首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The main reaction of N-glycosylation of proteins is the transfer 'en bloc' of the oligosaccharide moieties of lipid intermediates to an asparagine residue of the nascent protein. For the past 15 years, a few laboratories including ours have shown that the process was accompanied by the release of oligosaccharide-phosphates and of neutral oligosaccharides possessing one GlcNAc (OS-Gn(1)) or two GlcNAc (OS-Gn(2)) at the reducing end. The aim of this review is to gather the evidence for the different origins of these soluble oligomannosides, to examine their subcellular location and intracellular trafficking. Furthermore, using Brefeldin A we demonstrated that this released oligomannoside material could be the substrate for the Golgi glycosidases and glycosyltransferases. Indeed, released oligomannoside never reach the Golgi vesicles either because they are directly produced in the cytosol as has been demonstrated for oligosaccharide-phosphates and for neutral oligosaccharides possessing one GlcNAc at the reducing end or because they are actively transported out of the rough endoplasmic reticulum to the cytosol. One of the functions of oligomannoside trafficking between rough endoplasmic reticulum, cytosol and lysosomes could be to prevent these oligosaccharides for competing with glycosylation in the Golgi.  相似文献   

2.
Metabolic labelling of mouse splenocytes with radioactive mannose indicates that the glycosylation process is accompanied by the release of soluble oligomannoside material. Chase experiments with an excess of unlabelled mannose indicate that the radioactivity is mainly chased from oligosaccharide-PP-Dol (PP-Dol = diphosphodolichol): 10% is recovered as (Man)9(GlcNAc)2-P, (Man)9(GlcNAc)2, (Man)9GlcNAc and (Man)5 GlcNAc, and 90% is rapidly degraded further. Tunicamycin inhibits both oligosaccharide-PP-Dol synthesis and the formation of the oligosaccharide material to the same extent. The results thus indicate that these soluble oligomannoside structures represent the main steps of the oligosaccharide-PP-Dol catabolic pathway, starting with the cleavage of the diphosphate bond. However, it cannot be excluded that part of this material is released from newly formed glycoproteins. The soluble oligomannoside material does not contain glucose residues despite the fact that part of the oligosaccharide-PP-Dol is glucosylated and it was shown, by the use of glucosidase I inhibitors (castanospermine, deoxynojirimycin) that, after cleavage, the glycan moiety of glucosylated oligosaccharide-PP-Dol is first rapidly deglucosylated. These experiments provide a physiological basis to our previous results obtained in vitro and allow the definition of further steps in the catabolic pathway of oligosaccharide-PP-Dol.  相似文献   

3.
The study of the glycosylation pathway of a mannosylphosphoryldolichol-deficient CHO mutant cell line (B3F7) reveals that truncated Glc(0-3)Man5GlcNAc2 oligosaccharides are transferred onto nascent proteins. Pulse-chase experiments indicate that these newly synthesized glycoproteins are retained in intracellular compartments and converted to Man4GlcNAc2 species. In this paper, we demonstrate that the alpha1,2 mannosidase, which is involved in the processing of Man5GlcNAc2 into Man4GlcNAc2, is located in the rough endoplasmic reticulum. The enzyme was shown to be inhibited by kifunensine and deoxymannojirimycin, indicating that it is a class I mannosidase. In addition, Man4GlcNAc2 species were produced at the expense of Glc1Man5GlcNAc2 species. Thus, the trimming of Man5GlcNAc2 to Man4GlcNAc2, which is catalyzed by this mannosidase, could be involved in the control of the glucose-dependent folding pathway.  相似文献   

4.
A soluble form of ribophorin I (RI(332)) is rapidly degraded in Hela and Chinese hamster ovary (CHO) cells by a cytosolic proteasomal pathway, and the N-linked glycan present on the protein may play an important role in this process. Specifically, it has been suggested that endoplasmic reticulum (ER) mannosidase I could trigger the targeting of improperly folded glycoproteins to degradation. We used a CHO-derived glycosylation-defective cell line, MadIA214, for investigating the role of mannosidase(s) as a signal for glycoprotein degradation. Glycoproteins in MadIA214 cells carry truncated Glc(1)Man(5)GlcNAc(2) N-glycans. This oligomannoside structure interferes with protein maturation and folding, leading to an alteration of the ER morphology and the detection of high levels of soluble oligomannoside species caused by glycoprotein degradation. An HA-epitope-tagged soluble variant of ribophorin I (RI(332)-3HA) expressed in MadIA214 cells was rapidly degraded, comparable to control cells with the complete Glc(3)Man(9)GlcNAc(2) N-glycan. ER-associated degradation (ERAD) of RI(332)-3HA was also proteasome-mediated in MadIA214 cells, as demonstrated by inhibition of RI(332)-3HA degradation with agents specifically blocking proteasomal activities. Two inhibitors of alpha1,2-mannosidase activity also stabilized RI(332)-3HA in the glycosylation-defective cell line. This is striking, because the major mannosidase activity in the ER is the one of mannosidase I, specific for a mannose alpha1,2-linkage that is absent from the truncated Man(5) structure. Interestingly, though the Man(5) derivative was present in large amounts in the total protein pool, the two major species linked to RI(332)-3HA shortly after synthesis consisted of Glc(1)Man(5 )and Man(4), being replaced by Man(4 )and Man(3) when proteasomal degradation was inhibited. In contrast, the untrimmed intermediate of RI(332)-3HA was detected in mutant cells treated with mannosidase inhibitors. Our results unambiguously demonstrate that an alpha1,2-mannosidase that is not ER mannosidase I is involved in ERAD of RI(332-)3HA in the glycosylation-defective cell line, MadIA214.  相似文献   

5.
In vitro incubation of the oligomannosyl oligosaccharides Man9GlcNAc and Man5GlcNAc with isolated disrupted lysosomes yields different oligosaccharide isomers resulting from mannosidase hydrolysis. These isomers were isolated by HPLC and characterized by 1H-NMR spectroscopy. The first steps of the degradation involve an (alpha 1-2)mannosidase activity and lead to the formation of one Man8GlcNAc, one Man7GlcNAc, two Man6GlcNAc and two Man5GlcNAc isomers. These reactions do not require Zn2+ as activator. On the other hand, the following steps, which lead to the formation of Man3GlcNAc and Man2GlcNAc, are Zn2(+)-dependent. This process is characterized by the preferential action of an (alpha 1-3)mannosidase activity, and the formation of Man(alpha 1-6)Man(alpha 1-6)Man(beta 1-4)GlcNAc and Man(alpha 1-6)Man(beta 1-4)GlcNAc. Therefore, the digestion of Man9GlcNAc inside the lysosome appears to follow a very specific pathway, since only nine intermediate compounds can be identified instead of the 38 possible isomers. Our results are consistent both with the existence of several specific enzymes for alpha 1-2, alpha 1-3 and alpha 1-6 linkages, and with the presence of a unique enzyme whose specificity would be dependent either on Zn2+ or on the spatial conformation of the glycan. Nevertheless, previous work on the structural analysis of oligosaccharides excreted in the urine of patients suffering from mannosidosis, demonstrates the absence of the core alpha 1-6-linked mannosyl residue in the major storage product derived from oligomannosyl oligosaccharides. This observation indicates the presence of a specific (alpha 1-6)mannosidase form, unaffected in mannosidosis.  相似文献   

6.
The temperature and ATP dependence of transport of the vesicular stomatitis virus strain ts045 G protein from the endoplasmic reticulum (ER) to an early Golgi compartment containing mannosidase I was studied in the mutant Chinese hamster ovary cell clone 15B. Appearance of G protein containing the Man5GlcNAc2 oligosaccharide species occurred after a shift to the permissive temperature with a lag period of 5 min and without detectable formation of the intermediate Man7GlcNAc2 and Man6GlcNAc2 species. Two biochemically distinct transport steps were detected during transport from the ER to the Golgi. An initial step is temperature sensitive, thermoreversible, and requires a high threshold of cellular ATP for maximal rate of transport (80% of the normal cellular ATP pool). Export from the ER is inhibited at 65% of the normal cellular ATP pool. Prolonged incubation at reduced levels of cellular ATP or at the restrictive temperature resulted in the accumulation of G protein in either the Man8GlcNAc2 species or the Man7GlcNAc2 and Man6GlcNAc2 species, respectively. Reversal of the temperature-sensitive block is ATP coupled. A second step is insensitive to incubation at the restrictive temperature and proceeds efficiently when the cellular ATP pool is reduced to 20% of the control. G protein accumulates at this intermediate step during prolonged incubation at 15 degrees C. The data suggest a functional division of processes required for transport of protein between the ER and Golgi compartments. The two steps may reflect the export (budding) and delivery (fusion) of proteins through vesicular trafficking between the ER and Golgi.  相似文献   

7.
The precursor oligosaccharide donor for protein N-glycosylation in eukaryotes, Glc3Man9GlcNAc(2)-P-P-dolichol, is synthesized in two stages on both leaflets of the rough endoplasmic reticulum (ER). There is good evidence that the level of dolichyl monophosphate (Dol-P) is one rate-controlling factor in the first stage of the assembly process. In the current topological model it is proposed that ER proteins (flippases) then mediate the transbilayer movement of Man-P-Dol, Glc-P-Dol, and Man5GlcNAc(2)-P-P-Dol from the cytoplasmic leaflet to the lumenal leaflet. The rate of flipping of the three intermediates could plausibly influence the conversion of Man5GlcNAc(2)-P-P-Dol to Glc3Man(9)GlcNAc(2)-P-P-Dol in the second stage on the lumenal side of the rough ER. This article reviews the current understanding of the enzymes involved in the de novo biosynthesis of Dol-P and other polyisoprenoid glycosyl carrier lipids and speculates about the role of membrane proteins and enzymes that could be involved in the transbilayer movement of the lipid intermediates and the recycling of Dol-P and Dol-P-P discharged during glycosylphosphatidylinositol anchor biosynthesis, N-glycosylation, and O- and C-mannosylation reactions on the lumenal surface of the rough ER.  相似文献   

8.
Recent studies demonstrated that deglycosylation step is a prerequisite for endoplasmic reticulum (ER)-associated degradation of misfolded glycoproteins. Here, we report the advantages of using benzyl mannose during pulse-chase experiments to study the subcellular location of the deglycosylation step in Chinese hamster ovary (CHO) cell lines. Benzyl mannose inhibited both the ER-to-cytosol transport of oligomannosides and the trimming of cytosolic-labeled oligomannosides by the cytosolic mannosidase in vivo. We pointed out the occurrence of two subcellular sites of deglycosylation. The first one is located in the ER lumen, and led to the formation of Man8GlcNAc2 (isomer B) in wild-type CHO cell line and Man4GlcNAc2 in Man-P-Dol-deficient cell line. The second one was revealed in CHO mutant cell lines for which a high rate of glycoprotein degradation was required. It occurred in the cytosol and led to the liberation of oligosaccharides species with one GlcNAc residue and with a pattern similar to the one bound onto glycoproteins. The cytosolic deglycosylation site was not specific for CHO mutant cell lines, since we demonstrated the occurrence of cytosolic pathway when the formation of truncated glycans was induced in wild-type cells.  相似文献   

9.
Large, free polymannose oligosaccharides generated during glycoprotein biosynthesis rapidly appear in the cytosol of HepG2 cells where they undergo processing by a cytosolic endo H–like enzyme and a mannosidase to yield the linear isomer of Man5GlcNAc (Man[α1-2]Man[α1-2]Man[α1-3][Man α1-6]Man[β14]GlcNAc). Here we have examined the fate of these partially trimmed oligosaccharides in intact HepG2 cells. Subsequent to pulse–chase incubations with d-[2- 3H]mannose followed by permeabilization of cells with streptolysin O free oligosaccharides were isolated from the resulting cytosolic and membrane-bound compartments. Control pulse–chase experiments revealed that total cellular free oligosaccharides are lost from HepG2 cells with a half-life of 3–4 h. In contrast use of the vacuolar H+/ATPase inhibitor, concanamycin A, stabilized total cellular free oligosaccharides and enabled us to demonstrate a translocation of partially trimmed oligosaccharides from the cytosol into a membrane-bound compartment. This translocation process was unaffected by inhibitors of autophagy but inhibited if cells were treated with either 100 μM swainsonine, which provokes a cytosolic accumulation of large free oligosaccharides bearing 8-9 residues of mannose, or agents known to reduce cellular ATP levels which lead to the accumulation of the linear isomer of Man5GlcNAc in the cytosol. Subcellular fractionation studies on Percoll density gradients revealed that the cytosol-generated linear isomer of Man5GlcNAc is degraded in a membrane-bound compartment that cosediments with lysosomes.  相似文献   

10.
Incubations of thyroid microsomes with radiolabeled dolichyl pyrophosphoryl oligosaccharide (Glc3Man9-GlcNAc2) under conditions optimal for the N-glycosylation of protein resulted in the release, by apparently independent enzymatic reactions, of two types of neutral glucosylated polymannose oligosaccharides which differed from each other by terminating either in an N-acetylglucosamine residue (Glc3Man9GlcNAc1) or a di-N-acetylchitobiose moiety (Glc3Man9GlcNAc2). The first mentioned oligosaccharide, which was released in a steady and slow process unaffected by the addition of EDTA, appeared to be primarily the product of endo-beta-N-acetylglucosaminidase action on newly synthesized glycoprotein and such an enzyme with a neutral pH optimum capable of hydrolyzing exogenous glycopeptides and oligosaccharides (Km = 18 microM) was found in the thyroid microsomal fraction. The Glc3Man9GlcNAc2 oligosaccharide, in contrast, appeared to originate from the oligosaccharide-lipid by a rapid hydrolysis reaction which closely paralleled the N-glycosylation step, progressing as long as oligosaccharide transfer to protein occurred and terminating when carbohydrate attachment ceased either due to limitation of lipid-saccharide donor or addition of EDTA. There was a striking similarity between oligosaccharide release and transfer to protein with lipid-linked Glc3Man9GlcNAc2 serving as a 10-fold better substrate for both reactions than lipid-linked Man9-8GlcNAc2. The coincidence of transferase and hydrolase activities suggest the possibility of the existence of one enzyme with both functions. The physiological relevance of oligosaccharide release was indicated by the formation of such molecules in thyroid slices radiolabeled with [2-3H]mannose. Large oligosaccharides predominated (12 nmol/g) and consisted of two families of components; one group terminating in N-acetylglucosamine, ranged from Glc1Man9GlcNAc1 to Man5GlcNAc1 while the other contained the di-N-acetylchitobiose sequence and included Glc3Man9GlcNAc2, Glc1Man9GlcNAc2, and Man9GlcNAc2.  相似文献   

11.
Swainsonine is a potent inhibitor of lysosomal alpha-D-mannosidase, causes the production of hybrid glycoproteins, and is reported to produce a phenocopy of hereditary alpha-mannosidosis. We now report that the effects of swainsonine administration in the rat are different in two respects from those found in other animals thus far studied. Swainsonine caused the accumulation of oligosaccharide in kidney and urine but not in liver or brain. The accumulated oligosaccharides were mainly Man(alpha 1-3)[Man(alpha 1-6)]Man(beta 1-4)GlcNAc, Man(alpha 1-3)[Man(alpha 1-6)[Man(alpha 1-3)]Man(beta 1-4) GlcNAc, and Man(alpha 1-3)[Man(alpha 1-6)]Man(alpha 1-6)[Man(alpha 1-3)]Man(beta 1-4)GlcNAc. Analogous branched Man4 and Man5 structures are found in pig and sheep tissues, but they are N, N'-diacetylchitobiose derivatives. The substrate specificities of rat kidney lysosomal and cytosolic alpha-D-mannosidases were investigated because in one type of hereditary alpha-mannosidosis, that occurring in man, the major storage products are linear rather than branched oligosaccharides. The lysosomal enzyme showed much greater activity toward linear oligosaccharides than toward the branched oligosaccharides induced in the kidney by swainsonine. On the other hand, cytosolic alpha-D-mannosidase preferred the branched oligosaccharides, a result suggesting that this mannosidase might be inhibitable by swainsonine and that the enzyme might play a normal role in glycoprotein catabolism. Swainsonine was indeed found to inhibit this enzyme at relatively high concentrations (I50 at 100 microM swainsonine), and concentrations of this magnitude were in fact found in the cytosol of kidney of swainsonine-fed rats. The kidney cytosolic alpha-D-mannosidase levels were reduced in these rats and, more important, the accumulated oligosaccharides were present mainly in the cytosol rather than in lysosomes. These results point to possible involvement of cytosolic alpha-D-mannosidase in glycoprotein degradation in the rat.  相似文献   

12.
Golgi membranes from rat liver have been shown to contain an endo-alpha-D-mannosidase which can convert Glc1Man9GlcNAc to Man8GlcNAc with the release of Glc alpha 1----3Man (Lubas, W. A., and Spiro, R. G. (1987) J. Biol. Chem. 262, 3775-3781). We now report that this enzyme has the capacity to cleave the alpha 1----2 linkage between the glucose-substituted mannose residue and the remainder of the polymannose branch in a wide range of oligosaccharides (Glc3Man9GlcNAc to Glc1Man4GlcNAc) as well as glycopeptides and oligosaccharide-lipids. Whereas the tri- and diglucosylated species (Glc3Man9GlcNAc and Glc2Man9GlcNAc), which yielded Glc3Man and Glc2Man, respectively, were processed more slowly than Glc1Man9GlcNAc, the monoglucosylated components with truncated mannose chains (Glc1Man8GlcNAc to Glc1Man4GlcNAc) were trimmed at an increased rate which was inversely related to the number of mannose residues present. The endomannosidase was not inhibited by a number of agents which are known to interfere with N-linked oligosaccharide processing by exoglycosidases, including 1-deoxynojirimycin, castanospermine, bromoconduritol, 1-deoxymannojirimycin, swainsonine, and EDTA. However, Tris and other buffers containing primary hydroxyl groups substantially decreased its activity. After Triton solubilization, the endomannosidase was observed to be bound to immobilized wheat germ agglutinin, indicating the presence of a type of carbohydrate unit consistent with Golgi localization of the enzyme. The Man8GlcNAc isomer produced by endomannosidase action was found to be processed by Golgi enzymes through a different sequence of intermediates than the rough endoplasmic reticulum-generated Man8GlcNAc variant, in which the terminal mannose of the middle branch is absent. Whereas the latter oligosaccharide is converted to Man5GlcNAc via Man7GlcNAc and Man6GlcNAc at an even rate, the processing of the endomannosidase-derived Man8GlcNAc stalls at the Man6GlcNAc stage due to the apparent resistance to Golgi mannosidase I of the alpha 1,2-linked mannose of the middle branch. The results of our study suggest that the Golgi endomannosidase takes part in a processing route for N-linked oligosaccharides which have retained glucose beyond the rough endoplasmic reticulum; the distinctive nature of this pathway may influence the ultimate structure of the resulting carbohydrate units.  相似文献   

13.
Characterization of a novel alpha-D-mannosidase from rat brain microsomes   总被引:4,自引:0,他引:4  
A new alpha-D-mannosidase has been identified in rat brain microsomes. The enzyme was purified 70-100-fold over the microsomal fraction by solubilization with Triton X-100, followed by ion exchange, concanavalin A-Sepharose, and hydroxylapatite chromatography. The purified enzyme is very active towards mannose-containing oligosaccharides and has a pH optimum of 6.0. Unlike rat liver endoplasmic reticulum alpha-D-mannosidase and both Golgi mannosidases IA and IB, which have substantial activity only towards alpha 1,2-linked mannosyl residues, the brain enzyme readily cleaves alpha 1,2-, alpha 1,3-, and alpha 1,6-linked mannosyl residues present in high mannose oligosaccharides. The brain enzyme is also different from liver Golgi mannosidase II in that it hydrolyzes (Man)5GlcNAc and (Man)4GlcNAc without their prior N-acetylglucosaminylation. Moreover, the facts that the ability of the enzyme to cleave GlcNAc(Man)5GlcNAc, the biological substrate for Golgi mannosidase II, is not inhibited by swainsonine, and that p-nitrophenyl alpha-D-mannoside is a poor substrate provide further evidence for major differences between the brain enzyme and mannosidase II. Inactivation studies and the co-purification of activities towards various substrates suggest that a single enzyme is responsible for all the activities found. In view of these results, it seems possible that, in rat brain, a single mannosidase cleaves asparagine-linked high mannose oligosaccharide to form the core Man3GlcNAc2 moiety, which would then be modified by various glycosyl transferases to form complex type glycoproteins.  相似文献   

14.
Reichner  JS; Helgemo  SL; Hart  GW 《Glycobiology》1998,8(12):1173-1182
The ability of particular cell surface glycoproteins to recycle and become exposed to individual Golgi enzymes has been demonstrated. This study was designed to determine whether endocytic trafficking includes significant reentry into the overall oligosaccharide processing pathway. The Lec1 mutant of Chinese hamster ovary (CHO) cells lack N - acetylglucosaminyltransferase I (GlcNAc-TI) activity resulting in surface expression of incompletely processed Man5GlcNAc2 N -linked oligosaccharides. An oligosaccharide tracer was created by exoglycosylation of cell surface glycoproteins with purified porcine GlcNAc-TI and UDP-[3H]GlcNAc. Upon reculturing, all cell surface glycoproteins that acquired [3H]GlcNAc were acted upon by intracellular mannosidase II, the next enzyme in the Golgi processing pathway of complex N -linked oligosaccharides (t1/2= 3-4 h). That all radiolabeled cell surface glycoproteins were included in this endocytic pathway indicates a common intracellular compartment into which endocytosed cell surface glycoproteins return. Significantly, no evidence was found for continued oligosaccharide processing consistent with transit through the latter cisternae of the Golgi apparatus. These data indicate that, although recycling plasma membrane glycoproteins can be reexposed to individual Golgi-derived enzymes, significant reentry into the overall contiguous processing pathway is not evident.   相似文献   

15.
In order to obtain a better understanding of the control mechanisms involved in asparagine-linked glycosylation, we developed conditions under which the glucosidase I and II inhibitor castanospermine and the mannosidase II inhibitor swainsonine were toxic to Chinese hamster ovary (CHO) cells when cultured in the presence of low concentrations of the plant lectin concanavalin A. Cells resistant to castanospermine (CsR cells) and swainsonine (SwR cells) were obtained by gradual stepwise selections. These cells had normal levels of glucosidase II and mannosidase II and appeared to have no major structural alterations in their surface asparagine-linked oligosaccharides. Interestingly, the CsR and SwR cells were each pleiotropically resistant to castanospermine, swainsonine, and deoxymannojirimycin, an inhibitor of mannosidase I. This resistance was not due to the multiple-drug resistance phenomenon. Both the CsR and SwR cell populations synthesized Man5GlcNAc2 in place of Glc3Man9GlcNAc2 as the major dolichol-linked oligosaccharide. This defect was not due to a loss of mannosylphosphoryldolichol synthetase. Furthermore, the Man5GlcNAc2 oligosaccharide was transferred to protein and appeared to give rise to normal mature oligosaccharides. Thus, the CsR and SwR cells achieved resistance to castanospermine, swainsonine, and deoxymannojirimycin by synthesizing altered dolichol-linked oligosaccharides that reduced or eliminated the requirements for glucosidases I and II and mannosidases I and II during the production of normal asparagine-linked oligosaccharides. We propose that this phenotype be termed PIR, for processing inhibitor resistance.  相似文献   

16.
The substrate specificity of rat liver cytosolic neutral alpha-D-mannosidase was investigated by in vitro incubation with a crude cytosolic fraction of oligomannosyl oligosaccharides Man9GlcNAc, Man7GlcNAc, Man5GlcNAc I and II isomers and Man4GlcNAc having the following structures: Man9GlcNAc, Man(alpha 1-2)Man(alpha 1-3)[Man(alpha 1-2)Man(alpha 1-6)]Man(alpha 1-6) [Man(alpha 1-2)Man(alpha 1-3)]Man(beta 1-4)GlcNAc; Man5GlcNAc I, Man(alpha 1-3)[Man(alpha 1-6)]-Man(alpha 1-6)Man(alpha 1-3)] Man(beta 1-4)GlcNAc; Man5GlcNAc II, Man(alpha 1-2)Man(alpha 1-2)Man(alpha 1-3) [Man(alpha 1-6)]Man(beta 1-4)GlcNAc; Man4GlcNAc, Man(alpha 1-2)Man(alpha 1-2)Man(alpha 1-3)Man(beta 1-4)GlcNAc. The different oligosaccharide isomers resulting from alpha-D-mannosidase hydrolysis were analyzed by 1H-NMR spectroscopy after HPLC separation. The cytosolic alpha-D-mannosidase activity is able to hydrolyse all types of alpha-mannosidic linkages found in the glycans of the oligomannosidic type, i.e. alpha-1,2, alpha-1,3 and alpha-1,6. Nevertheless the enzyme is highly active on branched Man9GlcNAc or Man5GlcNAc I oligosaccharides and rather inactive towards the linear Man4GlcNAc oligosaccharide. Structural analysis of the reaction products of the soluble alpha-D-mannosidase acting on Man5-GlcNAc I and Man9GlcNAc gives Man3GlcNAc, Man(alpha 1-6)[Man(alpha 1-3)]Man(beta 1-4)GlcNAc, and Man5GlcNAc II oligosaccharides, respectively. This Man5GlcNAc II, Man(alpha 1-2)Man(alpha 1-3)[Man(alpha 1-6)]Man(beta 1-4)GlcNAc, represents the 'construction' Man5 oligosaccharide chain of the dolichol pathway formed in the cytosolic compartment during the biosynthesis of N-glycosylprotein glycans. The cytosolic alpha-D-mannosidase is activated by Co2+, insensitive to 1-deoxymannojirimycin but strongly inhibited by swainsonine in the presence of Co2+ ions. The enzyme shows a highly specific action different from that previously described for the lysosomal alpha-D-mannosidases [Michalski, J.C., Haeuw, J.F., Wieruszeski, J.M., Montreuil, J. and Strecker, G. (1990) Eur. J. Biochem. 189, 369-379]. A possible complementarity between cytosolic and lysosomal alpha-D-mannosidase activities in the catabolism of N-glycosylprotein is proposed.  相似文献   

17.
Cipollo JF  Trimble RB 《Glycobiology》2002,12(11):749-762
N-glycosylation in nearly all eukaryotes proceeds in the endoplasmic reticulum (ER) by transfer of the precursor Glc(3)Man(9)GlcNAc(2) from dolichyl pyrophosphate (PP-Dol) to consensus Asn residues in nascent proteins. The Saccharomyces cerevisiae alg (asparagine-linked glycosylation) mutants fail to synthesize oligosaccharide lipid properly, and the alg12 mutant accumulates a Man(7)GlcNAc(2)-PP-Dol intermediate. We show that the Man(7)GlcNAc(2) released from alg12Delta-secreted invertase is Manalpha1,2Manalpha1,2Manalpha1,3(Manalpha1,2Manalpha1,3Manalpha1,6)-Manbeta1,4-GlcNAcbeta1-4GlcNAcalpha/beta, confirming that the Man(7)GlcNAc(2) is the product of the middle-arm terminal alpha1,2-mannoslytransferase encoded by the ALG9 gene. Although the ER glucose addition and trimming events are similar in alg12Delta and wild-type cells, the central-arm alpha1,2-linked Man residue normally removed in the ER by Mns1p persists in the alg12Delta background. This confirms in vivo earlier in vitro experiments showing that the upper-arm Manalpha1,2Manalpha1,6-disaccharide moiety, missing in alg12Delta Man(7)GlcNAc(2), is recognized and required by Mns1p for optimum mannosidase activity. The presence of this Man influences downstream glycan processing by reducing the efficiency of Ochlp, the cis-Golgi alpha1,6-mannosyltransferase responsible for initiating outer-chain mannan synthesis, leading to hypoglycosylation of external invertase and vacuolar protease A.  相似文献   

18.
A solubilized enzyme preparation from mung bean seedlings catalyzed the transfer of GlcNAc from UDP-GlcNAc to the Man5GlcNAc acceptor to form GlcNAc-Man5GlcNAc. In the presence of the mannosidase inhibitor, swainsonine, this oligosaccharide accumulated, but in the absence of this inhibitor, the oligosaccharide was processed further to smaller sized oligosaccharides with the release of radioactive mannose. The formation of GlcNAc-Man5GlcNAc required the presence of Man5GlcNAc, UDP-GlcNAc, Mn++ and swainsonine. The product, GlcNAc-Man5GlcNAc was characterized by chromatography on calibrated columns of Biogel P-4, and by various enzymatic digestions. These data indicate the presence of GlcNAc transferase I and mannosidase II in plants.  相似文献   

19.
20.
An alpha-1,2-mannosidase involved in the processing of N-linked oligosaccharides was prepared from the microsomal fraction of developing castor bean cotyledons. The processing alpha-mannosidase was solubilized with 1.0% Triton X-100 and purified by ion-exchange chromatography followed by two gel filtration steps. The enzyme obtained could convert Man9GlcNAc2-PA to Man5GlcNAc2-PA, but this enzyme was inactive with Man5GlcNAc2-PA, Man4GlcNAc2-PA, and p-nitrophenyl-alpha-D-mannopyranoside. The enzyme was optimally active between pH 5.5-6.0. The processing mannosidase was inhibited by deoxymannojirimycin, EDTA, and Tris ions but not by swainsonine. Structural analyses of the mannose-trimming intermediates produced by the alpha-mannosidase revealed that specific intermediates were formed during conversion of Man9GlcNAc2-PA to Man5GlcNAc2-PA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号