首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The method presented is very well suited to eliminate T-lymphocytes from great amounts of bone-marrow. The stem cells required to reconstitute the bone-marrow are enriched in this way. It can be completely performed in a closed system. Any contamination with germs is excluded. It can be reproduced well and learnt quickly. It takes 10 hours for two trained co-workers to process 1,500 ml of bone-marrow. The vitality of cells is very good (100%). Its suitability for transplantation has still to be checked.  相似文献   

3.
Skin is the most commonly affected organ in graft-versus-host disease (GVHD). To explore the role of Langerhans cells in GVHD, the principal dendritic cells of the skin, we studied the fate of these cells in mice transplanted with allogeneic bone marrow. In contrast to other dendritic cells, host Langerhans cells were replaced by donor Langerhans cells only when donor T cells were administered along with bone marrow, and the extent of Langerhans cell chimerism correlated with the dose of donor T cells injected. Donor T cells depleted host Langerhans cells through a Fas-dependent pathway and induced the production in skin of CCL20, which was required for the recruitment of donor Langerhans cells. Administration of donor T cells to bone marrow-chimeric mice with persistent host Langerhans cells, but not to mice whose Langerhans cells had been replaced, resulted in marked skin GVHD. These findings indicate a crucial role for donor T cells in host Langerhans cell replacement, and show that host dendritic cells can persist in nonlymphoid tissue for the duration of an animal's life and can trigger GVHD despite complete blood chimerism.  相似文献   

4.
X-irradiated recipient mice were given homologous lymphocytes labeled with 3H-thymidine in vivo. In the recipients' bone marrow were found labeled granulocytes, reticular cells, megakaryocytes, as well as small and large mononuclear cells. The grain count over the recipient cells was of the same order as that over the donor lymphocytes.The findings furnish evidence for the passage of DNA and/or its nondialysable breakdown products from donor lymphocytes into the recipient bone marrow cells. The re-utilization of the dialysable DNA breakdown products for DNA synthesis may be neglected, since the grain count over the recipient cells labeled in such a way would be about two orders lower than that found over the donor lymphocytes, as was established in vitro.  相似文献   

5.
After administration of haploidentical stem cells to infants with severe combined immunodeficiency disease (SCID), mature T cells of donor karyotype appear later in the recipient without causing graft-vs-host disease (GVHD). To investigate the effect of the host microenvironment on these genetically donor T cells, mixed leukocyte cultures were carried out. Unfractionated mononuclear cells (MNC) from eight infants with SCID immunologically reconstituted by haploidentical bone marrow stem cells responded in the same pattern as MNC from non-chimeric individuals to autologous and allogeneic irradiated MNC, even though they contained all genetically donor T cells and all genetically patient B cells and monocytes. This included surprisingly vigorous proliferative responses of the patients' MNC to the original donors' irradiated MNC. This autoreactivity could be detected as soon as T cell function appeared post-transplantation and appeared to increase with time. It could be blocked by the addition of monoclonal antibodies to HLA Class II antigens. Responses of most patients' MNC were similar whether stimulated by irradiated MNC from the donor or non-donor parent or by those from unrelated normal controls. Purified genetically donor T cells that had matured from stem cells in the patient's microenvironment responded vigorously to purified donor B cells. These same cells responded much less to patient B cells. In six cases, such genetically donor T cells responded less to patient B cells than fresh donor T cells did to donor B cells in the autologous mixed leukocyte response. By contrast, T cells of donor karyotype from three of the patients responded more vigorously to donor B cells than fresh donor T cells did. Thus, genetically donor T lymphocytes that had matured from stem cells in the recipient microenvironment behaved differently from those that had matured in the donor. The hyporesponsiveness of genetically donor T cells from the patient to patient B cells does not appear to be due to T suppressor cells.  相似文献   

6.
A case of leukemia escape from an HLA-specific cytotoxic T lymphocyte (CTL) response in a recipient of bone marrow transplantation is presented. Only the expression of HLA-B51, which was a mismatched HLA locus in the graft-versus-host direction, was down-regulated in post-transplant leukemia blasts compared with that in pre-transplant blasts. All CTL clones, that were isolated from the recipient's blood when acute graft-versus-host disease developed, recognized the mismatched B(?)51:01 molecule in a peptide-dependent manner. The pre-transplant leukemia blasts were lysed by CTL clones, whereas the post-transplant leukemia blasts were not lysed by any CTL clones. The IFN-γ ELISPOT assay revealed that B(?)51:01-reactive T lymphocytes accounted for the majority of the total alloreactive T lymphocytes in the blood just before leukemia relapse. These data suggest that immune escape of leukemia blasts from CTL pressure toward a certain HLA molecule can lead to clinical relapse after bone marrow transplantation.  相似文献   

7.
8.
The graft-versus-host (GVH) reaction, induced in adult F1 mice by the injection of parental strain lymphoid cells (GVH mice), suppressed the in vitro plaque-forming cell (PFC) response to sheep erythrocytes (SRBC) of spleen cells obtained from the GVH mice (GVH-SC). In vitro restoration of the PFC response of GVH-SC was carried out employing a modified Marbrook culture chamber consisting of an inner culture compartment (IC) separated from an outer culture compartment (OC) by a cell-impermeable membrane. Thymus cells (TC) and lymph node cells (LNC) but not bone marrow cells (BMC) from normal mice placed in the IC restored the PFC response of GVH-SC cultured with SRBC in the OC. The restoring ability of TC and LNC was markedly reduced following treatment with anti-theta serum plus complement. BMC taken from GVH mice 3 or more days post-GVH induction (GVHBMC) and placed in the IC restored the PFC response of GVH-SC as well as TC and LNC. Treatment of GVH-BMC with anti-theta serum plus complement did not affect their restoring ability; furthermore, the number of theta-bearing cells in the bone marrow did not increase as a consequence of the GVH reaction. Two possible explanations are proposed for the T-like function of GVH-BMC.  相似文献   

9.
In allogeneic hematopoietic cell transplantation (allo-HCT), donor lymphocytes play a central therapeutic role in both GvL and immune reconstitution. However, the full exploitation of these therapeutic properties is limited by the occurrence of GvHD. Different strategies have been investigated to obtain all the benefits derived from donor lymphocytes while avoiding the risk of GvHD. The genetic engineering of donor lymphocytes with the herpes simplex virus-thymidine kinase (HSV-TK) suicide gene confers the ability to modulate GvHD by invivo ganciclovir-induced elimination of the transduced cells. The suicide-gene strategy has applications in both donor lymphocyte infusion (DLI) for disease relapse and in add-back infusions after T-cell depleted allo-HCT. TK cell DLI resulted in anti-tumor activity in a relevant proportion of treated patients. Haplo-identical stem cell transplantation (haplo-HCT) is a promising therapeutic option for patients with high risk hematologic malignancies lacking an HLA-matched donor. However, the profound T-cell depletion required to overcome the risk of lethal GvHD has been associated with a marked delayed T-cell recovery with a prolonged risk of post-transplant viral, fungal and other opportunistic infections. TK cell add-backs efficiently promote early immune reconstitution after haplo-HCT and prevent disease relapse, providing a unique tool for the control of GvHD. The genetic manipulation of donor lymphocytes with a suicide gene is a promising strategy to increase feasibility and safety of allo-HCT.  相似文献   

10.
11.
Cell death through apoptosis plays a critical role in regulating cellular homeostasis. Whether the disposal of apoptotic cells through phagocytosis can actively induce immune tolerance in vivo, however, remains controversial. Here, we report in a rat model that without using immunosuppressants, transfusion of apoptotic splenocytes from the donor strain prior to transplant dramatically prolonged survival of heart allografts. Histological analysis verified that rejection signs were significantly ameliorated. Splenocytes from rats transfused with donor apoptotic cells showed a dramatically decreased response to donor lymphocyte stimulation. Most importantly, blockade of phagocytosis in vivo, either with gadolinium chloride to disrupt phagocyte function or with annexin V to block binding of exposed phosphotidylserine to its receptor on phagocytes, abolished the beneficial effect of transfused apoptotic cells on heart allograft survival. Our results demonstrate that donor apoptotic cells promote specific allograft acceptance and that phagocytosis of apoptotic cells in vivo plays a crucial role in maintaining immune tolerance.  相似文献   

12.
A systemic graft-versus-host reaction (GVHR) leading to 50% mortality by day 20 was elicited by the injection of CBA (105) or B10 (106) parental T lymphocytes into irradiated (750 rad) and bone marrow protected (CBA x B10)F1 recipients. Between days 12 and 28 the spleens of the sick mice were analyzed by limiting dilution, performed with irradiated F1 cells and a source of interleukin-2 (IL-2), to determine the frequency of cells with an antihost proliferative or cytolytic activity and to derive T lymphocyte clones. The frequency of cells with antihost proliferative or cytolytic activity was approximately 10–3 in either combination. In the CBA vs F1 GVHR, all eight clones isolated with anti-F1 activity were Lyt-2, noncytolytic, mixed lymphocyte reaction (MLR) responders and IL-2 producers, three of which mapped to the A b locus, while in the B10 anti-F1 combination, eight of the nine anti-F1 clones isolated were Lyt-2+, poor MLR responders and non-IL-2 producers, but cytolytic and mapping to K k . These findings suggest a much higher frequency of T cells recognizing the A-locus antigens in the CBA than in the B10 strain.  相似文献   

13.
Lymphokine-activated killer (LAK) cells are demonstrable within 2 wk after syngeneic or allogeneic (H-2-compatible) bone marrow transplantation in mice. Classical cytotoxic T lymphocytes (CTL) are not active until at least 4 wk after transplant. Both LAK cells and CTL bear the Thy-1 marker and do not possess the murine natural killer cell marker asialo GM.  相似文献   

14.
Donor T cells are able to effect a graft-vs-leukemia (GVL) response but also induce graft-vs-host disease (GVHD) after allogeneic bone marrow transplantation. We used an AKR leukemia murine transplant model, analogous to human acute lymphoblastic leukemia, in which donor T cells expressed a thymidine kinase suicide gene, to test whether separation of GVL and graft-vs-host (GVH) responses was feasible by selectively eliminating alloactivated donor T cells at defined time points posttransplant. Under experimental conditions where untreated mice could not be cured of disease without dying from GVHD, mice transplanted with thymidine kinase-positive T cells and subsequently administered ganciclovir (GCV) could eliminate leukemia without lethal GVHD. Timing of GCV administration, donor T cell dose, and preexisting leukemia burden were observed to be critical variables. Eradication of leukemia without lethal GVHD in GCV-treated mice implied that the kinetics of GVL and GVH responses were asynchronous and could therefore be temporally dissociated by timely GCV administration. That this strategy was feasible in a murine leukemia model in which GVHD and GVL reactivity are tightly linked suggests that this approach may be relevant to the treatment of selected human leukemias where similar constraints exist. This strategy represents an alternative approach to separating GVL and GVH reactivity and challenges the current paradigm that separation of these responses is dependent upon the administration of donor T cells with restricted specificity for leukemia as opposed to host Ags.  相似文献   

15.
16.
Bone marrow cells from a patient with pancytopenia and a lymphoproliferative disorder of large granular lymphocytes (LGL) were cultured and tested for their hemopoietic colony-forming potential. Neither erythroid nor granulocyte-macrophage colony formation could be obtained from unfractionated, or LGL-depleted bone marrow cell preparations. However, a spontaneous growth of lymphoid colonies was observed after culturing LGL-depleted (T3-) bone marrow cell suspensions for 25 days. Pooled colonies expanded with recombinant interleukin-2 yielded a population composed predominantly of mature T cells (T3+, Leu 6-). These findings suggest that some (T3-) T cell precursors may mature in the bone marrow and that, in our patient, LGL may have exerted a suppressor effect on this maturational process.  相似文献   

17.
We examined hemopoietic reconstitution during the first 12 months post-transplant in 31 patients given high-dose cyclophosphamide, total body irradiation and an HLA-identical sibling marrow transplant for hematological malignancy. Unexpectedly, we found marrow CFU-gm and marrow CFU-e cells to be denser than normal throughout the first year post-transplant. While functionally adequate neutrophil and platelet counts were achieved in the first six weeks post-transplant, there were defects in hemopoietic progenitor cell function during the first year post-transplant. Although we could detect no influence from acute graft-versus-host disease (GVHD), chronic GVHD adversely affected the growth of both myeloid and erythroid blood progenitor cells.  相似文献   

18.
19.
The transplanted limb contains bone marrow tissue. The hematopoietic cells contained in the bone of the graft normally differentiate after transplantation and can be released to the recipient. The cells migrate to the recipient bone marrow cavities and lymphoid organs. This causes the immune reaction between the donor and the recipient, which develops not only in the graft itself but also in the recipient immune organs where donor bone marrow cells home. The purpose of this study was to investigate the process of migration of the hematopoietic cells from the donor limb to the recipient bone marrow cavities and lymphoid tissues. The questions the authors asked were: what is the rate of release of bone marrow cells from the transplanted bone, where do the released bone marrow cells home in the recipient, how fast are donor bone marrow cells rejected by the recipient, and can some bone marrow cells homing in the recipient tissues survive and create a state of microchimerism. Experiments were performed on Brown Norway and Lewis inbred rat strains (n = 30). Limb donors received intravenous chromium-51-labeled bone marrow cells. Twenty-four hours later, the limb with homing labeled bone marrow cells was transplanted to an allogeneic or syngeneic recipient. The rate of radioactivity of bone marrow cells released from the graft and homing in recipient tissues was measured after another 24 hours. To eliminate factors adversely affecting homing such as the "crowding effect" and allogeneic elimination of bone marrow cells by natural killer cells, total body irradiation and antiasialo-GM1 antiserum were applied to recipients before limb transplantation. In rats surviving with the limb grafts for 7 and 30 days, homing of donor bone marrow cells was studied by specific labeling of donor cells and flow cytometry as well as by detecting donor male Y chromosome. The authors found that transplantation of the limb with bone marrow in its natural spatial relationship with stromal cells and blood perfusion brings about immediate but low-rate release of bone marrow cells and their migration to recipient bone marrow and lymphoid tissues. Large portions of allogeneic bone marrow cells are rapidly destroyed in the mechanism of allogeneic elimination by radioresistant but antiasialo-GM1-sensitive natural killer cells. Some transplanted bone marrow cells remain in the recipient's tissues and create a state of cellular and DNA microchimerism. A low number of physiologically released donor bone marrow cells do not seem to adversely affect the clinical outcome of limb grafting. Quite the opposite, a slight prolongation of the graft survival time was observed.  相似文献   

20.
The bone marrow is an important source of Abs involved in long-term protection from recurrence of infections. Allogenic bone marrow transplantation (BMT) fails to restore this working memory. Attempts to overcome this immunodeficiency by immunization of the donor have not been very successful. More needs to be known about transfer of B cell memory by BMT. We tracked memory B cells from the donor to the recipient during BMT of a girl with leukocyte adhesion deficiency. Vaccination of her HLA-identical sibling donor 7 days before harvest induced Haemophilus influenzae type b (Hib) capsular polysaccharide (HibCP)-specific B cells readily detectable in marrow and blood. BMT did not lead to spontaneous production of HibCP Abs, but the recipient responded well to booster immunizations 9 and 11 mo after BMT. HibCP-specific B cells were obtained 7 days after the vaccinations, and their V(H) genes were sequenced and analyzed for rearrangements and unique patterns of somatic hypermutations identifying clonally related cells. Ninety (74%) of 121 sequences were derived from only 16 precursors. Twelve clones were identified in the donor, and representatives from all of them were detected in the recipient where they constituted 61 and 68% of the responding B cells after the first and second vaccinations, respectively. No evidence for re-entry of memory clones into the process of somatic hypermutation was seen in the recipient. Thus, memory B cells were transferred from the donor, persisted for at least 9 mo in the recipient, and constituted the major part of the HibCP-specific repertoire.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号