首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of light upon behavior of Biomphalaria glabrata was investigated in snails submitted for 48 h to one of the following regimes: normal light cycle, continuous darkness, continuous light. Time-lapse cinematography was used to provide data about snail locomotor activity in response to (a) continuous light or darkness; (b) light or dark phases; (c) light transitions. Snails were significantly less active under continuous light than under continuous or intermittent darkness. Under the normal light cycle, the activity rate was significantly higher in the dark than in the light. Changes from light to dark corresponded to increases in the activity rate which persisted long afterwards. No significant variation in activity occurred upon changes from dark to light.  相似文献   

2.
Chalcone-synthase (CHS) activity was followed during the development of primary leaves of oat (Avena sativa L.) seedlings grown under different illumination conditions. Continuous darkness and continuous light resulted in similar time courses of enzyme activity. The maximum of CHS activity in etiolated leaves was delayed by 1 d and reached about half the level of that of light-grown leaves. In seedlings grown under defined light-dark cycles a diurnal rhythm of CHS activity and its protein level was observed which followed the rhythm of CHS-mRNA translational activity (Knogge et al. 1986). This rhythm persisted in continuous light after a short-term pre-exposure to the light-dark cycle but not in continuous darkness.Abbreviations CHS chalcone synthase - PAL phenylalanine ammonio lyase Financial support by the Deutsche Forschungsgemeinschaft is gratefully acknowledged (G.W., We 630/9-7; We 630/10-1). Thanks are given to Dr. St. Kellam (Department of Plant Microbiological Sciences, University of Canterbury, New Zealand) for correcting the English.  相似文献   

3.
Upon transfer from well-watered conditions to total drought, long-day-grown cladodes of Opuntia ficus-indica Mill. shift from full Crassulacean acid metabolism (CAM) to CAM-idling. Experiments using 14C-tracers were conducted in order to characterize the carbon-flow pattern in cladodes under both physiological situations. Tracer was applied by 14CO2 fumigations and NaH14CO3 injections during the day-night cycle. The results showed that behind the closed stomata, mesophyll cells of CAM-idling plants retained their full capacity to metabolize CO2 in light and in darkness. Upon the induction of CAM-idling the level of the capacity of phosphoenolpyruvate carboxylase (EC 4.1.1.31) was maintained. By contrast, malate pools decreased, displaying finally only a small or no day-night oscillation. The capacity of NADP-malic enzyme (EC 1.1.1.40) decreased in parallel with the reduction in malate pools. Differences in the labelling patterns, as influenced by the mode of tracer application, are discussed.Abbreviations CAM Crassulacean acid metabolism - PEP-Case phosphoenolpyruvate carboxylase  相似文献   

4.
R. W. King  Bruce G. Cumming 《Planta》1972,103(4):281-301
Summary In C. rubrum, the amount of flowering that is induced by a single dark period interrupting continuous light depends upon the duration of darkness. A rhythmic oscillation in sensitivity to the time that light terminates darkness regulates the level of flowering. The period length of this oscillation is close to 30 hours, peaks of the rhythm occurring at about 13, 43 and 73 h of darkness.Phasing of the rhythm by 6-, 12- and 18-h photoperiods was studied by exposing plants to a given photoperiod at different phases of the free-running oscillation in darkness. The shift in phase of the rhythm was then determined by varying the length of the dark period following the photoperiod; this dark period was terminated by continuous light.With a 6-h photoperiod the timing of both the light-on and light-off signals is shown to control rhythm phasing. However, when the photoperiod is increased to 12 or 18 h, only the light-off signal determines phasing of the rhythm. In prolonged periods of irradiation-12 to 62 h light—a durational response to light overrides any interaction between the timing of the light period and the position of the oscillation at which light is administered. Such prolonged periods of irradiation apparently suspend or otherwise interact with the rhythm so that, in a following dark period, it is reinitiated at a fixed phase relative to the time of the light-off signal to give a peak of the rhythm 13 h after the dusk signal.In daily photoperiodic cycles rhythm phasing by a 6-h photocycle was also estimated by progressively increasing the number of cycles given prior to a single dark period of varied duration.In confirmation of Bünning's (1936) hypothesis, calculated and observed phasing of the rhythm controlling flowering in c. rubrum accounts for the photoperiodic response of this species. Evidence is also discussed which indicates that the timing of disappearance of phytochrome Pfr may limit flowering over the early hours of darkness.  相似文献   

5.
The effect of calcium-deprivation on growth and the production of cardenolides in two undifferentiated cell lines of Digitalis thapsi maintained under three different light regimes (16 h photoperiod, darkness, or continuous light) was investigated. Growth was stimulated by continuous light in both cell lines cultured in complete medium. The light regime did not affect cardenolide accumulation in the cells of the hypocotyl-derived line; by contrast, continuous light or darkness increased the production in the leaf-derived line. The elimination of calcium favoured cardenolide production independently of the origin of the suspensions and the light regime, this beneficial effect being predominantly manifested under continuous light.  相似文献   

6.
Summary Effects of a short-term exposure to continuous darkness on 24-h morphological variations in pinealocytes in the superficial pineal of the Chinese hamster (Cricetulus griseus) were examined. Pinealocytes contained type-1, -2 and -3 synaptic ribbons (SR), which had a central dense structure showing rod-like, various and ring-like profiles, respectively, and the quantity of each type of SR was expressed by SR index. 24-h changes in the type-1 and type-3 SR indices persisted in darkness and thus may be endogenous in nature. As under alternating light and dark (LD) conditions, the type-2 SR indices were almost constant over a 24-h period under continuous darkness, but the indices were larger in animals under darkness than in those under LD conditions. The 24-h variations in the nuclear and cytoplasmic volumes were abolished after exposing animals to darkness for 7 days, suggesting that these rhythms may be regulated exogenously. The amount of condensed chromatin exhibited a circadian change; this rhythm persisted under darkness. The results suggest that 24-h variations in the nuclear and cytoplasmic volumes in pinealocytes of the Chinese hamster are regulated by mechanisms different from those controlling the rhythms in SR and chromatin, and that the changes in the nuclear and cytoplasmic volumes and chromatin are related to the change in synthetic activity of pinealocytes.  相似文献   

7.
B. Novak  H. Greppin 《Planta》1979,144(3):235-240
The microelectrode technique was used to follow oscillations in membrane potential in mesophyll cells of spinach (Spinacia oleracea L.) during exposure do different photoperiodic conditions. Both high-frequency oscillations and circadian variations were observed. The circadian rhythm was imposed on the period of high-frequency oscillation during short days as well as in continuous light: The free-running period was 25.2 h. The average period of high-frequency oscillation increased from 7.64 min in the dark to 19.95 min in the light within several minutes after dark to light transition. This period length coincides with the established period length for oscillations in the redox potential in the chloroplast suspensions of spinach.Abbreviations CL continuous light - SD short day - MP membrane potential  相似文献   

8.
Antibodies targeted to a highly conserved tetradecapeptide region of the pivotal biological clock protein PER detect in the firebrat Thermobia domestica a 115-kDa protein and in the cockroach Periplaneta americana a 110-kDa protein that are present in the cytoplasm of a small set of brain cells. A similar cytoplasmic reaction occurs with antisera to the whole PER protein of Drosophila melanogaster, but these antisera also react with numerous cell nuclei. On western blots, they detect an 80-kDa antigen in T. domestica and 70- and 80-kDa antigens in P. americana. No indication of antigen translocation between cell nuclei and cytoplasm was found. Nuclear staining is maintained at a high constant level in T. domestica held at a 12:12 h light:dark photoperiod (LD) or in continuous light, but disappears rapidly in response to extended darkness. In P. americana under LD conditions, the number of immunoreactive nuclei and their staining intensity fluctuate in parallel, with maximal staining late in the day. The circadian changes are maintained in continuous light but all staining vanishes in continuous darkness. A 6-h light pulse in early night of an LD cycle induces maximal staining after about 10 h, suggesting that the effect of light on nuclear PER-like expression is indirect. The behaviour of nuclear antigens is opposite to that of the cytoplasmic PER-like proteins that persist in constant darkness and disappear in constant light. Under LD conditions, the cytoplasmic PER-like antigen cycles in T. domestica but remains at a steady level in P. americana. The sensitivity to photoregime suggests that both the nuclear and the cytoplasmic PER-like antigens are components of the biological clock.R. Závodská and H. Sehadová contributed equally to this work  相似文献   

9.
R. Grill 《Planta》1977,134(1):11-16
Phytochrome determinations at 730/800 nm were performed on de-etiolated turnip (Brassica rapa L.) cotyledons in which chlorophyll (Chl) content had been reduced experimentally to varying degrees by pre-treatment with high temperature (HT), or transfer to 3% ethanol. The magnitude of detectable phytochrome depended on Chl content, showing a linear relationshop in vivo. The results were confirmed by an in vitro experiment where, however, the correlation was exponential. An attempt is made to illustrate phytochrome decay in continuous blue or red light after corretion for Chl interference. To overcome the possible objection that the higher (A) measured in continuous light after HT pre-treatment could be caused by a reduced rate of destruction, apparent re-synthesis following red light was measured after several hours of darkness during which time the HT effect was lost. Under these conditions HT pre-treated samples display a more realistic magnitude of apparent new synthesis and make correlation with a physiological response possible.Abbreviations Chl chlorophyll - HT high temperature - E ethanol - W water - D darkness - FR far red - R red - FW fresh weight  相似文献   

10.
Irene Bollig 《Planta》1977,135(2):137-142
The phase shifting effect of red light on both the leaf movement rhythm, and on the rhythm of responsiveness of photoperiodic flower induction towards short light breaks (10 min red light), has been studied in Pharbitis nil, strain Violet, and comparisons between the two rhythms have been made. The phase angle differences between the rhythms after a phase shift with 2 or 6 h of red light given at different times during a long dark period were not constant. The results indicate the involvement of two different clocks controlling leaf movement and photoperiodic flower induction.Abbreviations DD continuous darkness - l:D x:y light/dark cycles with x hours of light and y hours of darkness - PPR rhythm of photoperiodic responsiveness towards light break  相似文献   

11.
M. Bosnes  O. -A. Olsen 《Planta》1992,188(3):376-383
In seedlings of the Scots pine (Pinus sylvestris L.), alanine aminotransferase (AlAT EC 2.6.1.2.) is present in the shoot and in the primary root but most activity is found in the cotyledons. During the experimental period (from 6 to 12 d after sowing), AlAT activity increased steadily. Anion exchange chromatography and native polyacrylamide gel electrophoresis were used to show that AlAT activity in extracts from cotyledons is associated with two isoforms of the enzyme. One isoform (AlAT 1) dominated in the cotyledons of lightgrown seedlings, but was absent from primary roots. Its accumulation was strongly increased by light, and both phytochrome and cryptochrome were shown to be involved in this effect. Results of experiments using dichromatic irradiation indicate that cryptochrome acts indirectly by establishing responsiveness towards phytochrome. When plastids were damaged by photooxidation, the accumulation of AlAT 1 decreased; however, AlAT 1 which had accumulated before the onset of photooxidative treatment seemed to remain undamaged. Therefore, and because of the absence of AlAT 1 from primary roots, it is suggested that this isoform is localized in leaf peroxisomes. The isoform AlAT 2 is the only one found in primary roots, and the predominant one in the cotyledons of dark-grown seedlings. It is unaffected by light. Upon photodestruction of plastids, a pronounced increase of its activity was found. This is taken as evidence that AlAT 2 is a cytosolic enzyme. Total AlAT activity in cotyledons was unaffected by feeding nitrate to the seedlings; supplying exogenous ammonium led to a considerably slower accumulation of AlAT compared with water controls. In contrast, AlAT accumulation in the primary roots was augmented by up to 45% if nitrogenous ions were supplied, ammonium being more effective than nitrate.Abbreviations and Symbols AlAT alanine aminotransferase (EC 2.6.1.2.) - B blue light - c continuous - D darkness - Fd-GOGAT ferredoxin-dependent glutamate synthase (EC 1.4.7.1.) - FR far-red light - HPR hydroxypyruvate reductase (EC 1.1.1.81.) - FPLC fast protein liquid chromatography - PAGE polyacrylamide gel electrophoresis - R red light - RG9 long-wavelength far-red light defined by the properties of the Schott glass filter RG9 (RG9 < 0.01) - =Pfr/Ptot far-red-absorbing form of phytochrome/total phtochrome, wavelength-dependent photoequilibrium of the phytochrome system This work was supported by Heidelberger Akademie der Wissenschaften (Forschungsstelle Nitratassimilation). We are very grateful to Ms. B. Seith for measuring the DNA contents of the seedlings.  相似文献   

12.
The impact of illumination on specific growth rate, biomass formation, and synthesis of photopigment was studied in Erythromicrobium hydrolyticum, an obligately aerobic heterotrophic bacterium having the ability to synthesize bacteriochlorophyll a. In dark-grown continuous cultures the concentration of protein increased with increasing dilution rate, the concentration of bacteriochlorophyll a showed the opposite effect. At a dilution rate of 0.08 h-1 (68% of max in the dark) and SR-acetate of 11.8 mM, the concentration of BChla of illuminated cultures in steady-state was 11–22 nM, compared to 230–241 nM in cultures incubated in darkness. No significant differences were observed in the concentration of protein. A shift from darkness to light conditions resulted in increased specific growth rates resulting in increased biomass formation, thus showing that light enhances growth by serving as an additional energy source. This phenomenon, however, was temporary because bacteriochlorophyll synthesis is inhibited by light. In contrast to incubation in continuous light or dark, incubation under light/dark regimen resulted in permanently enhanced biomass formation. In the dark periods, bacteriochlorophyll was synthesized at elevated rates (compared to constant darkness), thus compensating the inhibitory effect of light in the preceding period. It thus appears that the organism is well-adpated to life in environments with alternating light/dark conditions. The ecological relevance of the observations is discussed.Non-standard abbreviations BChla bacteriochlorophyll a - D dilution rate - spceific growth rate - Ks saturation constant - SR concentration of limiting in inflowing medium of chemostat  相似文献   

13.
Root explants of chicory (Cichorium intybus L.) were cultured in vitro under continuous light or darkness. On a standard medium (no plant growth regulators added), flowering-stems were initiated under continuous light while under continuous dark, vegetative-stems were formed. Different types of GA (gibberellin) biosynthesis inhibitors were added to the culture medium. Paclobutrazol and compounds belonging to the group of cyclohexanetriones clearly reduced flowering-stem growth under light conditions and vegetative-stem growth under dark conditions. Under light conditions, flower bud initiation was not affected. These and other results suggest that GA1 may be synthesized during the in vitro culture period and that it controls flowering-stem growth but not floral initiation.Abbreviations CCC chlormequat chloride - GA gibberellin - LAB 198 999 3,5-dioxo-4-butyryl-cyclohexane carboxylic acid ethyl ester - BAS 111..W 1-phenoxy-3-(1H-1,2,4-triazol-1-yl)-4-hydroxy-5,5-dimethylhexane  相似文献   

14.
Stem and leaf tissues of Stellaria longipes Goldie (prairie ecotype) exhibit circadian rhythmicity in the activity and mRNA abundance for 1-aminocyclopropane-1-carboxylic acid oxidase (EC 1.4.3). The steady-state mRNA levels and enzymatic activity levels fluctuated with a period of approximately 24 h and reached their maxima by the middle of the light phase and minima by the middle of the dark phase. The oscillations showed damping under constant light, constant dark and constant temperature conditions, indicating that the rhythm is entrained by an external signal. The results indicate that light/dark cycles have greater entraining effects than temperature cycles. A 15-min red light pulse, but not a blue light pulse, could reset rhythm in continuous darkness, suggesting the possible role of a red-light signal transduction pathway in the circadian regulation of 1-aminocyclopropane-1-carboxylic acid oxidase.Abbreviations ACC 1-aminocyclopropane-1-carboxylic acid - DD continuous dark - LD light-dark - LL continuous light - ZT Zeitgeber time (start of light period for circadian entrainment) This study was supported by operating grants to C.C.C., and D.M.R. from the Natural Sciences and Engineering Research Council of Canada.The authors gratefully acknowledge the award of a Bettina Bahlsen memorial Graduate Scholarship by University of Calgary to A.K. We are grateful to Dr. M.M. Moloney for allowing the use of his laboratory facilities.  相似文献   

15.
Gas exchange in K. blossfeldiana shows a circadian rhythm in net CO2 uptake and transpiration when measured under low and medium irradiances. The period length varies between 21.4 h at 60 W m-2 and 24.0 h at 10 W m-2. In bright light (80 W m-2) or darkness there are no rhythms. High leaf temperatures result in a fast dampening of the CO2-uptake rhythm at moderate irradiances, but low leaf temperatures can not overcome the dampening in bright light. The rhythm in CO2 uptake is accompanied by a less pronounced and more rapidly damped rhythm in transpiration and by oscillations in malate levels with the amplitude being highly reduced. The oscillations in starch content, usually observed to oscillate inversely to the acidification in light-dark cycles, disappear after the first cycle in continuous light. The balance between starch and malate levels depends in continuous light on the irradiance applied. Leaves show high malate and low starch content at low irradiance and high starch and low malate in bright light. During the first 12 h in continuous light replacing the usual dark period, malate synthesis decreases with the increasing irradiance. Up to 50 W m-2 starch content decreases; at higher irradiances it increases above the values usually measured at the end of the light period of the 12:12 h light-dark cycle.Abbreviations CAM Crassulacean acid metabolism - FW fresh weight - PEP phosphoenolpyruvate  相似文献   

16.
L-Phenylalanine ammonia-lyase (PAL; EC 4.3.1.5) in Spirodela oligorrhiza (Kurz) Hegelm. cultivated in continuous light showed ca 48-h rhythmicity in the activity. Abscisic acid shifted the oscillation by ca 24 h. 1-Amino-2-phenylethylphosphonic acid, a competitive inhibitor of the enzyme in vitro, markedly increased PAL activity in vivo and nullified the oscillation. Rhythmicity in PAL activity did not occur in darkness. Illumination was a prerequisite for maintaining high PAL activity as well as for the occurrence of the oscillations in the enzyme activity. 'Average'enzyme activity decreased proportionally to time of cultivation of plants in the stationary culture. Transfer of the plants to fresh medium was connected with the increase of PAL activity to a maximum during the following 1-2 days. Diurnal oscillation of PAL activity with a maximum at 1800–1900 h, dependent on the presence of glucose or sucrose in the nutrient medium, was also recorded.  相似文献   

17.
Cháb D  Kolár J  Olson MS  Storchová H 《Planta》2008,228(6):929-940
FLOWERING LOCUS T (FT) like genes are crucial regulators (both positive and negative) of flowering in angiosperms. We identified two FT homologs in Chenopodium rubrum, a short-day species used as a model plant for the studies of photoperiodic flower induction. We found that CrFTL1 gene was highly inducible by a 12-h dark period, which in turn induced flowering. On the other hand, photoperiodic treatments that did not induce flowering (short dark periods, or a permissive darkness interrupted by a night break) caused only a slight increase in CrFTL1 mRNA level. We demonstrated diurnal oscillation of CrFTL1 expression with peaks in the middle of a light period. The oscillation persisted under constant darkness. Unlike FT homologs in rice and Pharbitis, the CrFTL1 expression under constant darkness was very low. The CrFTL2 gene showed constitutive expression. We suggest that the CrFTL1 gene may play a role as a floral regulator, but the function of CrFTL2 remains unknown.  相似文献   

18.
Helga Kasemir  Hans Mohr 《Planta》1981,152(4):369-373
Chlorophyll a (Chl a) accumulation in the cotyledons of Scots pine seedlings (Pinus sylvestris L.) is much higher in the light than in darkness where it ceases 6 days after germination. When these darkgrown seedlings are treated with continuous white light (3,500 lx) a 3 h lag phase appears before Chl a accumulation is resumed. The lag phase can be eliminated by pretreating the seedlings with 7 h of weak red light (0.14 Wm-2) or with 14 red light pulses separated by relatively short dark periods (<100 min). The effect of 15s red light pulses can be fully reversed by 1 min far-red light pulses. This reversibility is lost within 2 min. In addition, the amount of Chl a formed within 27 h of continuous red light is considerably reduced by the simultaneous application of far-red (RG 9) light. It is concluded that phytochrome (Pfr) is required not only for the elimination of the lagphase but also to maintain a high rate of Chl a accumulation in continuous light. Since accumulation of 5-aminolevulinate (ALA) responds in the same manner as Chl a accumulation to a red light pretreatment it is further concluded that ALA formation is the point where phytochrome regulates Chl biosynthesis in continuous light. No correlation has been found between ALA and Chl a formation in darkness. This indicates that in a darkgrown pine seedling ALA formation is not rate limiting for Chl a accumulation.Abbreviations Chl chlorophyll(ide) - PChl protochlorophyll(ide) - ALA 5-aminolevulinate - Pr the red absorbing form of phytochrome - Pfr the far-red absorbing form of phytochrome - Ptot total phytochrome ([Pr]+[Pfr])  相似文献   

19.
Appenroth KJ  Teller S 《Planta》2004,218(5):775-783
Activities of NADP-dependent isocitrate dehydrogenases (cytosolic and plastidic isoforms, ICDH1 and ICDH2; EC 1.1.1.42) and ferredoxin-dependent glutamate synthase (Fd-GOGAT; EC 1.4.7.1) in turions of Spirodela polyrhiza were all stimulated by light. Single or repeated red light (R) pulses induced the activity of the enzymes and this effect was reverted by subsequent far-red light (FR) pulses. The enzymes are, therefore, co-regulated by the low-fluence response of phytochrome. For ICDH, this is reported here for the first time. Neither an effect of the very low-fluence response nor of the FR-mediated high-irradiance response was detectable. Irradiance with continuous R resulted in enhanced enzyme activities and protein levels (Western analysis using polyclonal antibodies against ICDH1 and Fd-GOGAT). These additional effects of continuous R (called a non-induction effect) could be inhibited for ICDH1 and ICDH2 by the inhibitor of photosynthetic electron transport, 3-(3,4-dichlorophenyl)-1,1-dimethylurea, and are therefore related to the effect of photosynthesis. In contrast, the non-induction effect of Fd-GOGAT was resistant against this inhibitor. Moreover, hourly R pulses did not replace the effect of continuous R. The non-induction effect of light on the activity and protein level of Fd-GOGAT was therefore tentatively classified as an R-mediated high-irradiance response. The activity of Fd-GOGAT but not that of ICDHs was additionally regulated by a specific blue-light receptor. It can be concluded that the levels of ICDHs and Fd-GOGAT were coordinated by light but were not co-regulated by the same photoreceptors. Nitrate is necessary for the light regulation of both enzymes, contributing to the coordinated expression of the relevant genes.Abbreviations DCMU 3-(3,4-Dichlorophenyl)-1,1-dimethylurea - Fd-GOGAT Ferredoxin-dependent glutamate synthase - FR Far-red light - HIR High-irradiance response - ICDH NADP-dependent isocitrate dehydrogenase - ICDH1 Cytosolic ICDH - ICDH2 Chloroplastic ICDH - LFR Low-fluence response - R Red light - SDS–PAGE Denaturing polyacrylamide gel electrophoresis - VLFR Very low-fluence response  相似文献   

20.
Phosphorus metabolism and growth of M. aeruginosa were studied under three different conditions of diel fluctuation in redox potential. Redox potential in the culture increased in light and decreased in dark in all treatments except one, when cysteine was added in darkness. Total phosphorus content in M. aeruginosa decreased in darkness and increased in light during exponential growth but increased continuously in the stationary phase. Conversely, polyphosphate (PolyP) accumulated in darkness but was lost in the light. Low redox potential in darkness promoted PolyP accumulation. Polyglucose and soluble orthophosphate may provide energy and phosphorus, respectively, for PolyP synthesis. PolyP was important to M. aeruginosa survival during poor growth conditions. If the redox potential difference in the dark/light cycle was large, M. aeruginosa initially grew faster, but soon lost viability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号