首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experimental data show that cholesterol can modulate central processes in the pathogenesis of Alzheimer's disease (AD). The epidemiological link between elevated plasma cholesterol at midlife and increased risk for AD and the possibility that 3-hydroxy-3-methylglutaryl-coenzym A reductase inhibitors (statins) may be protective against AD support a role of cholesterol metabolism in AD and have rendered it a potential therapeutic target in the treatment and prevention of the disease. The strong association of AD and AD endophenotypes with the APOE gene provides a genetic link between AD and cholesterol metabolism, because the apolipoprotein E (ApoE) is the most prevalent cholesterol transport protein in the central nervous system. Against this background several other genes with a role in cholesterol metabolism have been investigated for association with AD. In this review a compilation of genes related to cholesterol based on the information of the AmiGo gene ontology database is matched with the AlzGene database of AD candidate genes. 56 out of 149 (37.6%) genes with a relation to cholesterol metabolism have been investigated for association with AD. Given that only 660 out of about 23,000 (2.9%) genes have been assessed in hypothesis-driven candidate gene studies on AD, the cholesterol metabolic pathway is strongly represented among these genes. Among 34 cholesterol-related genes for which association with AD has been described APOE, CH25H, CLU, LDLR, SORL1 outstand with positive meta-analyses. However, it is unclear, if their association with AD is mediated by cholesterol-related mechanisms or by more specific direct effects of the respective proteins on Aβ metabolism.  相似文献   

2.
The genetics of Alzheimer disease: back to the future   总被引:1,自引:0,他引:1  
Bertram L  Lill CM  Tanzi RE 《Neuron》2010,68(2):270-281
Three decades of genetic research in Alzheimer disease (AD) have substantially broadened our understanding of the pathogenetic mechanisms leading to neurodegeneration and dementia. Positional cloning led to the identification of rare, disease-causing mutations in APP, PSEN1, and PSEN2 causing early-onset familial AD, followed by the discovery of APOE as the single most important risk factor for late-onset AD. Recent genome-wide association approaches have delivered several additional AD susceptibility loci that are common in the general population, but exert only very small risk effects. As a result, a large proportion of the heritability of AD continues to remain unexplained by the currently known disease genes. It seems likely that much of this "missing heritability" may be accounted for by rare sequence variants, which, owing to recent advances in high-throughput sequencing technologies, can now be assessed in unprecedented detail.  相似文献   

3.
PURPOSE OF REVIEW: DNA-based tests for assessment of genetic predisposition to coronary heart disease need to provide information over and above that of conventional risk factors. The efficacy of selected 'candidate' gene loci in risk algorithms, to improve the predictive accuracy for coronary heart disease, remains to be demonstrated. RECENT FINDINGS: Although many candidate genes for coronary heart disease have been tested, the optimal set of risk genotypes has yet to be identified. There is only a relatively modest risk to be expected in association with any single genotype, published estimates are in the range of 1.12-1.73. Thus the risk associated with any one genotype is modest, but, in combination, selected genotypes may be associated with a clinically significant risk. Since the allele frequency for many of these variants is high, many individuals will carry several 'risk alleles'. A small number of selected single nucleotide polymorphisms should complement the conventional risk factors to identify high-risk individuals in whom correction of 'modifiable risk factors' through lifestyle interventions or medication would be most beneficial. SUMMARY: As our understanding of how genetic variation impacts on common diseases advances, the novel loci identified by genome-wide association scans associated with disease risk will rapidly improve these risk algorithms.  相似文献   

4.
The autoimmune thyroid diseases (AITD) include Graves' disease (GD) and Hashimoto's thyroiditis (HT), which are characterised by a breakdown in immune tolerance to thyroid antigens. Unravelling the genetic architecture of AITD is vital to better understanding of AITD pathogenesis, required to advance therapeutic options in both disease management and prevention. The early whole-genome linkage and candidate gene association studies provided the first evidence that the HLA region and CTLA-4 represented AITD risk loci. Recent improvements in; high throughput genotyping technologies, collection of larger disease cohorts and cataloguing of genome-scale variation have facilitated genome-wide association studies and more thorough screening of candidate gene regions. This has allowed identification of many novel AITD risk genes and more detailed association mapping. The growing number of confirmed AITD susceptibility loci, implicates a number of putative disease mechanisms most of which are tightly linked with aspects of immune system function. The unprecedented advances in genetic study will allow future studies to identify further novel disease risk genes and to identify aetiological variants within specific gene regions, which will undoubtedly lead to a better understanding of AITD patho-physiology.  相似文献   

5.
阿尔茨海默病( Alzheimer's disease,AD)又称老年性痴呆,是老年人常见的神经系统变性疾病.AD包括痴呆前阶段和痴呆阶段,年龄老化与遗传因素为目前公认的发病因素.AD的病理生理过程在痴呆诊断前的5~10年就已开始了,这一漫长的AD痴呆前阶段是治疗干预的关键时期,因此目前痴呆前阶段已成为AD相关研究的热点.本文综述了近年来有关AD各主要阶段基因变异的研究进展.  相似文献   

6.
Recent genome-wide association studies have identified a number of susceptibility loci for Alzheimer disease (AD). To understand the functional consequences and potential interactions of the associated loci, we explored large-scale data sets interrogating the human genome for evidence of positive natural selection. Our findings provide significant evidence for signatures of recent positive selection acting on several haplotypes carrying AD susceptibility alleles; interestingly, the genes found in these selected haplotypes can be assembled, independently, into a molecular complex via a protein-protein interaction (PPI) network approach. These results suggest a possible coevolution of genes encoding physically-interacting proteins that underlie AD susceptibility and are coexpressed in different tissues. In particular, PICALM, BIN1, CD2AP, and EPHA1 are interconnected through multiple interacting proteins and appear to have coordinated evidence of selection in the same human population, suggesting that they may be involved in the execution of a shared molecular function. This observation may be AD-specific, as the 12 loci associated with Parkinson disease do not demonstrate excess evidence of natural selection. The context for selection is probably unrelated to AD itself; it is likely that these genes interact in another context, such as in immune cells, where we observe cis-regulatory effects at several of the selected AD loci.  相似文献   

7.
Objectives: To investigate possible obesity candidate genes in regions of porcine quantitative trait loci (QTL) for fat deposition and obesity‐related phenotypes. Research Methods and Procedures: Chromosome mapping and QTL analyses of obesity candidate genes were performed using DNA panels from a reference pig family. Statistical association analyses of these genes were performed for fat deposition phenotypes in several other commercial pig populations. Results: Eight candidate genes were mapped to QTL regions of pig chromosomes in this study. These candidate genes also served as anchor loci to determine homologous human chromosomal locations of pig fat deposition QTL. Preliminary analyses of relationships among polymorphisms of individual candidate genes and a variety of phenotypic measurements in a large number of pigs were performed. On the basis of available data, gene‐gene interactions were also studied. Discussion: Comparative analysis of obesity‐related genes in the pig is not only important for development of marker‐assisted selection on growth and fat deposition traits in the pig but also provides for an understanding of their genetic roles in the development of human obesity.  相似文献   

8.
Alzheimer’s disease (AD) is a heterogeneous disorder with multiple patterns of clinical manifestations. Recently, due to the advance of linkage studies, next-generation sequencing and genome-wide association studies, a large number of putative risk genes for AD have been identified using acquired genome mega data. The genetic association between three causal genes, including amyloid precursor protein, presenilin1, and presenilin2 in early-onset AD (EOAD), was discovered over the past few decades. These discoveries showed that there should be additional genetic risk factors for both EOAD and late-onset AD (LOAD) to help fully explain the leading molecular mechanisms in a single pathophysiological entity. This study reviews the clinical features and genetic etiology of LOAD and discusses a variety of AD-mediated genes that are involved in cholesterol and lipid metabolism, endocytosis, and immune response according to their mutations for more efficient selection of functional candidate genes for LOAD. New mechanisms and pathways have been identified as a result.  相似文献   

9.
The set of alcohol-metabolizing enzymes has considerable genetic and functional complexity. The relationships between some alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) genes and alcohol dependence (AD) have long been studied in many populations, but not comprehensively. In the present study, we genotyped 16 markers within the ADH gene cluster (including the ADH1A, ADH1B, ADH1C, ADH5, ADH6, and ADH7 genes), 4 markers within the ALDH2 gene, and 38 unlinked ancestry-informative markers in a case-control sample of 801 individuals. Associations between markers and disease were analyzed by a Hardy-Weinberg equilibrium (HWE) test, a conventional case-control comparison, a structured association analysis, and a novel diplotype trend regression (DTR) analysis. Finally, the disease alleles were fine mapped by a Hardy-Weinberg disequilibrium (HWD) measure (J). All markers were found to be in HWE in controls, but some markers showed HWD in cases. Genotypes of many markers were associated with AD. DTR analysis showed that ADH5 genotypes and diplotypes of ADH1A, ADH1B, ADH7, and ALDH2 were associated with AD in European Americans and/or African Americans. The risk-influencing alleles were fine mapped from among the markers studied and were found to coincide with some well-known functional variants. We demonstrated that DTR was more powerful than many other conventional association methods. We also found that several ADH genes and the ALDH2 gene were susceptibility loci for AD, and the associations were best explained by several independent risk genes.  相似文献   

10.
Late onset Alzheimer’s disease (LOAD) is a genetically complex and clinically heterogeneous disease. Recent large-scale genome wide association studies (GWAS) have identified more than twenty loci that modify risk for AD. Despite the identification of these loci, little progress has been made in identifying the functional variants that explain the association with AD risk. Thus, we sought to determine whether the novel LOAD GWAS single nucleotide polymorphisms (SNPs) alter expression of LOAD GWAS genes and whether expression of these genes is altered in AD brains. The majority of LOAD GWAS SNPs occur in gene dense regions under large linkage disequilibrium (LD) blocks, making it unclear which gene(s) are modified by the SNP. Thus, we tested for brain expression quantitative trait loci (eQTLs) between LOAD GWAS SNPs and SNPs in high LD with the LOAD GWAS SNPs in all of the genes within the GWAS loci. We found a significant eQTL between rs1476679 and PILRB and GATS, which occurs within the ZCWPW1 locus. PILRB and GATS expression levels, within the ZCWPW1 locus, were also associated with AD status. Rs7120548 was associated with MTCH2 expression, which occurs within the CELF1 locus. Additionally, expression of several genes within the CELF1 locus, including MTCH2, were highly correlated with one another and were associated with AD status. We further demonstrate that PILRB, as well as other genes within the GWAS loci, are most highly expressed in microglia. These findings together with the function of PILRB as a DAP12 receptor supports the critical role of microglia and neuroinflammation in AD risk.  相似文献   

11.
Myocardial infarction (MI) is an important clinical problem because of its large contribution to mortality. The main causal and treatable risk factors for MI include hypertension, hypercholesterolemia or dyslipidemia, diabetes mellitus, and smoking. In addition to these risk factors, recent studies have shown the importance of genetic factors and interactions between multiple genes and environmental factors. Disease prevention is an important strategy for reducing the overall burden of MI, with the identification of markers for disease risk being key both for risk prediction and for potential intervention to lower the chance of future events. Although genetic linkage analyses of families and sib-pairs as well as candidate gene and genome-wide association studies have implicated several loci and candidate genes in predisposition to coronary heart disease (CHD) or MI, the genes that contribute to genetic susceptibility to these conditions remain to be identified definitively. In this review, we summarize both candidate loci for CHD or MI identified by linkage analyses and candidate genes examined by association studies. We also review in more detail studies that have revealed the association with MI or CHD of polymorphisms in MTHFR, LPL, and APOE by the candidate gene approach and those in LTA and at chromosomal region 9p21.3 by genome-wide scans. Such studies may provide insight into the function of implicated genes as well as into the role of genetic factors in the development of CHD and MI.  相似文献   

12.
13.
This report constitutes the seventh update of the human obesity gene map incorporating published results up to the end of October 2000. Evidence from the rodent and human obesity cases caused by single‐gene mutations, Mendelian disorders exhibiting obesity as a clinical feature, quantitative trait loci uncovered in human genome‐wide scans and in cross‐breeding experiments in various animal models, and association and linkage studies with candidate genes and other markers are reviewed. Forty‐seven human cases of obesity caused by single‐gene mutations in six different genes have been reported in the literature to date. Twenty‐four Mendelian disorders exhibiting obesity as one of their clinical manifestations have now been mapped. The number of different quantitative trait loci reported from animal models currently reaches 115. Attempts to relate DNA sequence variation in specific genes to obesity phenotypes continue to grow, with 130 studies reporting positive associations with 48 candidate genes. Finally, 59 loci have been linked to obesity indicators in genomic scans and other linkage study designs. The obesity gene map reveals that putative loci affecting obesity‐related phenotypes can be found on all chromosomes except chromosome Y. A total of 54 new loci have been added to the map in the past 12 months and the number of genes, markers, and chromosomal regions that have been associated or linked with human obesity phenotypes is now above 250. Likewise, the number of negative studies, which are only partially reviewed here, is also on the rise.  相似文献   

14.
This report constitutes the eighth update of the human obesity gene map, incorporating published results up to the end of October 2001. Evidence from the rodent and human obesity cases caused by single-gene mutations, Mendelian disorders exhibiting obesity as a clinical feature, quantitative trait loci (QTLs) uncovered in human genome-wide scans and in crossbreeding experiments in various animal models, association and linkage studies with candidate genes and other markers is reviewed. The human cases of obesity related in some way to single-gene mutations in six different genes are incorporated. Twenty-five Mendelian disorders exhibiting obesity as one of their clinical manifestations have now been mapped. The number of different QTLs reported from animal models currently reaches 165. Attempts to relate DNA sequence variation in specific genes to obesity phenotypes continue to grow, with 174 studies reporting positive associations with 58 candidate genes. Finally, 59 loci have been linked to obesity indicators in genomic scans and other linkage study designs. The obesity gene map depicted in Figure 1 reveals that putative loci affecting obesity-related phenotypes can be found on all chromosomes except chromosome Y. A total of 54 new loci have been added to the map in the past 12 months, and the number of genes, markers, and chromosomal regions that have been associated or linked with human obesity phenotypes is now above 250. Likewise, the number of negative studies, which are only partially reviewed here, is also on the rise.  相似文献   

15.
Association of the candidate gene DLST with late-onset Alzheimer's disease (LOAD) risk has been suggested on the basis of case-control studies. This gene, located on chromosome 14q24.3, encodes a subunit of a mitochondrial component known to be defective in AD, the alpha-ketoglutarate dehydrogenase complex. Positive reports have correlated different DLST alleles with LOAD, whereas other groups have failed to find any significant association. We therefore reexamined the association of DLST and LOAD in a more ethnically homogeneous series using three additional single nucleotide polymorphisms (SNP) located within or closely flanking either end of the DLST gene. Pairwise analysis of these SNPs indicated there was strong linkage disequilibrium across the DLST locus. Analysis of complex genotypes or haplotypes based upon all five SNP loci failed to identify a LOAD risk allele, suggesting that further studies of DLST in relation to AD are not warranted.  相似文献   

16.
Although genome-wide association studies have identified many risk loci associated with colorectal cancer, the molecular basis of these associations are still unclear. We aimed to infer biological insights and highlight candidate genes of interest within GWAS risk loci. We used an in silico pipeline based on functional annotation, quantitative trait loci mapping of cis-acting gene, PubMed text-mining, protein-protein interaction studies, genetic overlaps with cancer somatic mutations and knockout mouse phenotypes, and functional enrichment analysis to prioritize the candidate genes at the colorectal cancer risk loci. Based on these analyses, we observed that these genes were the targets of approved therapies for colorectal cancer, and suggested that drugs approved for other indications may be repurposed for the treatment of colorectal cancer. This study highlights the use of publicly available data as a cost effective solution to derive biological insights, and provides an empirical evidence that the molecular basis of colorectal cancer can provide important leads for the discovery of new drugs.  相似文献   

17.
Age-related macular degeneration (AMD) is a complex genetic disease, with many loci demonstrating appreciable attributable disease risk. Despite significant progress toward understanding the genetic and environmental etiology of AMD, identification of additional risk factors is necessary to fully appreciate and treat AMD pathology. In this study, we investigated copy number variants (CNVs) as potential AMD risk variants in a cohort of 400 AMD patients and 500 AMD-free controls ascertained at the University of Iowa. We used three publicly available copy number programs to analyze signal intensity data from Affymetrix GeneChip SNP Microarrays. CNVs were ranked based on prevalence in the disease cohort and absence from the control group; high interest CNVs were subsequently confirmed by qPCR. While we did not observe a single-locus "risk CNV" that could account for a major fraction of AMD, we identified several rare and overlapping CNVs containing or flanking compelling candidate genes such as NPHP1 and EFEMP1. These and other candidate genes highlighted by this study deserve further scrutiny as sources of genetic risk for AMD.  相似文献   

18.
Copy number variations (CNVs) are genomic regions that have added (duplications) or deleted (deletions) genetic material. They may overlap genes affecting their function and have been shown to be associated with disease. We previously investigated the role of CNVs in late-onset Alzheimer''s disease (AD) and mild cognitive impairment using Alzheimer’s Disease Neuroimaging Initiative (ADNI) and National Institute of Aging-Late Onset AD/National Cell Repository for AD (NIA-LOAD/NCRAD) Family Study participants, and identified a number of genes overlapped by CNV calls. To confirm the findings and identify other potential candidate regions, we analyzed array data from a unique cohort of 1617 Caucasian participants (1022 AD cases and 595 controls) who were clinically characterized and whose diagnosis was neuropathologically verified. All DNA samples were extracted from brain tissue. CNV calls were generated and subjected to quality control (QC). 728 cases and 438 controls who passed all QC measures were included in case/control association analyses including candidate gene and genome-wide approaches. Rates of deletions and duplications did not significantly differ between cases and controls. Case-control association identified a number of previously reported regions (CHRFAM7A, RELN and DOPEY2) as well as a new gene (HLA-DRA). Meta-analysis of CHRFAM7A indicated a significant association of the gene with AD and/or MCI risk (P = 0.006, odds ratio = 3.986 (95% confidence interval 1.490–10.667)). A novel APP gene duplication was observed in one case sample. Further investigation of the identified genes in independent and larger samples is warranted.  相似文献   

19.
Coronary artery disease (CAD) is based on the atherosclerosis of coronary artery and may manifest with myocardial infarction or angina pectoris. Although it is widely accepted that genetic factors are linked to CAD and several disease-related genes have been reported, only a few could be replicated suggesting that there might be some other CAD-related genes. To identify novel susceptibility loci for CAD, we used microsatellite markers in the screening and found six different candidate CAD loci. Subsequent single nucleotide polymorphism (SNP) association studies revealed an association between CAD and megakaryoblastic leukemia factor-1 gene (MKL1). The association with a promoter SNP of MKL1, ?184C > T, was found in a Japanese population and the association was replicated in another Japanese population and a Korean population. Functional analysis of the MKL1 promoter SNP suggested that the higher MKL1 expression was associated with CAD. These findings suggest that MKL1 is involved in the pathogenesis of CAD.  相似文献   

20.
PÉRUSSE, LOUIS, YVON C. CHAGNON, JOHN WEISNAGEL, AND CLAUDE BOUCHARD. The human obesity gene map: the 1998 update. Obes Res. 1999;7:111–129. An update of the human obesity gene map incorporating published results up to the end of October 1998 is presented. Evidence from the human obesity cases caused by single gene mutations; other Mendelian disorders exhibiting obesity as a clinical feature; quantitative trait loci uncovered in human genome-wide scans and in crossbreeding experiments with mouse, rat, and pig models; association and case-control studies with candidate genes; and linkage studies with genes and other markers is reviewed. The most noticeable changes from the 1997 update is the number of obesity cases due to single gene mutations that increased from three cases due to mutations in two genes to 25 cases due to 12 mutations in seven genes. A look at the obesity gene map depicted in Figure 1 reveals that putative loci affecting obesity-related phenotypes are found on all but chromosome Y of the human chromosomes. Some chromosomes show at least three putative loci related to obesity on both arms (1, 2, 3, 6, 7, 8, 9, 11, 17, 19, 20, and X) and several on one chromosome arm only (4q, 5q, 10q, 12q, 13q, 15q, 16p, and 22q). The number of genes and other markers that have been associated or linked with human obesity phenotypes is increasing very rapidly and now approaches 27.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号