首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The metabolic theory of ecology (MTE) has attracted great interest because it proposes an explanation for species diversity gradients based on temperature-metabolism relationships of organisms. Here we analyse the spatial richness pattern of 73 coral snake species from the New World in the context of MTE. We first analysed the association between ln-transformed richness and environmental variables, including the inverse transformation of annual temperature (1/kT). We used eigenvector-based spatial filtering to remove the residual spatial autocorrelation in the data and geographically weighted regression to account for non-stationarity in data. In a model I regression (OLS), the observed slope between ln-richness and 1/kT was ?0.626 (r2 = 0.413), but a model II regression generated a much steeper slope (?0.975). When we added additional environmental correlates and the spatial filters in the OLS model, the R2 increased to 0.863 and the partial regression coefficient of 1/kT was ?0.676. The GWR detected highly significant non-stationarity, in data, and the median of local slopes of ln-richness against 1/kT was ?0.38. Our results expose several problems regarding the assumptions needed to test MTE: although the slope of OLS fell within that predicted by the theory and the dataset complied with the assumption of temperature-independence of average body size, the fact that coral snakes consist of a restricted taxonomic group and the non-stationarity of slopes across geographical space makes MTE invalid to explain richness in this case. Also, it is clear that other ecological and historical factors are important drivers of species richness patterns and must be taken into account both in theoretical modeling and data analysis.  相似文献   

2.
One hypothesis for the latitudinal gradient in species richness observed in most animal taxa is that the richness of a region is determined by its geographic area. However, the relationship between geographic area and species richness across regions is generally weak. It has been suggested that this is because species from the tropics spill out of this region of high richness, artificially inflating the richness of other regions. This generates the interesting prediction that the area and richness of extra-tropical regions should be more strongly correlated if tropical species are excluded. We test this prediction using the avifauna of the New World. We find that there is indeed a relationship between the land area and species richness of a region once tropical species are excluded. This relationship is independent of the latitude and productivity of regions. Both latitude and productivity can explain variance in richness unexplained by land area. There is no relationship between land area and species richness if tropical species are not excluded from the analysis, suggesting that tropical species do indeed mask the relationship between richness and area. We conclude that our results generally support the geographic area hypothesis, although tests of its other predictions and on other land masses are required.  相似文献   

3.
Aim  Relationships between range size and species richness are contentious, yet they are key to testing the various hypotheses that attempt to explain latitudinal diversity gradients. Our goal is to utilize the largest data set yet compiled for New World woody plant biogeography to describe and assess these relationships between species richness and range size.
Location  North and South America.
Methods  We estimated the latitudinal extent of 12,980 species of woody plants (trees, shrubs, lianas). From these estimates we quantified latitudinal patterns of species richness and range size. We compared our observations with expectations derived from two null models.
Results   Peak richness and the smallest- and largest-ranged species are generally found close to the equator. In contrast to prominent diversity hypotheses: (1) mean latitudinal extent of tropical species is greater than expected; (2) latitudinal extent appears to be decoupled from species richness across New World latitudes, with abrupt transitions across subtropical latitudes; and (3) mean latitudinal extents show equatorial and north temperate peaks and subtropical minima. Our results suggest that patterns of range size and richness appear to be influenced by three broadly overlapping biotic domains (biotic provinces) for New World woody plants.
Main conclusions  Hypotheses that assume a direct relationship between range size and species richness may explain richness patterns within these domains, but cannot explain gradients in richness across the New World.  相似文献   

4.
中国大陆鸟类和兽类物种多样性的空间变异   总被引:1,自引:0,他引:1  
生物多样性科学的研究重心之一是大尺度生物多样性空间分布规律及其形成机制。中国是世界上物种特丰富国家之一,了解我国物种多样性在空间上的变异情况,对于进一步认识大尺度上的生物多样性有重要意义。我们收集了全国205个自然保护区的鸟类和兽类物种分布信息,以G-F指数作为物种多样性的测度指标,利用地统计学方法分析了大陆鸟类和兽类物种多样性的空间变异特征。G-F指数是一种基于香农-威纳指数的信息测度,测度了研究地区环境分化程度和实际利用这种生态环境分化的生物类群多样性, 是一种对共同起源,相似生境需求的物种类群多样性的标准化多样性测度。结果发现,在东部季风区、西北干旱区和青藏高寒区内我国大陆鸟类多样性变异大部分都是由随机因素所引起的。兽类多样性的分布,在东部季风区和西北干旱区内是由随机因素所产生的,而在青藏高寒区,兽类多样性的总变异中99.9%是由空间依赖性所引起的,主要表现在71,492~1,020,000m空间尺度上,其分布表现出了强空间相关性。据此,大尺度上的物种多样性空间分布具有特定的规律,在生物多样性的保护行动中应加以考虑。  相似文献   

5.
6.
Spatial and temporal patterns of species richness in a riparian landscape   总被引:6,自引:0,他引:6  
Aim To test for control of vascular plant species richness in the riparian corridor by exploring three contrasting (although not mutually exclusive) hypotheses: (1) longitudinal patterns in riparian plant species richness are governed by local, river‐related processes independent of the regional species richness, (2) riparian plant species richness is controlled by dispersal along the river (longitudinal control), and (3) the variation in riparian plant species richness mirrors variation in regional richness (lateral control). Location The riparian zones of the free‐flowing Vindel River and its surrounding river valley, northern Sweden. Methods We used data from three surveys, undertaken at 10‐year intervals, of riparian reaches (200‐m stretches of riverbank) spanning the entire river. In addition, we surveyed species richness of vascular plants in the uplands adjacent to the river in 3.75‐km2 large plots along the same regional gradient. We explored the relationship between riparian and upland flora, and various environmental variables. We also evaluated temporal variation in downstream patterns of the riparian flora. Results Our results suggest that local species richness in boreal rivers is mainly a result of local, river‐related processes and dispersal along the corridor. The strongest correlation between species richness and the environment was a negative one between species number and soil pH, but pH varied within a narrow range. We did not find evidence for a correlation between species richness on regional and local scales. We found that the local patterns of species richness for naturally occurring vascular plants were temporally variable, probably in response to large‐scale disturbance caused by extreme floods. Most previous studies have found a unimodal pattern of species richness with peaks in the middle reaches of a river. In contrast, on two of three occasions corresponding to major flooding events, we found that the distribution of species richness of naturally occurring vascular plants resembled that of regional diversity: a monotonic decrease from headwater to coast. We also found high floristic similarity between the riparian corridor and the surrounding landscape. Main conclusions These results suggest that local processes control patterns of riparian species richness, but that species composition is also highly dependent on the regional species pool. We argue that inter‐annual variation in flood disturbance is probably the most important factor producing temporal variability of longitudinal species richness patterns.  相似文献   

7.
8.
In this paper, we used geostatistical approaches to describe bi-dimensional spatial patterns in species richness of South American birds of prey (Falconiformes and Strigiformes). They indicated strong spatial patterns both across latitude and longitude, for the two groups. These patterns were then correlated with those expected by a bi-dimensional null model constructed to take into account South America continental edges. As considerable departures from the null model were observed, there may be other ecological or evolutionary explanations for spatial patterns in species richness. Variation seems to be related to habitat heterogeneity across the continent, especially when considering differences between habitats in the central and south-eastern portion of the continent and in the Andean region. This supports previous conclusions that habitat type and heterogeneity affect species richness and abundance at different spatial scales.  相似文献   

9.
Abstract. Although the latitudinal gradient of species richness for mammals in North America is well documented, few investigators have quantified the relationship in South America. We examined the pattern in North and South America, at two spatial scales (2.5° and 5°) for each of two sampling methods (quadrats and latitudinal bands). A scale effect was evident for quadrats but not for bands. Significant linear relationships between species richness and latitude were found for three faunal groups: all mammals, nonvolant species, and bats. Effects of area confound the latitudinal relationship. By statistically removing such effects, we found that the latitudinal gradient is not an artifact of the species-area relationship, and that the latitudinal gradients for North and South America were statistically indistinguishable. Our data suggest that both faunal subgroups, nonvolant species and bats, contributed substantially to the overall mammalian pattern. Further, multiple regression analyses showed that only latitude is a necessary variable to explain bat richness; for nonvolant species, in addition to latitude, area and longitude may be important.  相似文献   

10.
11.
Whether sexual selection acts as an "engine of speciation" is controversial. Some studies suggest that it promotes the evolution of reproductive isolation, while others find no relationship between sexual selection and species richness. However, the explanatory power of previous models may have been constrained because they employed coarse-scale, between-family comparisons and used mating systems and morphological cues as surrogates for sexual selection. In birds, an obvious missing predictor is song, a sexually selected trait that functions in mate choice and reproductive isolation. We investigated the extent to which plumage dichromatism and song structure predicted species richness in a diverse family of Neotropical suboscine birds, the antbirds (Thamnophilidae). These analyses revealed a positive relationship between the intensity of sexual selection and diversity: genera with higher levels of dichromatism and lower-pitched, more complex songs contained greater numbers of species. This relationship held when controlling for phylogeny and was strengthened by the inclusion of subspecies, suggesting that sexual selection has played a role in the diversification of antbirds. This is the first study to reveal correlations between song structure and species diversity, emphasizing the importance of acoustic signals, and within-family analyses, in comparative studies of sexual selection.  相似文献   

12.
13.
Aim We analyse the geographical distribution of 1911 Afrotropical bird species using indices of three simple biogeographic patterns. The first index, the frequency of species with range edges (Te), is formulated to map directly the density of species distribution limits, for comparison with the results of traditional biogeographical classification and ordination procedures, in order to show variations in the strength and breadth of transition zones. The other two indices are formulated to seek to distinguish as directly as possible between two components within these transition-zone patterns: contributions from gradients in species richness (Tg); and contributions from replacements among species (Tr). We test the ability of these indices to discover the same boundaries among Afrotropical bird faunas as one popular procedure for classifying areas (TWINSPAN) and then use them to look for geographical trends in the different kinds of transition zones. Location The analysis is restricted to the sub-Saharan or Afrotropical region, excluding the Arabian Peninsula, Madagascar and all offshore islands. Methods We record the presence of each species in 1961 1°×1° grid cells of the map. To apply the three indices, each (core) grid cell in turn is compared with its neighbouring eight cells in the grid. The range edges index (Te) counts the number of species with range edges between the core cell and the surrounding cells. The richness gradients index (Tg) counts the largest difference in species richness measured diametrically across the core cell in any direction when there is a consistent trend in richness along this line of three cells. The species replacements index (Tr) counts the number of species pairs recorded within a nine-cell neighbourhood that are not corecorded within any of the cells. Values for each of the 1961 grid cells are calculated and used to produce colour-scale maps of transition zones. Results Large-scale spatial patterns of variation in density of range edges (Te) are consistent with classifications of the same data and with most previous biogeographical classifications proposed for the region. Variation in richness gradients (Tg) and species replacements (Tr) explain different parts of this pattern, with transition zones around humid forests in the equatorial region being dominated by species replacement, and transition zones around deserts (most extensive in the north and south) being dominated by richness gradients. Main conclusions The three indices distinguish the spatial arrangement and intensity of different kinds of transition zones, thereby providing a first step towards a more rigorous mechanistic understanding of the different processes by which they may have arisen and are maintained. As an example of one such pattern shown by our analyses of Afrotropical birds, there is evidence for a broad latitudinal trend in the nature of transition zones in faunal composition (following the latitudinal distribution of the different kinds of habitat transitions), from being dominated by species replacements near the equator to being dominated by richness gradients further from the equator.  相似文献   

14.
Aim To quantify the latitudinal gradient in species richness in the New World Triatominae and to explore the species‐energy and area hypotheses as possible causes. Location The gradient was studied for North and South America, between 43° N and 32° S. Methods A database was constructed containing the geographical distribution of the 118 New World Triatominae species based on data extracted from several published sources. Species richness was recorded as the number of species present within 5° latitudinal bands. We used univariate and multivariate models to analyse the relationship between area within each latitudinal belt, land surface temperature, and potential evapotranspiration as explanatory variables, and species richness. All variables were georeferenced and data were extracted using a GIS. Results Species richness of Triatominae increases significantly from the poles towards the Equator, peaking over the 5°?10 ° S latitudinal band. It increases according to a linear model, both north and south of the Equator, although a quadratic model fits better to southern hemisphere data. Richness correlates with habitable geographical area, when it is analysed through a nonlinear multiple regression factoring out latitude, only in the southern hemisphere. Regarding the species‐energy hypothesis, a multiple regression analysis controlling the effect of latitude shows a significant relationship between temperature and species richness. This effect is more pronounced in the southern hemisphere. Species richness shows a strong longitudinal trend south of the Equator (increasing to the east), but not north of the Equator. This differential pattern is reflected in significant interactions between longitude and both latitude and temperature in models of the species richness of the New World Triatominae. Main conclusions To our knowledge, this is the first time that a latitudinal gradient in species richness has been shown and analysed for obligate haematophagous organisms, and it shows that the species–energy hypothesis can account for this phenomenon. This relationship is stronger in the southern hemisphere.  相似文献   

15.
Janet Franklin  David W. Steadman 《Oikos》2008,117(12):1885-1891
Using data on prehistoric and modern birds from seven islands in the Kingdom of Tonga, we demonstrate that there is no positive relationship between species richness (S) and island area (A) over the observed range of A (1.8–259 km2). The uniform S‐values occur across more than three orders of magnitude of A when prehistoric data are included, and the strongest predictor of S on any island is the level of fossil sampling (number of identified bones). Below a minimum value for A (in Tonga < 1.8 km2), S declines to zero as A does the same. Within the ranges of island elevation (E) and inter‐island isolation (I) among the seven islands, neither E (11–312 m) nor I (0.6–38 km) has much if any effect on S. Under natural (pre‐human) conditions, a positive species‐area relationship may not be a valid generalization for birds on oceanic islands.  相似文献   

16.
秦岭重点保护植物丰富度空间格局与热点地区   总被引:1,自引:0,他引:1  
张殷波  郭柳琳  王伟  田瑜  李俊生 《生态学报》2014,34(8):2109-2117
秦岭地区物种资源丰富,是我国重要的生物多样性热点地区之一。以秦岭山系涉及的43个行政县为研究区域,基于重点保护植物的县级分布,并结合垂直分布和生境类型信息获得物种分布区范围,探讨重点保护植物的丰富度空间格局和热点地区。研究结果表明:该地区共包括重点保护植物200种,其中国家一级保护植物20种,国家二级保护植物180种;秦岭重点保护植物丰富度空间格局总体随山体呈东西向递减的条带状分布,东段随着山岭与盆地相间的地形呈扫帚状展开,南坡物种丰富度高于北坡;通过丰富度空间格局确定了3个热点地区,分别是:(1)伏牛-熊耳山地;(2)太白-佛坪山地;(3)天水东南部山地。将热点地区与国家级自然保护区叠加后鉴别出保护空缺地,可为下一步实施科学的生物多样性保护规划提供基础资料。  相似文献   

17.
18.
Robert N. Reed 《Ecography》2003,26(1):107-117
Many higher taxa exhibit latitudinal gradients in species richness, geographic range size, and body size. However, these variables are often interdependent, such that examinations of univariate or bivariate patterns alone may be misleading. Therefore, I examined latitudinal gradients in, and relationships between, species richness, geographic range size, and body size among 144 species of New World venomous snakes [families Elapidae (coral snakes) and Viperidae (pitvipers)]. Both lineages are monophyletic, collectively span 99° of latitude, and are extremely variable in body size and geographic range sizes. Coral snakes exhibit highest species richness near the equator, while pitviper species richness peaks in Central America. Species – range size distributions were strongly right-skewed for both families. There was little support for Bergmann's rule or Rapoport's rule for snakes of either family, as neither body size nor range size increased significantly with latitude. However, range area and median range latitude were positively correlated above 15° N, indicating a possible "Rapoport effect" at high northern latitudes. Geographic range size was positively associated with body size. Available continental area strongly influenced range size. Comparative (phylogenetically-based) analyses revealed that shared history is a poor predictor of range size variation within clades. Among vipers, trends in geographic range sizes may have been structured more by historical biogeography than by macroecological biotic factors.  相似文献   

19.
Geographical variation in species richness in plant groups is determined by the interplay between historical, evolutionary, and ecological processes. However, the processes underlying the striking disparity in species richness between Asia and the Americas remain poorly understood. Here, we synthesize global phylogenetic and macroecological data on the diversification of Smilacaceae, deciphering potential drivers underlying the species diversity pattern biased toward Asia. We compiled global distributions of all Smilacaceae species, and reconstructed the biogeographic history and niche evolution using a new time-calibrated phylogeny (eight genes, 135 species). Integrating these data sets, we estimated evolutionary histories and diversification rates for each region, and tested correlations among species diversification, niche evolution, and niche divergence. Smilacaceae probably originated during the Late Cretaceous/Early Palaeocene and began to diversify in middle to low latitudes in Central America and Eurasia during the Late Eocene. Both the Old and New World clades exhibited a steady, albeit slight, increase of species diversification from the Late Eocene to Early Miocene. However, the Old World clade experienced an abrupt increase in net diversification during the Late Miocene. Our findings also revealed that species diversification rates were positively correlated with ecological niche evolution and niche divergence. Niche shifts and climatic niche evolution since the Middle Miocene played crucial roles in species diversification dynamics within Smilacaceae. The high plant richness in Asia may be explained by greater diversification in this region, potentially promoted by heterogeneous environments.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号