首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Beck C  Jeltsch A 《Biochemistry》2002,41(48):14103-14110
The EcoRV DNA-(adenine-N6)-methyltransferase recognizes GATATC sites and methylates the DNA as indicated. It is related to the large family of dam methyltransferases which modify GATC sites. We have studied the interaction of DNA with M.EcoRV and 12 M.EcoRV variants using oligonucleotides containing 2-aminopurine as a fluorescence probe in equilibrium and stopped-flow DNA binding studies and 5-iododeoxyuracil for UV cross-linking. M.EcoRV binds to DNA in a multistep binding reaction, including two different conformations of the specific enzyme-DNA complex, and induces a strong conformational change of the DNA at the fourth position of the recognition site. Mutations at residues forming contacts to the GAT part of the recognition site reduce the stability of both specific enzyme-DNA complexes. Two enzyme variants which fail to recognize the ATC part do not induce the deformation of the DNA which explains why they cannot interact properly with the recognition site. Other mutations at residues which interact with the ATC part selectively reduce the stability of the second enzyme-DNA complex. These results show that when approaching the DNA M.EcoRV first contacts the GAT part of the target site. Since the residues mediating these contacts are conserved among M.EcoRV and dam MTases, the kinetics of formation of the enzyme-DNA complex correspond to the evolutionary history of the protein. Whether the observation that evolutionarily conserved contacts are formed early during complex formation is a general rule for DNA interacting enzymes or proteins that change their specificity during evolution remains to be seen.  相似文献   

2.
We compared the (pre)steady-state and single turnover methylation kinetics of bacteriophage T4Dam (DNA-(adenine-N6)-methyltransferase)-mediated methyl group transfer from S-adenosyl-l-methionine (AdoMet) to oligodeoxynucleotide duplexes containing a single recognition site (palindrome 5'-GATC/5'-GATC) or some modified variant. T4Dam-AdoMet functions as a monomer under steady-state conditions (enzyme/DNA < 1), whereas under single turnover conditions (enzyme/DNA > 1), a catalytically active complex containing two Dam-AdoMet molecules is formed initially, and two methyl groups are transferred per duplex (to produce a methylated duplex and S-adenosyl-l-homocysteine (AdoHcy)). We propose that the single turnover reaction proceeds in two stages. First, two preformed T4Dam-AdoMet complexes bind opposite strands of the unmodified target site, and one enzyme molecule catalyzes the rapid transfer of the AdoMet-methyl group (kmeth1 = 0.21 s-1); this is 2.5-fold slower than the rate observed with monomeric T4Dam-AdoMet bound under pre-steady-state conditions for burst determination. In the second stage, methyl transfer to adenine in GATC on the complementary strand occurs at a rate that is 1 order of magnitude slower (kmeth2 = 0.023 s-1). We suggest that under single turnover conditions, methylation of the second strand is rate-limited by Dam-AdoHcy dissociation or its clearance from the methylated complementary strand. The hemimethylated duplex 5'-GATC/5'-GMTC also interacts with T4Dam-AdoMet complexes in two stages under single turnover reaction conditions. The first stage (kmeth1) reflects methylation by dimeric T4Dam-AdoMet productively oriented to the strand with the adenine residue capable of methylation. The slower second stage (kmeth2) reflects methylation by enzyme molecules non-productively oriented to the GMTC chain, which then have to re-orient to the opposite productive chain. Substitutions of bases and deletions in the recognition site affect the kinetic parameters in different fashions. When the GAT portion of GATC was disrupted, the proportion of the initial productive enzyme-substrate complexes was sharply reduced.  相似文献   

3.
Using fluorescence of 2-aminopurine-substituted oligonucleotide duplexes, “flipping” of the target base in the process of interaction of T4 DNA-(adenine-N 6)-methyltransferase (EC 2.1.1.72) with the substrate double-stranded DNA was revealed. It was shown thatS-adenosyl-L-methionine, the methyl group donor, induces the reorientation of the enzyme relative to the unsymmetrically modified recognition site.  相似文献   

4.
By stopped-flow kinetics using 2-aminopurine as a probe to detect base flipping, we show here that base flipping by the Escherichia coli Dam DNA-(adenine-N6)-methyltransferase (MTase) is a biphasic process: target base flipping is very fast (k(flip)>240 s(-1)), but binding of the flipped base into the active site pocket of the enzyme is slow (k=0.1-2 s(-1)). Whereas base flipping occurs in the absence of S-adenosyl-l-methionine (AdoMet), binding of the target base in the active site pocket requires AdoMet. Our data suggest that the tyrosine residue in the DPPY motif conserved in the active site of DNA-(adenine-N6)-MTases stacks to the flipped target base. Substitution of the aspartic acid residue of the DPPY motif by alanine abolished base flipping, suggesting that this residue contacts and stabilizes the flipped base. The exchange of Ser188 located in a loop next to the active center by alanine led to a seven- to eightfold reduction of k(flip), which was also reduced with substrates having altered GATC recognition sites and in the absence of AdoMet. These findings provide evidence that the enzyme actively initiates base flipping by stabilizing the transition state of the process. Reduced rates of base flipping in substrates containing the target base in a non-canonical sequence demonstrate that DNA recognition by the MTase starts before base flipping. DNA recognition, cofactor binding and base flipping are correlated and efficient base flipping takes place only if the enzyme has bound to a cognate target site and AdoMet is available.  相似文献   

5.
Using fluorescence of 2-aminopurine-substituted oligonucleotide duplexes, "flipping" of the target base in the process of interaction of T4 DNA-(adenine-N6)-methyltransferase (EC 2.1.1.72) with the substrate double-stranded DNA was revealed. It was shown that S-adenosyl-L-methionine, the methyl group donor, induces the reorientation of the enzyme relative to the asymmetrically modified recognition site.  相似文献   

6.
The specificity and processivity of DNA methyltransferases have important implications regarding their biological functions. We have investigated the sequence specificity of CcrM and show here that the enzyme has a high specificity for GANTC sites, with only minor preferences at the central position. It slightly prefers hemimethylated DNA, which represents the physiological substrate. In a previous work, CcrM was reported to be highly processive [Berdis et al. (1998) Proc. Natl Acad. Sci. USA 95: 2874-2879]. However upon review of this work, we identified a technical error in the setup of a crucial experiment in this publication, which prohibits making any statement about the processivity of CcrM. In this study, we performed a series of in vitro experiments to study CcrM processivity. We show that it distributively methylates six target sites on the pUC19 plasmid as well as two target sites located on a 129-mer DNA fragment both in unmethylated and hemimethylated state. Reaction quenching experiments confirmed the lack of processivity. We conclude that the original statement that CcrM is processive is no longer valid.  相似文献   

7.
T4 phage polynucleotide kinase (PNK) displays 5′-hydroxyl kinase, 3′-phosphatase and 2′,3′-cyclic phosphodiesterase activities. The enzyme phosphorylates the 5′ hydroxyl termini of a wide variety of nucleic acid substrates, a behavior studied here through the determination of a series of crystal structures with single-stranded (ss)DNA oligonucleotide substrates of various lengths and sequences. In these structures, the 5′ ribose hydroxyl is buried in the kinase active site in proper alignment for phosphoryl transfer. Depending on the ssDNA length, the first two or three nucleotide bases are well ordered. Numerous contacts are made both to the phosphoribosyl backbone and to the ordered bases. The position, side chain contacts and internucleotide stacking interactions of the ordered bases are strikingly different for a 5′-GT DNA end than for a 5′-TG end. The base preferences displayed at those positions by PNK are attributable to differences in the enzyme binding interactions and in the DNA conformation for each unique substrate molecule.  相似文献   

8.
The structural and catalytic properties of the phage T4 DNA-(adenine-N6)-methyltransferase (EC 2.1.1.72) were studied at different enzyme-substrate concentration ratios by chemical cross-linking of the protein subunits and by measuring the presteady state kinetics of the reactions. Various structural states of the methyltransferase were correlated with its catalytic activity, and it was shown that the oligomeric forms of the enzyme are catalytically active but are characterized by the reaction parameters different from those of the monomer.  相似文献   

9.
We analyzed pre-steady state and single turnover kinetics of bacteriophage T4Dam DNA-(adenine-N(6))-methyltransferase-mediated methyl group transfer from S-adenosyl-l-methionine (AdoMet) to 40-mer duplexes containing native recognition sites (5'-GATC/5'-GATC) or some modified variant(s). The results extend a model from studies with single-site 20-mer duplexes. Under pre-steady state conditions, monomeric T4Dam methyltransferase-AdoMet complexes were capable of rapid methylation of adenine residues in 40-mer duplexes containing two sites. During processive movement of T4Dam to the next site, the rate-limiting step was the exchange of the product S-adenosyl-l-homocysteine (AdoHcy) for AdoMet without T4Dam dissociating from the duplex. Consequently, instead of a single exponential rate dependence, complex methylation curves were obtained with at least two pre-steady state steps. With 40-mer duplexes containing a single target site, the kinetics were simpler, fitting a single exponential followed by a linear steady state phase. Single turnover methylation of 40-mer duplexes also proceeded in two stages. First, two dimeric T4Dam-AdoMet molecules bound, and each catalyzed a two-step methylation. Instead of processive movement of T4Dam, a conformational adaptation occurred. We propose that following methyl transfer to one strand, dimeric (T4Dam-AdoMet)-(T4Dam-AdoHcy) was capable of rapidly reorienting itself and catalyzing methyl transfer to the target adenine on the complementary, unmethylated strand. This second stage methyl transfer occurred at a rate about 25-fold slower than in the first step; it was rate-limited by Dam-AdoHcy dissociation or its clearance from the methylated complementary strand. Under single turnover conditions, there was complete methylation of all target adenine residues with each of the two-site 40-mer duplexes.  相似文献   

10.
The fluorescence of 2-aminopurine ((2)A)-substituted duplexes (contained in the GATC target site) was investigated by titration with T4 Dam DNA-(N6-adenine)-methyltransferase. With an unmethylated target ((2)A/A duplex) or its methylated derivative ((2)A/(m)A duplex), T4 Dam produced up to a 50-fold increase in fluorescence, consistent with (2)A being flipped out of the DNA helix. Though neither S-adenosyl-L-homocysteine nor sinefungin had any significant effect, addition of substrate S-adenosyl-L-methionine (AdoMet) sharply reduced the Dam-induced fluorescence with these complexes. In contrast, AdoMet had no effect on the fluorescence increase produced with an (2)A/(2)A double-substituted duplex. Since the (2)A/(m)A duplex cannot be methylated, the AdoMet-induced decrease in fluorescence cannot be due to methylation per se. We propose that T4 Dam alone randomly binds to the asymmetric (2)A/A and (2)A/(m)A duplexes, and that AdoMet induces an allosteric T4 Dam conformational change that promotes reorientation of the enzyme to the strand containing the native base. Thus, AdoMet increases enzyme binding-specificity, in addition to serving as the methyl donor. The results of pre-steady-state methylation kinetics are consistent with this model.  相似文献   

11.
We carried out steady state and pre-steady state (burst) kinetic analyses of the bacteriophage T4 Dam DNA-(N(6)-adenine)-methyltransferase (MTase)-mediated methyl group transfer from S-adenosyl-l-methionine (AdoMet) to Ade in oligonucleotide duplexes containing one or two specific GATC sites with different combinations of methylated and unmodified targets. We compared the results for ligated 40-mer duplexes with those of the mixtures of the two unligated duplexes used to generate the 40-mers. The salient results are as follows: (i) T4 Dam MTase modifies 40-mer duplexes in a processive fashion. (ii) During processive movement, T4 Dam rapidly exchanges product S-adenosyl-l-homocysteine (AdoHcy) for substrate AdoMet without dissociating from the DNA duplex. (iii) T4 Dam processivity is consistent with an ordered bi-bi mechanism AdoMet downward arrow DNA downward arrow DNA(Me) upward arrow AdoHcy upward arrow. However, in contrast to the steady state, here DNA(Me) upward arrow signifies departure from a methylated site GMTC upward arrow without physically dissociating from the DNA. (iv) Following methyl transfer at one site and linear diffusion to a hemimethylated site, a reconstituted T4 Dam-AdoMet complex rapidly reorients itself to the (productive) unmethylated strand. T4 Dam-AdoHcy cannot reorient at an enzymatically created GMTC site. (v) The inhibition potential of fully methylated sites 5'-GMTC/5'-GMTC is much lower for a long DNA molecule compared with short single-site duplexes.  相似文献   

12.
T4 DNA structural requirements for encapsidation in vivo were investigated, using thin-section electron microscopy to quantitate the kinetics and yields of head intermediates after synchronous DNA packaging into accumulated processed proheads. UV irradiation (254 nm) of T4-infected bacteria just before initiation of encapsidation resulted in a reduction in the rate of DNA packaged measured by electron microscopy and in the yield of viable phage progeny. In UV-irradiated infections with excision-deficient mutants (denV-), the extent of packaging decline was proportional to the UV dose and phage yields were lower than expected based on the packaging levels observed by microscopy. Rescue analysis of progeny from such infections revealed elevated levels of nonviable virions. Pyrimidine dimers were encapsidated in denV- infections, but in excision-competent infections (denV+) dimers were not packaged. A UV-independent, 15 to 20% packaging arrest was also observed when denV endonuclease was inactive during encapsidation, indicating a denV requirement to achieve normal T4 packaging levels. Pyrimidine dimers apparently represent or induce transient blockage of DNA encapsidation or both, causing a decline in the rate. This is in contrast to other DNA structural blocks to packaging induced by mutations in T4 genes 30 and 49, which appear to arrest the process.  相似文献   

13.
We studied the kinetics of methyl group transfer by the BamHI DNA-(cytosine-N(4)-)-methyltransferase (MTase) from Bacillus amyloliquefaciens to a 20-mer oligodeoxynucleotide duplex containing the palindromic recognition site GGATCC. Under steady state conditions the BamHI MTase displayed a simple kinetic behavior toward the 20-mer duplex. There was no apparent substrate inhibition at concentrations much higher than the K(m) for either DNA (100-fold higher) or S-adenosyl-l-methionine (AdoMet) (20-fold higher); this indicates that dead-end complexes did not form in the course of the methylation reaction. The DNA methylation rate was analyzed as a function of both substrate and product concentrations. It was found to exhibit product inhibition patterns consistent with a steady state random bi-bi mechanism in which the dominant order of substrate binding and product release (methylated DNA, DNA(Me), and S-adenosyl-l-homocysteine, AdoHcy) was Ado-Met DNA DNA(Me) AdoHcy. The M.BamHI kinetic scheme was compared with that for the T4 Dam (adenine-N(6)-)-MTase. The two differed with respect to an effector action of substrates and in the rate-limiting step of the reaction (product inhibition patterns are the same for the both MTases). From this we conclude that the common chemical step in the methylation reaction, methyl transfer from AdoMet to a free exocyclic amino group, is not sufficient to dictate a common kinetic scheme even though both MTases follow the same reaction route.  相似文献   

14.
Summary Digestion of non-glucosylated and cytosine-substituted T4 phage (T4dC) DNA with SalI restriction endonuclease showed that the DNA had nine SalI-sensitive sites. There were eight SalI sites in DNA from a strain which had a deletion in the rII-denB-ndd region. The comparison of two digestion patterns indicated that one of the SalI-sensitive sites was present in the deleted region and that the SalI-F fragment (8.4x106 daltons) was located adjacent to the SalI-C or SalI-D fragment (15.5x106 daltons) on the T4 chromosome. The DNA gave no detectable cleavage product when digested with BamHI endonuclease alone, while, when digested successively with BamHI and SalI, the DNA yielded two new digestion products in place of one fragment formed by SalI alone. The BamHI-sensitive site was in the SalI-A fragment (25.2x106 daltons). The usefulness of this information for making cleavage maps of T4 phage chromosome is discussed.  相似文献   

15.
16.
17.
Replication complexes were reconstituted using the eight purified bacteriophage T4 replication proteins and synthetic circular 70-, 120- or 240-nt DNA substrates annealed to a leading-strand primer. To differentiate leading strands from lagging strands, the circular parts of the substrates lacked dCMP; thus, no dCTP was required for leading-strand synthesis and no dGTP for lagging-strand synthesis. The size of the substrates was crucial, the longer substrates supporting much more DNA synthesis. Leading and lagging strands were synthesized in a coupled manner. Specifically targeting leading-strand synthesis by decreasing the concentration of dGTP decreased the rate of extension of leading strands. However, blocking lagging-strand synthesis by lowering the dCTP concentration, by omitting dCTP altogether, by adding ddCTP, or with a single abasic site had no immediate effect on the rate of extension of leading strands.  相似文献   

18.
We have carried out a series of reversible chemical cross-linking experiments using the reagent ethylene glycol-bis(succinimidylsuccinate) with the goal of determining the three-dimensional structure of the bacteriophage T4 baseplate. In a previous report, we investigated the near-neighbor contacts in baseplate precursors and substructures (N.R.M. Watts and D.H. Coombs, J. Virol. 63:2427-2436, 1989). Here we report completion of the analysis by examining finished baseplates and tails. Most of the previous contacts were confirmed, and we report several new contacts, including those within the central hub (gp5-gptd2, gp26-gptd), between the hub and the outer wedges (gp6-gp27(2], between baseplate and sheath (gp54-gp18), and between sheath and core (gp19-gp18). On the basis of this and other available information, a partial three-dimensional model of the baseplate is proposed.  相似文献   

19.
The stoichiometry of DNA binding by the bacteriophage SP01-encoded type II DNA-binding protein TF1 has been determined. 3H-Labeled TF1 was allowed to bind to a 32P-labeled DNA fragment containing a TF1 binding site. Multiple TF1-DNA complexes were resolved from each other and from unbound DNA by native gel electrophoresis. DNA-protein complexes were cut from polyacrylamide gels, and the amounts of 3H and 32P contained in each slice were measured. A ratio of 1.12 +/- 0.06 TF1 dimer/DNA molecule was calculated for the fastest-migrating TF1-DNA complex. We conclude that TF1 has a DNA-binding unit of one dimer. More slowly migrating complexes are apparently formed by serial addition of single TF1 dimers.  相似文献   

20.
Methods developed for isolating bacterial nucleoids were applied to bacteria infected with phage T4. The replicating pool of T4 DNA was isolated as a particle composed of condensed T4 DNA and certain RNA and protein components of the cell. The particles have a narrow sedimentation profile (weight-average s=2,500S) and have, on average, a T4 DNA content similar to that of the infected cell. Their dimensions observed via electron and fluorescence microscopy are similar to the dimensions of the intracellular DNA pool. The DNA packaging density is less than that of the isolated bacterial nucleoid but appears to be roughly similar to its state in vivo. Host-cell proteins and T4-specific proteins bound to the DNA were characterized by electrophoresis on polyacrylamide gels. The major host proteins are the RNA polymerase subunits and two envelope proteins (molecular weights, 36,000 and 31,000). Other major proteins of the host cell were absent or barely detectable. Single-strand breaks can be introduced into the DNA with gamma radiation or DNase without affecting its sedimentation rate. This and other studies of the effects of intercalated ethidium molecules have suggested that the average superhelical density of the condensed DNA is small. However, these studies also indicated that there may be a few domains in the DNA that become positively supercoiled in the presence of high concentrations of ethidium bromide. In contrast to the Escherichia coli nucleoid, the T4 DNA structure remains condensed after the RNA and protein components have been removed (although there may be slight relaxation in the state of condensation under these conditions).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号