首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Summary The plant cyclotides are a fascinating family of circular proteins that contain a cyclic cystine knot motif (CCK). This unique family was discovered only recently but contains over 50 known sequences to date. Various biological activities are associated with these peptides including antimicrobial and insecticidal activity. The knotted topology and cyclic nature of the cyclotides poses interesting questions about the folding mechanisms and how the knotted arrangement of disulfide bonds is formed. Some studies have been performed on related inhibitor cystine knot (ICK) containing peptides, but little is known about the folding mechanisms of CCK molecules. We have examined the oxidative refolding and reductive unfolding of the prototypic member of the cyclotide family, kalata B1. Analysis of the rates of formation of the intermediates along the reductive unfolding pathway highlights the stability conferred by the cystine knot motif. Significant differences are observed between the folding of kalata B1 and an acyclic cystine knot protein, EETI-II, suggesting that the circular backbone has a significant influence in directing the folding pathway.  相似文献   

2.
The aim of this work was to elucidate the oxidative folding mechanism of the macrocyclic cystine knot protein MCoTI-II. We aimed to investigate how the six-cysteine residues distributed on the circular backbone of the reduced unfolded peptide recognize their correct partner and join up to form a complex cystine-knotted topology. To answer this question, we studied the oxidative folding of the naturally occurring peptide using a range of spectroscopic methods. For both oxidative folding and reductive unfolding, the same disulfide intermediate species was prevalent and was characterized to be a native-like two-disulfide intermediate in which the Cys1-Cys18 disulfide bond was absent. Overall, the folding pathway of this head-to-tail cyclized protein was found to be similar to that of linear cystine knot proteins from the squash family of trypsin inhibitors. However, the pathway differs in an important way from that of the cyclotide kalata B1, in that the equivalent two-disulfide intermediate in that case is not a direct precursor of the native protein. The size of the embedded ring within the cystine knot motif appears to play a crucial role in the folding pathway. Larger rings contribute to the independence of disulfides and favor an on-pathway native-like intermediate that has a smaller energy barrier to cross to form the native fold. The fact that macrocyclic proteins are readily able to fold to a complex knotted structure in vitro in the absence of chaperones makes them suitable as protein engineering scaffolds that have remarkable stability.  相似文献   

3.
The plant cyclotides are a fascinating family of circular proteins that contain a cyclic cystine knot motif. The knotted topology and cyclic nature of the cyclotides pose interesting questions about folding mechanisms and how the knotted arrangement of disulfide bonds is formed. In the current study we have examined the oxidative refolding and reductive unfolding of the prototypic cyclotide, kalata B1. A stable two-disulfide intermediate accumulated during oxidative refolding but not in reductive unfolding. Mass spectrometry and NMR spectroscopy were used to show that the intermediate contained a native-like structure with two native disulfide bonds topologically similar to the intermediate isolated for the related cystine knot protein EETI-II (Le-Nguyen, D., Heitz, A., Chiche, L., El Hajji, M., and Castro B. (1993) Protein Sci. 2, 165-174). However, the folding intermediate observed for kalata B1 is not the immediate precursor of the three-disulfide native peptide and does not accumulate in the reductive unfolding process, in contrast to the intermediate observed for EETI-II. These alternative pathways of linear and cyclic cystine knot proteins appear to be related to the constraints imposed by the cyclic backbone of kalata B1 and the different ring size of the cystine knot. The three-dimensional structure of a synthetic version of the two-disulfide intermediate of kalata B1 in which Ala residues replace the reduced Cys residues provides a structural insight into why the two-disulfide intermediate is a kinetic trap on the folding pathway.  相似文献   

4.
Kalata B1 is a prototypic member of the unique cyclotide family of macrocyclic polypeptides in which the major structural features are a circular peptide backbone, a triple-stranded beta-sheet, and a cystine knot arrangement of three disulfide bonds. The cyclotides are the only naturally occurring family of circular proteins and have prompted us to explore the concept of acyclic permutation, i.e. opening the backbone of a cross-linked circular protein in topologically permuted ways. We have synthesized the complete suite of acyclic permutants of kalata B1 and examined the effect of acyclic permutation on structure and activity. Only two of six topologically distinct backbone loops are critical for folding into the native conformation, and these involve disruption of the embedded ring in the cystine knot. Surprisingly, it is possible to disrupt regions of the beta-sheet and still allow folding into native-like structure, provided the cystine knot is intact. Kalata B1 has mild hemolytic activity, but despite the overall structure of the native peptide being retained in all but two cases, none of the acyclic permutants displayed hemolytic activity. This loss of activity is not localized to one particular region and suggests that cyclization is critical for hemolytic activity.  相似文献   

5.
The cyclotides are a large family of plant proteins that have a cyclic backbone and a knotted arrangement of three conserved disulfide bonds. Despite the apparent complexity of their cystine knot motif it is possible to efficiently fold these proteins, as exemplified by oxidative folding studies on the prototypic cyclotide, kalata B1. This mini-review reports on the current understanding of the folding process in cyclotides. The synthesis and folding of these molecules paves the way for their application as stable molecular templates.  相似文献   

6.
The cyclotides are stable plant-derived mini-proteins with a topologically circular peptide backbone and a knotted arrangement of three disulfide bonds that form a cyclic cystine knot structural framework. They display a wide range of pharmaceutically important bioactivities, but their natural function is in plant defense as insecticidal agents. To determine the influence of individual residues on structure and activity in the prototypic cyclotide kalata B1, all 23 non-cysteine residues were successively replaced with alanine. The structure was generally tolerant of modification, indicating that the framework is a viable candidate for the stabilization of bioactive peptide epitopes. Remarkably, insecticidal and hemolytic activities were both dependent on a common, well defined cluster of hydrophilic residues on one face of the cyclotide. Interestingly, this cluster is separate from the membrane binding face of the cyclotides. Overall, the mutagenesis data provide an important insight into cyclotide biological activity and suggest that specific self-association, in combination with membrane binding mediates cyclotide bioactivities.  相似文献   

7.
Colgrave ML  Craik DJ 《Biochemistry》2004,43(20):5965-5975
The cyclotides constitute a recently discovered family of plant-derived peptides that have the unusual features of a head-to-tail cyclized backbone and a cystine knot core. These features are thought to contribute to their exceptional stability, as qualitatively observed during experiments aimed at sequencing and characterizing early members of the family. However, to date there has been no quantitative study of the thermal, chemical, or enzymatic stability of the cyclotides. In this study, we demonstrate the stability of the prototypic cyclotide kalata B1 to the chaotropic agents 6 M guanidine hydrochloride (GdHCl) and 8 M urea, to temperatures approaching boiling, to acid, and following incubation with a range of proteases, conditions under which most proteins readily unfold. NMR spectroscopy was used to demonstrate the thermal stability, while fluorescence and circular dichroism were used to monitor the chemical stability. Several variants of kalata B1 were also examined, including kalata B2, which has five amino acid substitutions from B1, two acyclic permutants in which the backbone was broken but the cystine knot was retained, and a two-disulfide bond mutant. Together, these allowed determinations of the relative roles of the cystine knot and the circular backbone on the stability of the cyclotides. Addition of a denaturant to kalata B1 or an acyclic permutant did not cause unfolding, but the two-disulfide derivative was less stable, despite having a similar three-dimensional structure. It appears that the cystine knot is more important than the circular backbone in the chemical stability of the cyclotides. Furthermore, the cystine knot of the cyclotides is more stable than those in similar-sized molecules, judging by a comparison with the conotoxin PVIIA. There was no evidence for enzymatic digestion of native kalata B1 as monitored by LC-MS, but the reduced form was susceptible to proteolysis by trypsin, endoproteinase Glu-C, and thermolysin. Fluorescence spectra of kalata B1 in the presence of dithiothreitol, a reducing agent, showed a marked increase in intensity thought to be due to removal of the quenching effect on the Trp residue by the neighboring Cys5-Cys17 disulfide bond. In general, the reduced peptides were significantly more susceptible to chemical or enzymatic breakdown than the oxidized species.  相似文献   

8.
Cyclotides are a family of plant defense proteins with a unique cyclic backbone and cystine knot. Their remarkable stability under harsh thermal, enzymatic, and chemical conditions, combined with their range of bioactivities, including anti-HIV activity, underpins their potential as protein drug scaffolds. The vast majority of cyclotides possess a conserved glutamate residue in loop 1 of the sequence that is involved in a structurally important network of hydrogen bonds to an adjacent loop (loop 3). A single native cyclotide sequence, kalata B12, has been discovered that has an aspartic acid in this otherwise conserved position. Previous studies have determined that methylation of the glutamate or substitution with alanine abolishes the membrane disrupting activity that is characteristic of the family. To further understand the role of this conserved structural feature, we studied the folding, structure, stability, and activity of the natural aspartic acid variant kalata B12 and compared it to the prototypical cyclotide kalata B1, along with its glutamate to alanine or aspartate mutants. We show that the overall fold of kalata B12 is similar to the structure of other cyclotides, confirming that the cyclotide framework is robust and tolerant to substitution, although the structure appears to be more flexible than other cyclotides. Modification of the glutamate in kalata B1 or replacing the aspartate in kalata B12 with a glutamate reduces the efficiency of oxidative folding relative to the native peptides. The bioactivity of all modified glutamate cyclotides is abolished, suggesting an important functional role of this conserved residue. Overall, this study shows that the presence of a glutamic acid in loop 1 of the cyclotides improves stability and is essential for the membrane disrupting activity of cyclotides.  相似文献   

9.
In recent years an increasing number of miniproteins containing an amide-cyclized backbone have been discovered. The cyclotide family is the largest group of such proteins and is characterized by a circular protein backbone and six conserved cysteine residues linked by disulfide bonds in a tight core of the molecule. These form a cystine knot in which an embedded ring formed by two of the disulfide bonds and the connecting backbone segment is threaded by a third disulfide bond. In the current study we have undertaken high resolution structural analysis of two prototypic cyclotides, kalata B1 and cycloviolacin O1, to define the role of the conserved residues in the sequence. We provide the first comprehensive analysis of the topological features in this unique family of proteins, namely rings (a circular backbone), twists (a cis-peptide bond in the M?bius cyclotides) and knots (a knotted arrangement of the disulfide bonds).  相似文献   

10.
The cyclotides are currently the largest known family of head-to-tail cyclic proteins. The complex structure of these small plant proteins, which consist of approximately 30 amino acid residues, contains both a circular peptide backbone and a cystine knot, the combination of which produces the cyclic cystine knot motif. To date, cyclotides have been found in plants from the Rubiaceae, Violaceace and Cucurbitaceae families, and are believed to be part of the host defence system. In addition to their insecticidal effect, cyclotides have also been shown to be cytotoxic, anti-HIV, antimicrobial and haemolytic agents. In this study, we show that the alpine violet Viola biflora (Violaceae) is a rich source of cyclotides. The sequences of 11 cyclotides, vibi A-K, were determined by isolation and MS/MS sequencing of proteins and screening of a cDNA library of V. biflora in parallel. For the cDNA screening, a degenerate primer against a conserved (AAFALPA) motif in the cyclotide precursor ER signal sequence yielded a series of predicted cyclotide sequences that were correlated to those of the isolated proteins. There was an apparent discrepancy between the results of the two strategies as only one of the isolated proteins could be identified as a cDNA clone. Finally, to correlate amino acid sequence to cytotoxic potency, vibi D, E, G and H were analysed using a fluorometric microculture cytotoxicity assay using a lymphoma cell line. The IC(50)-values of the bracelet cyclotides vibi E, G and H ranged between 0.96 and 5.0 microM while the M?bius cyclotide vibi D was not cytotoxic at 30 microM.  相似文献   

11.
Cyclotides are mini-proteins of 28-37 amino acid residues that have the unusual feature of a head-to-tail cyclic backbone surrounding a cystine knot. This molecular architecture gives the cyclotides heightened resistance to thermal, chemical and enzymatic degradation and has prompted investigations into their use as scaffolds in peptide therapeutics. There are now more than 80 reported cyclotide sequences from plants in the families Rubiaceae, Violaceae and Cucurbitaceae, with a wide variety of biological activities observed. However, potentially limiting the development of cyclotide-based therapeutics is a lack of understanding of the mechanism by which these peptides are cyclized in vivo. Until now, no linear versions of cyclotides have been reported, limiting our understanding of the cyclization mechanism. This study reports the discovery of a naturally occurring linear cyclotide, violacin A, from the plant Viola odorata and discusses the implications for in vivo cyclization of peptides. The elucidation of the cDNA clone of violacin A revealed a point mutation that introduces a stop codon, which inhibits the translation of a key Asn residue that is thought to be required for cyclization. The three-dimensional solution structure of violacin A was determined and found to adopt the cystine knot fold of native cyclotides. Enzymatic stability assays on violacin A indicate that despite an increase in the flexibility of the structure relative to cyclic counterparts, the cystine knot preserves the overall stability of the molecule.  相似文献   

12.
Cyclotides are mini-proteins of approximately 30 amino acid residues that have a unique structure consisting of a head-to-tail cyclized backbone and a knotted arrangement of three disulfide bonds. This unique cyclotide structure provides exceptional stability to chemical, enzymatic and thermal treatments and has been implicated as an ideal drug scaffold for the development into agricultural and biotechnological agents. In the current work, we present the first method for microwave assisted Fmoc-SPPS of cyclotides. This protocol adopts a strategy that combines optimized microwave assisted chemical reactions for Fmoc-SPPS of the peptide backbone, the cleavage of the protected peptide and the introduction of a thioester at the C-terminal carboxylic acid to obtain the head-to-tail cyclized cyclotide backbone by native chemical ligation. To exemplify the utility of this protocol in the synthesis of a wide array of different cyclotide sequences we synthesized representative members from the three cyclotide subfamilies—the Möbius kalata B1, the bracelet cycloviolacin O2 and the trypsin inhibitory MCoTI-II. In addition, a “one pot” reaction promoting both cyclization and oxidative folding of crude peptide thioester was adapted for kalata B1 and MCoTI-II.  相似文献   

13.
Trabi M  Craik DJ 《The Plant cell》2004,16(8):2204-2216
The plant cyclotides are a family of 28 to 37 amino acid miniproteins characterized by their head-to-tail cyclized peptide backbone and six absolutely conserved Cys residues arranged in a cystine knot motif: two disulfide bonds and the connecting backbone segments form a loop that is penetrated by the third disulfide bond. This knotted disulfide arrangement, together with the cyclic peptide backbone, renders the cyclotides extremely stable against enzymatic digest as well as thermal degradation, making them interesting targets for both pharmaceutical and agrochemical applications. We have examined the expression patterns of these fascinating peptides in various Viola species (Violaceae). All tissue types examined contained complex mixtures of cyclotides, with individual profiles differing significantly. We provide evidence for at least 57 novel cyclotides present in a single Viola species (Viola hederacea). Furthermore, we have isolated one cyclotide expressed only in underground parts of V. hederacea and characterized its primary and three-dimensional structure. We propose that cyclotides constitute a new family of plant defense peptides, which might constitute an even larger and, in their biological function, more diverse family than the well-known plant defensins.  相似文献   

14.
Cyclotides are a family of bioactive plant peptides that are characterized by a circular protein backbone and three conserved tightly packed disulfide bonds. The antimicrobial and hemolytic properties of cyclotides, along with the relative hydrophobicity of the peptides, point to the biological membrane as a target for cyclotides. To assess the membrane-induced conformation and orientation of cyclotides, the interaction of the M?bius cyclotide, kalata B1, from the African perennial plant Oldenlandia affinis, with dodecylphosphocholine micelles was studied using NMR spectroscopy. Under conditions where the cyclotide formed a well-defined complex with micelles, the spatial structure of kalata B1 was calculated from NOE and J couplings data, and the model for the peptide-micelle complex was built using 5- and 16-doxylstearate relaxation probes. The binding of divalent cations to the peptide-micelle complex was quantified by Mn2+ titration. The results show that the peptide binds to the micelle surface, with relatively high affinity, via two hydrophobic loops (loop 5, Trp19-Val21; and loop6, Leu27-Val29). The charged residues (Glu3 and Arg24), along with the cation-binding site (near Glu3) are segregated on the other side of the molecule and in contact with polar head groups of detergent. The spatial structure of kalata B1 is only slightly changed during incorporation into micelles and represents a distorted triple-stranded beta-sheet cross-linked by a cystine knot. Detailed structural analysis and comparison with other knottins revealed structural conservation of the two-disulfide motif in cyclic and acyclic peptides. The results thus obtained provide the first model for interaction of cyclotides with membranes and permit consideration of the cyclotides as membrane-active cationic antimicrobial peptides.  相似文献   

15.
The cyclotides are a recently discovered family of plant proteins that have the fascinating structural feature of a continuous cyclic backbone and, putatively, a knotted arrangement of their three conserved disulfide bonds. We here show definite chemical proof of the I-IV, II-V, III-VI knotted disulfide connectivity of the prototypic cyclotide kalata B1. This has been achieved by a new approach for disulfide analysis, involving partial reduction and stepwise alkylation including introduction of charges and enzymatic cleavage sites by aminoethylation of cysteines. The approach overcomes the intrinsic difficulties for disulfide mapping of cyclotides, i.e. the cyclic amide backbone, lack of cleavage sites between cysteines, and a low or clustered content of basic amino acids, and allowed a direct determination of the disulfide bonds in kalata B1 using analysis by mass spectrometry. The established disulfide connectivity is unequivocally shown to be cystine knotted by a topological analysis. This is the first direct chemical determination of disulfides in native cyclotides and unambiguously confirms the unique cyclic cystine knot motif.  相似文献   

16.
Much interest has been generated by recent reports on the discovery of circular (i.e. head-to-tail cyclized) proteins in plants. Here we report the three-dimensional structure of one of the newest such circular proteins, MCoTI-II, a novel trypsin inhibitor from Momordica cochinchinensis, a member of the Cucurbitaceae plant family. The structure consists of a small beta-sheet, several turns, and a cystine knot arrangement of the three disulfide bonds. Interestingly, the molecular topology is similar to that of the plant cyclotides (Craik, D. J., Daly, N. L., Bond, T., and Waine, C. (1999) J. Mol. Biol. 294, 1327-1336), which derive from the Rubiaceae and Violaceae plant families, have antimicrobial activities, and exemplify the cyclic cystine knot structural motif as part of their circular backbone. The sequence, biological activity, and plant family of MCoTI-II are all different from known cyclotides. However, given the structural similarity, cyclic backbone, and plant origin of MCoTI-II, we propose that MCoTI-II can be classified as a new member of the cyclotide class of proteins. The expansion of the cyclotides to include trypsin inhibitory activity and a new plant family highlights the importance and functional variability of circular proteins and the fact that they are more common than has previously been believed. Insights into the possible roles of backbone cyclization have been gained by a comparison of the structure of MCoTI-II with the homologous acyclic trypsin inhibitors CMTI-I and EETI-II from the Cucurbitaceae plant family.  相似文献   

17.
Cyclotides are plant-derived miniproteins that have the unusual features of a head-to-tail cyclized peptide backbone and a knotted arrangement of disulfide bonds. It had been postulated that they might be an especially large family of host defense agents, but this had not yet been tested by field data on cyclotide variation in wild plant populations. In this study, we sampled Australian Hybanthus (Violaceae) to gain an insight into the level of variation within populations, within species, and between species. A wealth of cyclotide diversity was discovered: at least 246 new cyclotides are present in the 11 species sampled, and 26 novel sequences were characterized. A new approach to the discovery of cyclotide sequences was developed based on the identification of a conserved sequence within a signal sequence in cyclotide precursors. The number of cyclotides in the Violaceae is now estimated to be >9000. Cyclotide physicochemical profiles were shown to be a useful taxonomic feature that reflected species and their morphological relationships. The novel sequences provided substantial insight into the tolerance of the cystine knot framework in cyclotides to amino acid substitutions and will facilitate protein engineering applications of this framework.  相似文献   

18.
Cyclotides are heat-stable macrocyclic peptides from plants that display a wide range of biological activities. They can be divided into two subfamilies: Möbius or bracelet, based on the presence or absence of a cis-proline residue in loop 5, respectively. Currently, over 150 cyclotides have been discovered, but only four linear variants of the Möbius subfamily have been hitherto isolated. In this study, we report the discovery of two novel cyclotides, hedyotide B1 and hedyotide B2, from the aerial parts of Hedyotis biflora. Hedyotide B1 has a cyclic cystine knot structure typical of cyclotides. Interestingly, hedyotide B2 possesses a linear backbone and is the first linear representative of the bracelet subfamily. Disulfide mapping of hedyotide B2 by a top-down MS/MS approach showed that it shares the same knotted disulfide arrangement as conventional cyclotides. Its unfolding pathway also showed that the penetrating disulfide bond Cys III–VI is the most stable disulfide linkage. Cloning of the gene encoding hedyotide B2 revealed a nonsense mutation that introduces a premature stop codon at the conserved Asn residue position, which is essential for an end-to-end backbone ligation. Biophysical characterization showed that hedyotide B2 was more susceptible to exopeptidase degradation as compared with hedyotide B1. Hedyotide B2 was also inactive against all four tested bacterial strains, whereas hedyotide B1 was bactericidal to Escherichia coli and Streptococcus salivarius at low micromolar concentration. Our results provide a deeper understanding of the structures, functions, and biosynthetic processing of cyclotides and uncyclotides in plants.  相似文献   

19.
The cyclotides are the largest family of naturally occurring circular proteins. The mechanism by which the termini of these gene-encoded proteins are linked seamlessly with a peptide bond to form a circular backbone is unknown. Here we report cyclotide-encoding cDNA sequences from the plant Viola odorata and compare them with those from an evolutionarily distinct species, Oldenlandia affinis. Individual members of this multigene family encode one to three mature cyclotide domains. These domains are preceded by N-terminal repeat regions (NTRs) that are conserved within a plant species but not between species. We have structurally characterized peptides corresponding to these NTRs and show that, despite them having no sequence homology, they form a structurally conserved alpha-helical motif. This structural conservation suggests a vital role for the NTR in the in vivo folding, processing, or detoxification of cyclotide domains from the precursor protein.  相似文献   

20.
Cyclotides are a family of plant proteins that have the unusual combination of head-to-tail backbone cyclization and a cystine knot motif. They are exceptionally stable and show resistance to most chemical, physical, and enzymatic treatments. The structure of tricyclon A, a previously unreported cyclotide, is described here. In this structure, a loop that is disordered in other cyclotides forms a beta sheet that protrudes from the globular core. This study indicates that the cyclotide fold is amenable to the introduction of a range of structural elements without affecting the cystine knot core of the protein, which is essential for the stability of the cyclotides. Tricyclon A does not possess a hydrophobic patch, typical of other cyclotides, and has minimal hemolytic activity, making it suitable for pharmaceutical applications. The 22 kDa precursor protein of tricyclon A was identified and provides clues to the processing of these fascinating miniproteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号