首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The avirulence genes Avr9 and Avr4 from the fungal tomato pathogen Cladosporium fulvum encode extracellular proteins that elicit a hypersensitive response when injected into leaves of tomato plants carrying the matching resistance genes, Cf-9 and Cf-4, respectively. We successfully expressed both Avr9 and Avr4 genes in tobacco with the Agrobacterium tumefaciens transient transformation assay (agroinfiltration). In addition, we expressed the matching resistance genes, Cf-9 and Cf-4, through agroinfiltration. By combining transient Cf gene expression with either transgenic plants expressing one of the gene partners, Potato virus X (PVX)-mediated Avr gene expression, or elicitor injections, we demonstrated that agroinfiltration is a reliable and versatile tool to study Avr/Cf-mediated recognition. Significantly, agroinfiltration can be used to quantify and compare Avr/Cf-induced responses. Comparison of different Avr/Cf-interactions within one tobacco leaf showed that Avr9/Cf-9-induced necrosis developed slower than necrosis induced by Avr4/Cf-4. Quantitative analysis demonstrated that this temporal difference was due to a difference in Avr gene activities. Transient expression of matching Avr/Cf gene pairs in a number of plant families indicated that the signal transduction pathway required for Avr/Cf-induced responses is conserved within solanaceous species. Most non-solanaceous species did not develop specific Avr/Cf-induced responses. However, co-expression of the Avr4/Cf-4 gene pair in lettuce resulted in necrosis, providing the first proof that a resistance (R) gene can function in a different plant family.  相似文献   

2.
3.
The Cf-9 gene encodes an extracytosolic leucine-rich repeat (LRR) protein that is membrane anchored near its C-terminus. The protein confers resistance in tomato to races of the fungus Cladosporium fulvum expressing the corresponding avirulence gene Avr9. In Nicotiana tabacum the Cf-9 transgene confers sensitivity to the Avr9 elicitor, and leads on elicitation to a subset of defence responses qualitatively similar to those normally seen in the tomato host. One of the earliest responses, both in the native and transgenic hosts, results in K+ salt loss from the infected tissues. However, the mechanism(s) underlying this solute flux and its control is poorly understood. We have explored the actions of Avr9 on Cf-9 transgenic Nicotiana using guard cells as a model. Much detail of guard cell ion channels and their regulation is already known. Measurements were carried out on intact guard cells in epidermal peels, and the currents carried by inward- (IK,in) and outward-rectifying (IK,out) K+ channels were characterized under voltage clamp. Exposures to Avr9-containing extracts resulted in a 2.5- to 3-fold stimulation of IK,out and almost complete suppression of IK,in within 3-5 min. The K+ channel responses were irreversible. They were specific for the Avr9 elicitor, were not observed in guard cells of Nicotiana lacking the Cf-9 transgene and, from kinetic analyses, could be ascribed to changes in channel gating. Both K+ channel responses were found to be saturable functions of Avr9 concentration and were completely blocked in the presence of 0.5 microM staurosporine and 100 microM H7, both broad-range protein kinase antagonists. These results demonstrate the ability of the Cf-9 transgene to couple Avr9 elicitation specifically to a concerted action on two discrete K+ channels and they indicate a role for protein phosphorylation in Avr9/Cf-9 signal transduction leading to transport control.  相似文献   

4.
5.
6.
In the Cf-9/Avr9 gene-for-gene interaction, the Cf-9 resistance gene from tomato confers resistance to the fungal pathogen Cladosporium fulvum, which expresses the corresponding pathogen-derived avirulence product Avr9. To understand R gene function and dissect the signaling mechanisms involved in the induction of plant defenses, we studied Cf-9/Avr9-dependent activation of protein kinases in transgenic Cf9 tobacco cell cultures. Using a modified in-gel kinase assay with histone as substrate, we identified a membrane-bound, calcium-dependent protein kinase (CDPK) that showed a shift in electrophoretic mobility from 68 to 70 kD within 5 min after Avr9 elicitor was added. This transition from the nonelicited to the elicited CDPK form was caused by a phosphorylation event and was verified when antibodies to CDPK were used for protein gel blot analysis. In addition, the interconversion of the corresponding CDPK forms could be induced in vitro in both directions by treatment with either phosphatase or ATP. In vitro protein kinase activity toward syntide-2 or histone with membrane extracts or gel-purified enzyme was dependent on Ca(2)+ content and was compromised by the calmodulin antagonist N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7) but not by its inactive isoform N-(6-aminohexyl)-1-naphthalenesulfonamide. In these assays, the CDPK activity in elicited samples, reflecting predominantly the phosphorylated 70-kD CDPK form, was greater than in nonelicited samples. Thus, Avr9/Cf-9-dependent phosphorylation and subsequent transition from the nonelicited to the elicited form correlate with the activation of a CDPK isoform after in vivo stimulation. Because that transition was not inhibited by W-7, the in vivo CDPK activation probably is not the result of autophosphorylation. Studies with pharmacological inhibitors indicated that the identified CDPK is independent of or is located upstream from a signaling pathway that is required for the Avr9-induced active oxygen species.  相似文献   

7.
The Cf-9 gene encodes an extracytoplasmic leucine-rich repeat protein that confers resistance in tomato to races of the fungus Cladosporium fulvum that express the corresponding avirulence gene Avr 9. We investigated whether the genomic Cf-9 gene functions in potato and tobacco. Transgenic tobacco and potato plants carrying Cf-9 exhibit a rapid hypersensitive cell death response (HR) to Avr 9 peptide injection. Cf 9 tobacco plants were reciprocally crossed to Avr 9-producing tobacco. A developmentally regulated seedling lethal phenotype occurred in F1 progeny when Cf9 was used as the male parent and Avr 9 as the female parent. However, when Cf9 was inherited in the maternal tissue and a heterozygous Avr 9 plant was used as the pollen donor, a much earlier reaction was caused, leading to no germination of any F1 seed. Detailed analysis of the Avr 9-induced responses in Cf 9 tobacco leaves revealed that (1) most mesophyll cells died within 3 hr (compared with 12 to 16 hr in tomato); (2) the macroscopic HR was visible at an Avr 9 titer five times lower than that which caused visible symptoms in tomato; (3) the HR invariably extended into noninjected panels of the tobacco leaf; (4) no HR occurred in leaves of young tobacco plants; (5) in older plants, the HR was dramatically enhanced by sequential Avr 9 challenges; and (6) coexpression of a salicylate hydroxylase transgene (nahG) from Pseudomonas putida reduced the severity of the macroscopic leaf HR and also restored germination to Cf 9 x 35S:Avr 9 F1 seedlings. Simultaneous introduction of Cf-9 homologs (Hcr 9-9 genes A and B or D) along with the native Cf-9 gene did not alter the responses that were specifically induced by Avr 9. Various ways to use the Cf-9-Avr 9 gene combination to engineer broad-spectrum disease resistance in several solanaceous species are discussed.  相似文献   

8.
9.
Rivas S  Romeis T  Jones JD 《The Plant cell》2002,14(3):689-702
The tomato Cf-9 gene confers race-specific resistance to the fungal pathogen Cladosporium fulvum expressing the corresponding avirulence gene Avr9. In tobacco, Cf-9 confers a hypersensitive response to the Avr9 peptide. To investigate Cf-9 protein function in initiating defense signaling, we engineered a functional C-terminal fusion of the Cf-9 gene with the TAP (Tandem Affinity Purification) tag. In addition, we established a transient expression assay in Nicotiana benthamiana leaves for the production of functional Cf-9:myc and Cf-9:TAP. Transiently expressed Cf-9:myc and Cf-9:TAP proteins induced an Avr9-dependent hypersensitive response, consistent with previous results with stably transformed tobacco plants and derived cell suspension cultures expressing c-myc-tagged Cf-9. Gel filtration of microsomal fractions solubilized with octylglucoside revealed that the Cf-9 protein, either as c-myc or TAP fusions, migrated at a molecular mass of 350 to 475 kD. By using blue native gel electrophoresis, the molecular size was confirmed to be approximately 420 kD. Our results suggest that only one Cf-9 protein molecule is present in the Cf-9 complex and that Cf-9 is part of a membrane complex consisting of an additional glycoprotein partner(s). The high structural similarity between Cf proteins and Clavata2 (CLV2) of Arabidopsis, together with the similarity of molecular mass between Cf-9 and CLV complexes (420 and 450 kD, respectively), led us to investigate whether Cf-9 is integrated into membrane-associated protein complexes like those formed by CLV1 and CLV2. Unlike CLV2, the Cf-9 protein did not form disulfide-linked heterodimers, no ligand (Avr9)-dependent shift in the molecular mass of the Cf-9 complex was detected, and no Rho-GTPase-related proteins were found associated with Cf-9 under the conditions tested. Thus, Cf-9-dependent defense signaling and CLV2-dependent regulation of meristem development seem to be accomplished via distinct mechanisms, despite the structural similarity of their key components Cf-9 and CLV2.  相似文献   

10.
11.
12.
The Cf-4 and Cf-9 genes originate from the wild tomato species Lycopersicon hirsutum and L. pimpinellifolium and confer resistance to strains of the leaf mold fungus Cladosporium fulvum that secrete the Avr4 and Avr9 elicitor proteins, respectively. Homologs of Cf-4 and Cf-9 (Hcr9s) are located in several clusters and evolve mainly through sequence exchange between homologs. To study the evolution of Cf genes, we set out to identify functional Hcr9s that mediate recognition of Avr4 and Avr9 (designated Hcr9-Avr4s and Hcr9-Avr9s) in all wild tomato species. Plants responsive to the Avr4 and Avr9 elicitor proteins were identified throughout the genus Lycopersicon. Open reading frames of Hcr9s from Avr4- and Avr9-responsive tomato plants were polymerase chain reaction-amplified. Several Hcr9s that mediate Avr4 or Avr9 recognition were identified in diverged tomato species by agroinfiltration assays. These Hcr9-Avr4s and Hcr9-Avr9s are highly identical to Cf-4 and Cf-9, respectively. Therefore, we conclude that both Cf-4 and Cf-9 predate Lycopersicon speciation. These results further suggest that C. fulvum is an ancient pathogen of the genus Lycopersicon, in which Cf-4 and Cf-9 have been maintained by selection pressure imposed by C. fulvum.  相似文献   

13.
Nekrasov V  Ludwig AA  Jones JD 《FEBS letters》2006,580(17):4236-4241
Tomato Cf-9, a receptor-like protein (RLP), confers resistance to races of the fungal pathogen Cladosporium fulvum that express the Avr9 avirulence gene. CITRX (Cf-9-interacting thioredoxin) was previously identified in a yeast two-hybrid screen as a protein interacting with the cytoplasmic domain of Cf-9 and shown to be a negative regulator of the cell death induced after Cf-9/Avr9 interaction. ACIK1 is a Ser/Thr protein kinase that is specifically required for the Cf-9 and Cf-4 dependent defence response in tomato. In this paper we present data suggesting that CITRX may act as an adaptor recruiting the ACIK1 kinase to the cytoplasmic domain of Cf-9 upon elicitation with the Avr9 peptide. Interestingly, the catalytic activities of both CITRX and ACIK1 are not required for their interaction.  相似文献   

14.
Tomato leaves or cotyledons expressing the Cf-2 or Cf-9 Cladosporium fulvum resistance genes induce salicylic acid (SA) synthesis following infiltration with intercellular washing fluid (IF) containing the fungal peptide elicitors Avr2 and Avr9. We investigated whether SA was required for Cf gene-dependent resistance. Tomato plants expressing the bacterial gene nahG, encoding salicylate hydroxylase, did not accumulate SA in response to IF infiltration but remained fully resistant to C. fulvum. NahG Cf0 plants were as susceptible to C. fulvum as wild-type Cf0. Neither free nor conjugated salicylic acid accumulated in IF-infiltrated Cf2 and Cf9 NahG leaves and cotyledons but conjugated catechol did accumulate. The Cf-9-dependent necrotic response to IF was prevented in NahG plants and replaced by a chlorotic Cf-2-like response. SA also potentiated Cf-9-mediated necrosis in IF-infiltrated wild-type leaves. In contrast, the Cf-2-dependent IF response was retained in NahG leaves and chlorosis was more pronounced than in the wild-type. The distribution of cell death between different cell types was altered in both Cf2 and Cf9 NahG leaves after IF injection. IF-induced accumulation of three SA-inducible defence-related genes was delayed and reduced but not abolished in NahG Cf2 and Cf9 leaves and cotyledons. NahG Tm-22 tomato showed increased hypersensitive response (HR) lesion size upon TMV infection, as observed in TMV-inoculated N gene-containing NahG tobacco plants.  相似文献   

15.
The Cf-9 resistance gene from tomato confers resistance to races of the fungal pathogen Cladosporium fulvum that express the corresponding avirulence gene, Avr9. Avr9 encodes a secreted peptide. To investigate Cf-9 function, we tagged the Cf-9 protein with a triple myc epitope at either the amino- or carboxy-terminus of the mature protein. Tobacco plants carrying these constructs activate a defence response to Avr9 peptide. The Cf-9 sequence predicts a protein of 94 kDa, with 22 glycosylation sites. Using c-myc antibodies, c-myc : Cf-9 protein was detected as a unique band with a molecular size of 160 kDa. The band shifted to approximately 105 kDa after glucosidase treatment, indicating that Cf-9 protein is highly glycosylated. Plasma membranes were isolated using two-phase partitioning, and c-myc : Cf-9 was enriched in these fractions, indicating that Cf-9 is a plasma membrane protein. This was confirmed by silver-enhanced immunogold labelling of tobacco protoplasts carrying the amino-terminal c-myc tag; a higher labelling density was observed on the surface of protoplasts derived from c-myc : Cf-9 tobacco compared to untransformed control. The presence of Cf-9 in the plasma membrane is consistent with its role in conferring recognition of the extracellular Avr9 peptide.  相似文献   

16.
Despite sharing more than 91% sequence identity, the tomato Cf-4 and Cf-9 proteins discriminate between two Cladosporium-encoded avirulence determinants, Avr4 and Avr9. Comparative studies between Cf-4 and Cf-9 are thus of particular interest. To investigate Cf-4 protein function in initiating defence signalling, we established transgenic tobacco lines and derived cell suspension cultures expressing c-myc-tagged Cf-4. Cf-4:myc encodes a membrane-localized glycoprotein of approximately 145 kDa, which confers recognition of Avr4. Elicitation of Cf-4:myc and Cf-9:myc tobacco cell cultures with Avr4 and Avr9, respectively, triggered the synthesis of active oxygen species and MAP kinase activation. Additionally, an Agrobacterium-mediated transient assay was used to express Cf-4:myc and a newly engineered fusion protein Cf-4:TAP. Both transiently expressed proteins were found to be functional in an in vivo assay, conferring a hypersensitive response (HR) to Avr4. Consistent with previous observations that Cf-9 is present in a protein complex, gel filtration analysis of microsomal fractions solubilized with octylglucoside revealed that epitope-tagged Cf-4 proteins migrated at a molecular mass of 350-475 kDa. Using blue native gel electrophoresis, the molecular size was confirmed to be approximately 400 kDa. Significantly, this complex appeared to contain only one Cf-4 molecule, supporting the idea that, as previously described for Cf-9, additional glycoprotein partners participate with Cf-4 in the perception of the Avr4 protein. Intriguingly, Cf proteins and Clavata2 (CLV2) of Arabidopsis are highly similar in structure, and the molecular mass of Cf-4 and CLV complexes is also very similar (400 and 450 kDa, respectively). However, extensive characterization of the Cf-4 complex revealed essentially identical characteristics to the Cf-9 complex and significant differences from the CLV2 complex.  相似文献   

17.
Virus-induced gene silencing identified the Avr9/Cf-9 RAPIDLY ELICITED gene ACRE189 as essential for the Cf-9- and Cf-4-mediated hypersensitive response (HR) in Nicotiana benthamiana. We report a role for ACRE189 in disease resistance in tomato (Solanum lycopersicum) and tobacco (Nicotiana tabacum). ACRE189 (herein renamed Avr9/Cf-9-INDUCED F-BOX1 [ACIF1]) encodes an F-box protein with a Leu-rich-repeat domain. ACIF1 is widely conserved and is closely related to F-box proteins regulating plant hormone signaling. Silencing of tobacco ACIF1 suppressed the HR triggered by various elicitors (Avr9, Avr4, AvrPto, Inf1, and the P50 helicase of Tobacco mosaic virus [TMV]). ACIF1 is recruited to SCF complexes (a class of ubiquitin E3 ligases), and the expression of ACIF1 F-box mutants in tobacco compromises the HR similarly to ACIF1 silencing. ACIF1 affects N gene-mediated responses to TMV infection, including lesion formation and salicylic acid accumulation. Loss of ACIF1 function also reduced confluent cell death induced by Pseudomonas syringae pv tabaci. ACIF1 silencing in Cf9 tomato attenuated the Cf-9-dependent HR but not Cf-9 resistance to Cladosporium fulvum. Resistance conferred by the Cf-9 homolog Cf-9B, however, was compromised in ACIF1-silenced tomato. Analysis of public expression profiling data suggests that Arabidopsis thaliana homologs of ACIF1 (VFBs) regulate defense responses via methyl jasmonate- and abscisic acid-responsive genes. Together, these findings support a role of ACIF1/VFBs in plant defense responses.  相似文献   

18.
The Cladosporium fulvum (Cf)-4 gene of tomato confers resistance to the fungus C. fulvum, expressing the corresponding avirulence (Avr)4 gene, which codes for an elicitor protein. Little is known about how such mechanisms work, but previous studies have shown that elicitor recognition activates Ca(2+) signalling and protein kinases, such as mitogen-activated protein kinase (MAPK) and calcium-dependent protein kinase (CDPK). Here, we provide evidence that a new signalling component, the lipid second messenger phosphatidic acid (PA), is produced within a few minutes of AVR4/Cf-4 interaction. Using transgenic tobacco cells expressing the tomato Cf-4-resistance gene as a model system, phospholipid signalling pathways were studied by pre-labelling the cells with (32)P(i) and assaying for the formation of lipid signals after challenge with the fungal elicitor AVR4. A dramatic rapid response was an increase in (32)P-PA, together with its metabolic product diacylglycerol pyrophosphate (DGPP). AVR4 increased the levels of PA and DGPP in a Cf-4(+)-, time- and dose-dependent manner, while the non-matching elicitor AVR9 did not trigger any response. In general, PA signalling can be triggered by two different pathways: via phospholipase D (PLD), which generates PA directly by hydrolysing structural phospholipids like phosphatidylcholine (PC), or via PLC, which generates diacylglycerol (DAG) that is subsequently phosphorylated to PA by DAG kinase (DGK). To determine the origin of the AVR4-induced PA formation, a PLD-specific transphosphatidylation assay and a differential (32)P-labelling protocol were used. The results clearly demonstrated that most PA was produced via the phosphorylation of DAG. Neomycin and U73122, inhibitors of PLC activity, inhibited AVR4-induced PA accumulation, suggesting that the increase in DGK activity was because of increased PLC activity producing DAG. Lastly, evidence is provided that PLC signalling and, in particular, PA production could play a role in triggering responses, such as the AVR4-induced oxidative burst. For example, PLC inhibitors inhibited the oxidative burst, and when PA was added to cells, an oxidative burst was induced.  相似文献   

19.
In vivo pulse labeling of suspension-cultured Arabidopsis cells with [32P]orthophosphate allows a systematic analysis of dynamic changes in protein phosphorylation. Here, we use this technique to investigate signal transduction events at the plant plasma membrane triggered upon perception of microbial elicitors of defense responses, using as a model elicitor flg22, a peptide corresponding to the most conserved domain of bacterial flagellin. We demonstrate that two-dimensional gel electrophoresis in conjunction with mass spectrometry is a suitable tool for the identification of intrinsic membrane proteins, and we show that among them a syntaxin, AtSyp122, is phosphorylated rapidly in response to flg22. Although incorporation of radioactive phosphate into the protein only occurs significantly after elicitation, immunoblot analysis after two-dimensional gel separation indicates that the protein is also phosphorylated prior to elicitation. These results indicate that flg22 elicits either an increase in the rate of turnover of phosphate or an additional de novo phosphorylation event. In vitro, phosphorylation of AtSyp122 is calcium-dependent. In vitro phosphorylated peptides separated by two-dimensional thin layer chromatography comigrate with two of the three in vivo phosphopeptides, indicating that this calcium-dependent phosphorylation is biologically relevant. These results indicate a regulatory link between elicitor-induced calcium fluxes and the rapid phosphorylation of a syntaxin. Because syntaxins are known to be important in membrane fusion and exocytosis, we hypothesize that one of the functions of the calcium signal is to stimulate exocytosis of defense-related proteins and compounds.  相似文献   

20.
Tomato (Solanum lycopersicum) plants with the Cf-4 resistance gene recognize strains of the pathogenic fungus Cladosporium fulvum that secrete the avirulence protein Avr4. Transgenic tomato seedlings coexpressing Cf-4 and Avr4 mount a hypersensitive response (HR) at 20 degrees C, which is suppressed at 33 degrees C. Within 120 min after a shift from 33 degrees C to 20 degrees C, tomato mitogen-activated protein (MAP) kinase (LeMPK) activity increases in Cf-4/Avr4 seedlings. Searching tomato genome databases revealed at least 16 LeMPK sequences, including the sequence of LeMPK1, LeMPK2, and LeMPK3 that cluster with biotic stress-related MAP kinase orthologs from Arabidopsis (Arabidopsis thaliana) and tobacco (Nicotiana tabacum). LeMPK1, LeMPK2, and LeMPK3 are simultaneously activated in Cf-4/Avr4 seedlings, and, to reveal whether they are functionally redundant or not, recombinant LeMPKs were incubated on PepChip Kinomics slides carrying peptides with potential phosphorylation sites. Phosphorylated peptides and motifs present in them discriminated between the phosphorylation specificities of LeMPK1, LeMPK2, and LeMPK3. LeMPK1, LeMPK2, or LeMPK3 activity was specifically suppressed in Cf-4-tomato by virus-induced gene silencing and leaflets were either injected with Avr4 or challenged with C. fulvum-secreting Avr4. The results of these experiments suggested that the LeMPKs have different but also overlapping roles with regard to HR and full resistance in tomato.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号