-glucose, 4.8mm d-galactose, and 29mm 3-O-methyl-glucose. When [Na] was reduced, the concentration ofd-glucose required for half-maximal SCC increased. Isotopically labeled3H and14Cd-glucose were used to simultaneously determine bidirectional fluxes; a resultant net apical-to-basolateral transport was present and abolished by phlorizin. The transported isotope cochromatographed with labeledd-glucose, indicating negligible metabolism of transported glucose. The pig kidney cell line, LLC-PK1, provides a cell culture model for the investigation of mechanisms of transepithelial glucose transport.  相似文献   

20.
Basolateral membrane vesicles isolated from rat jejunum were used to characterize a Cl/HCO3 exchange mechanism previously evidenced. Cl uptake experiments provided no evidence for Cl/OH countertransport, confirming anyhow the presence of Cl/HCO3 antiport, which was inhibited by 2 mm furosemide and unaffected by 2 mm amiloride. An outwardly directed Na gradient stimulated Cl uptake and this effect was increased if Na was present at both vesicle surfaces. To investigate the mechanism of coupling between Na and the transport protein, we performed Na uptake experiments. Na uptake was unaffected by cis-bicarbonate and trans-Cl gradients; the reversal of anion gradients was still ineffective. Similar results were obtained when a pH difference across the membrane vesicles was imposed. This study seems to suggest that Na is not transported by the Cl/HCO3 exchanger and that another mode of Na dependence must be taken into account.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号