首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Li WW  Cai DF  Ren HM 《生理科学进展》2006,37(2):97-102
构象病的概念被广泛用于命名与蛋白质的构象异常相关的疾病。随着生命科学的进步,人们对神经变性疾病发病的分子机制有了较好的认识,发现几乎所有的此类疾病,诸如阿尔采末病(AD)、帕金森病(PD)、亨廷顿病(HD)以及朊蛋白病(PrD)等都具有一个共同的特征,即病变细胞中蓄积有大量错误折叠并易于聚合的蛋白质,这符合构象病的特点,所以又派生了神经变性构象病的新概念。近年来,人们在神经变性构象病的蛋白质错误折叠和聚合以及其细胞毒性方面的认识越来越走向深入,这将对寻找有效的治疗方法起到极大的推动作用。  相似文献   

2.
Conformational or misfolding diseases are a large class of devastating human disorders associated with protein misfolding and aggregation. Most conformational diseases are caused by a combination of genetic and environmental factors, suggesting that spontaneous events can destabilize the protein involved in the pathology or impair the clearance mechanisms of misfolded aggregates. Aging is one of the risk factors associa-ted to these events, and the clinical relevance of conformational disorders is growing dramatically, as they begin to reach epidemic proportions due to increases in mean lifespan. Currently, there are no effective strategies to slow or prevent these diseases. Intrabodies are promising therapeutic agents for the treatment of misfolding diseases, because of their virtually infinite ability to specifically recognize the different conformations of a protein, including pathological isoforms, and because they can be targeted to the potential sites of aggregation (both intra- and extracellular sites). These molecules can work as neutralizing agents against amylo-idogenic proteins by preventing their aggregation, and/or as molecular shunters of intracellular traffic by re-routing the protein from its potential aggregation site. The fast-developing field of recombinant antibody technology provides intrabodies with enhanced binding specificity and stability, together with lower immunogenicity, for use in a clinical setting. This review provides an update on the applications of intrabodies in misfolding diseases, with particular emphasis on an evaluation of their multiple and feasible modes of action.  相似文献   

3.
Protein misfolding disorders (PMDs) refer to a group of diseases related to the misfolding of particular proteins that aggregate and deposit in the cells and tissues of humans and other mammals. The mechanisms that trigger protein misfolding and aggregation are still not fully understood. Increasing experimental evidence indicates that abnormal interactions between PMD-related proteins and nucleic acids (NAs) can induce conformational changes. Here, we discuss these protein–NA interactions and address the role of deoxyribonucleic (DNA) and ribonucleic (RNA) acid molecules in the conformational conversion of different proteins that aggregate in PMDs, such as Alzheimer’s, Parkinson’s, and prion diseases. Studies on the affinity, stability, and specificity of proteins involved in neurodegenerative diseases and NAs are specifically addressed. A landscape of reciprocal effects resulting from the binding of prion proteins, amyloid-β peptides, tau proteins, huntingtin, and α-synuclein are presented here to clarify the possible role of NAs, not only as encoders of genetic information but also in triggering PMDs.  相似文献   

4.
Modulation of neurodegeneration by molecular chaperones   总被引:18,自引:0,他引:18  
Many neurodegenerative disorders are characterized by conformational changes in proteins that result in misfolding, aggregation and intra- or extra-neuronal accumulation of amyloid fibrils. Molecular chaperones provide a first line of defence against misfolded, aggregation-prone proteins and are among the most potent suppressors of neurodegeneration known for animal models of human disease. Recent studies have investigated the role of molecular chaperones in amyotrophic lateral sclerosis, Alzheimer's disease, Parkinson's disease and polyglutamine diseases. We propose that molecular chaperones are neuroprotective because of their ability to modulate the earliest aberrant protein interactions that trigger pathogenic cascades. A detailed understanding of the molecular basis of chaperone-mediated protection against neurodegeneration might lead to the development of therapies for neurodegenerative disorders that are associated with protein misfolding and aggregation.  相似文献   

5.
Neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis have been termed protein misfolding disorders that are characterized by the neuronal accumulation of protein aggregates. Manipulation of the cellular stress-response involving induction of heat shock proteins (Hsps) in differentiated neurons offers a therapeutic strategy to counter conformational changes in neuronal proteins that trigger pathogenic cascades resulting in neurodegenerative diseases. Hsps are protein repair agents that provide a line of defense against misfolded, aggregation-prone proteins. These proteins are not induced in differentiated neurons by conventional heat shock. We have found that celastrol, a quinine methide triterpene, induced expression of a wider set of Hsps, including Hsp70B', in differentiated human neurons grown in tissue culture compared to cultured rodent neuronal cells. Hence the beneficial effect of celastrol against human neurodegenerative diseases may exceed its potential in rodent models of these diseases.  相似文献   

6.
Conformational diseases result from the failure of a specific protein to fold into its correct functional state. The misfolded proteins can lead to the toxic aggregation of proteins. Protein misfolding in conformational diseases often displays a threshold behavior characterized by a sudden shift between nontoxic to toxic levels of misfolded proteins. In some conformational diseases, evidence suggests that misfolded proteins interact with bystander proteins (unfolded and native folded proteins), eliciting a misfolded phenotype. These bystander isomers would follow their normal physiological pathways in absence of misfolded proteins. In this article, we present a general mechanism of bystander and misfolded protein interaction which we have used to investigate how the threshold behavior in protein misfolding is triggered in conformational diseases. Using a continuous flow reactor model of the endoplasmic reticulum, we found that slight changes in the bystander protein residence time in the endoplasmic reticulum or the ratio of basal misfolded to bystander protein inflow rates can trigger the threshold behavior in protein misfolding. Our analysis reveals three mechanisms to rescue bystander proteins in conformational diseases. The results of our model can now help direct experiments to understand the threshold behavior and develop therapeutic strategies targeting the modulation of conformational diseases.  相似文献   

7.
Nakamura T  Gu Z  Lipton SA 《Aging cell》2007,6(3):351-359
Glutamatergic hyperactivity, associated with Ca2+ influx and consequent production of nitric oxide (NO), is potentially involved in both normal brain aging and age-related neurodegenerative disorders. Many neurodegenerative diseases are characterized by conformational changes in proteins that result in their misfolding and aggregation. Normal protein degradation by the ubiquitin-proteasome system can prevent accumulation of aberrantly folded proteins. Our recent studies have linked nitrosative stress to protein misfolding and neuronal cell death. In particular, molecular chaperones - such as protein disulfide isomerase, glucose regulated protein 78, and heat shock proteins - can provide neuroprotection from misfolded proteins by facilitating proper folding and thus preventing aggregation. Here, we present evidence for the hypothesis that NO contributes to normal brain aging and degenerative conditions by S-nitrosylating specific chaperones that would otherwise prevent accumulation of misfolded proteins.  相似文献   

8.
Misfolded aggregates present in amyloid fibrils are associated with various diseases known as "protein misfolding" disorders. Among them, prion diseases are unique in that the pathology can be transmitted by an infectious process involving an unprecedented agent known as a "prion". Prions are infectious proteins that can transmit biological information by propagating protein misfolding and aggregation. The molecular mechanism of prion conversion has a striking resemblance to the process of amyloid formation, suggesting that misfolded aggregates have an inherent ability to be transmissible. Intriguing recent data suggest that other protein misfolding disorders might also be transmitted by a prion-like infectious process.  相似文献   

9.
Understanding the mechanisms underlying protein misfolding and aggregation has become a central issue in biology and medicine. Compelling evidence show that the formation of amyloid aggregates has a negative impact in cell function and is behind the most prevalent human degenerative disorders, including Alzheimer's Parkinson's and Huntington's diseases or type 2 diabetes. Surprisingly, the same type of macromolecular assembly is used for specialized functions by different organisms, from bacteria to human. Here we address the conformational properties of these aggregates, their formation pathways, their role in human diseases, their functional properties and how bioinformatics tools might be of help to study these protein assemblies.  相似文献   

10.
Protein-misfolding diseases and chaperone-based therapeutic approaches   总被引:1,自引:0,他引:1  
Chaudhuri TK  Paul S 《The FEBS journal》2006,273(7):1331-1349
A large number of neurodegenerative diseases in humans result from protein misfolding and aggregation. Protein misfolding is believed to be the primary cause of Alzheimer's disease, Parkinson's disease, Huntington's disease, Creutzfeldt-Jakob disease, cystic fibrosis, Gaucher's disease and many other degenerative and neurodegenerative disorders. Cellular molecular chaperones, which are ubiquitous, stress-induced proteins, and newly found chemical and pharmacological chaperones have been found to be effective in preventing misfolding of different disease-causing proteins, essentially reducing the severity of several neurodegenerative disorders and many other protein-misfolding diseases. In this review, we discuss the probable mechanisms of several protein-misfolding diseases in humans, as well as therapeutic approaches for countering them. The role of molecular, chemical and pharmacological chaperones in suppressing the effect of protein misfolding-induced consequences in humans is explained in detail. Functional aspects of the different types of chaperones suggest their uses as potential therapeutic agents against different types of degenerative diseases, including neurodegenerative disorders.  相似文献   

11.
Protein folding is a very complex process, and recognition of the molecular mechanisms responsible for protein folding is one of the demanding queries in biochemistry. Protein molecules have a fixed propensity either to misfold or unable to sustain their precisely folded states, under assured conditions. Taking into account that the protein misfolding and aggregation are central in the pathogenesis of protein conformational disorders, a therapy focussed to the root of the disease should target to restrain and/or undo the conformational alterations that lead to the development of the pathological protein conformer. In future, an understanding of the causes of protein aggregation and genetic and environmental vulnerability features of an exact individual may offer an enhanced prospect for a successful therapeutic intrusion. Dealing with these and related problems not only provides great prospects for involvement with numerous, presently fatal diseases but will also ultimately disclose the basically essential association between proteostasis and prolonged existence.  相似文献   

12.
13.
Approximately one-third of proteins in the cell reside in the membrane. Mutations in membrane proteins can induce conformational changes and expose nonnative polar domains/residues to the lipid environment. The molecular effect of the resulting membrane stress is poorly defined. Adenine nucleotide translocase 1 (Ant1) is a mitochondrial inner membrane protein involved in ATP/ADP exchange. Missense mutations in the Ant1 isoform cause autosomal dominant progressive external ophthalmoplegia (adPEO), cardiomyopathy, and myopathy. The mechanism of the Ant1-induced pathologies is highly debated. Here we show that equivalent mutations in the yeast Aac2 protein cause protein misfolding. Misfolded Aac2 drastically affects the assembly and stability of multiple protein complexes in the membrane, which ultimately inhibits cell growth. Despite causing similar proteostatic damages, the adPEO- but not the cardiomyopathy/myopathy-type Aac2 proteins form large aggregates. The data suggest that the Ant1-induced diseases belong to protein misfolding disorders. Protein homeostasis is subtly maintained on the mitochondrial inner membrane and can be derailed by the misfolding of one single protein with or without aggregate formation. This finding could have broad implications for understanding other dominant diseases (e.g., retinitis pigmentosa) caused by missense mutations in membrane proteins.  相似文献   

14.
Prion diseases are neurodegenerative disorders caused by misfolding of the normal prion protein (PrP) into a pathogenic “scrapie” conformation. To better understand the cellular and molecular mechanisms that govern the conformational changes (conversion) of PrP, we compared the dynamics of PrP from mammals susceptible (hamster and mouse) and resistant (rabbit) to prion diseases in transgenic flies. We recently showed that hamster PrP induces spongiform degeneration and accumulates into highly aggregated, scrapie-like conformers in transgenic flies. We show now that rabbit PrP does not induce spongiform degeneration and does not convert into scrapie-like conformers. Surprisingly, mouse PrP induces weak neurodegeneration and accumulates small amounts of scrapie-like conformers. Thus, the expression of three highly conserved mammalian prion proteins in transgenic flies uncovered prominent differences in their conformational dynamics. How these properties are encoded in the amino acid sequence remains to be elucidated.  相似文献   

15.
A large group of diseases, termed protein misfolding disorders, share the common feature of the accumulation of misfolded proteins. The possibility of a common mechanism underlying either the pathogenesis or therapy for these diseases is appealing. Thus, there is great interest in the role of protein degradation via autophagy in such conditions where the protein is found in the cytoplasm. Here we review the growing evidence supporting a role for autophagic dysregulation as a contributing factor to protein accumulation and cellular toxicity in certain protein misfolding disorders and discuss the available evidence that upregulation of autophagy may be a valuable therapeutic strategy.  相似文献   

16.
Prion diseases are a heterogeneous class of fatal neurodegenerative disorders associated with misfolding of host cellular prion protein (PrPC) into a pathological isoform, termed PrPSc. Prion diseases affect various mammals, including humans, and effective treatments are not available. Prion diseases are distinguished from other protein misfolding disorders – such as Alzheimer’s or Parkinson’s disease – in that they are infectious. Prion diseases occur sporadically without any known exposure to infected material, and hereditary cases resulting from rare mutations in the prion protein have also been documented. The mechanistic underpinnings of prion and other neurodegenerative disorders remain poorly understood. Various proteomics techniques have been instrumental in early PrPSc detection, biomarker discovery, elucidation of PrPSc structure and mapping of biochemical pathways affected by pathogenesis. Moving forward, proteomics approaches will likely become more integrated into the clinical and research settings for the rapid diagnosis and characterization of prion pathogenesis.  相似文献   

17.
Recent discoveries of severe bone disorders in patients with deficiencies in several endoplasmic reticulum chaperones are reshaping the discussion of type I collagen folding and related diseases. Type I collagen is the most abundant protein in all vertebrates and a crucial structural molecule for bone and other connective tissues. Its misfolding causes bone fragility, skeletal deformity and other tissue failures. Studies of newly discovered bone disorders indicate that collagen folding, chaperones involved in the folding process, cellular responses to misfolding and related bone pathologies might not follow conventional protein folding paradigms. In this review, we examine the features that distinguish collagen folding from that of other proteins and describe the findings that are beginning to reveal how cells manage collagen folding and misfolding. We discuss implications of these studies for general protein folding paradigms, unfolded protein response in cells and protein folding diseases.  相似文献   

18.
Neurodegenerative diseases are characterized by the aggregation of misfolded proteins in the brain. Among these disorders are the prion diseases, which are transmissible, and in which the misfolded proteins (“prions”) are also the infectious agent. Increasingly, it appears that misfolded proteins in Alzheimer and Parkinson diseases and the tauopathies also propagate in a “prion-like” manner. However, the association between prion formation, spread, and neurotoxicity is not clear. Recently, we showed that in prion disease, protein misfolding leads to neurodegeneration through dysregulation of generic proteostatic mechanisms, specifically, the unfolded protein response. Genetic and pharmacological manipulation of the unfolded protein response was neuroprotective despite continuing prion replication, hence dissociating this from neurotoxicity. The data have clear implications for treatment across the spectrum of these disorders, targeting pathogenic processes downstream of protein misfolding.  相似文献   

19.
Prion diseases differ from other amyloid‐associated protein misfolding diseases (e.g. Alzheimer's) because they are naturally transmitted between individuals and involve spread of protein aggregation between tissues. Factors underlying these features of prion diseases are poorly understood. Of all protein misfolding disorders, only prion diseases involve the misfolding of a glycosylphosphatidylinositol (GPI)‐anchored protein. To test whether GPI anchoring can modulate the propagation and spread of protein aggregates, a GPI‐anchored version of the amyloidogenic yeast protein Sup35NM (Sup35GPI) was expressed in neuronal cells. Treatment of cells with Sup35NM fibrils induced the GPI anchor‐dependent formation of self‐propagating, detergent‐insoluble, protease‐resistant, prion‐like aggregates of Sup35GPI. Live‐cell imaging showed intercellular spread of Sup35GPI aggregation to involve contact between aggregate‐positive and aggregate‐negative cells and transfer of Sup35GPI from aggregate‐positive cells. These data demonstrate GPI anchoring facilitates the propagation and spread of protein aggregation and thus may enhance the transmissibility and pathogenesis of prion diseases relative to other protein misfolding diseases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号