首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Serotonin (5.HT) is known to be functionally active during early development in both vertebrates and invertebrates. However, the presence of 5-HT and its synthesis and transport system has not yet been demonstrated in bivalve early development. The presence of 5-HT was immunochemically demonstrated at the cleavage stage of bivalve Mytilus trossulus. 5-HT level dramatically increased within all embryonic cells after incubation with 5-HTP but not after incubation with tryptophan and 5-HT. The first 5-HT uptake by specific transporter was detected at 13 hpf blastula stage only and it was restricted to one distinct cell.  相似文献   

2.
Programmed cell death is a genuine developmental process of the nervous system, affecting not only projecting neurons but also proliferative neuroepithelial cells and young neuroblasts. The embryonic chick retina has been employed to correlate in vivo and in vitro studies on cell death regulation. We characterize here the role of two major signaling pathways, PI3K-Akt and MEK-ERK, in controlled retinal organotypic cultures from embryonic day 5 (E5) and E9, when cell death preferentially affects proliferating neuroepithelial cells and ganglion cell neurons, respectively. The relative density of programmed cell death in vivo was much higher in the proliferative and early neurogenic stages of retinal development (E3-E5) than during neuronal maturation and synaptogenesis (E8-E19). In organotypic cultures from E5 and E9 retinas, insulin, as the only growth factor added, was able to completely prevent cell death induced by growth factor deprivation. Insulin activated both the PI3K-Akt and the MEK-ERK pathways. Insulin survival effect, however, was differentially blocked at the two stages. At E5, the effect was blocked by MEK inhibitors, whereas at E9 it was blocked by PI3K inhibitors. The cells which were found to be dependent on insulin activation of the MEK-ERK pathway at E5 were mostly proliferative neuroepithelial cells. These observations support a remarkable specificity in the regulation of early neural cell death.  相似文献   

3.
A neuroblastoma X Chinese hamster embryonic brain explant hybrid cell line (NCB-20) expressed 5-hydroxytryptamine (5-HT1) receptors, linked to adenylate cyclase, which closely resembled 5-HT1 receptors previously characterized in central nervous tissue. However, the affinity of the receptors for 5-HT was only 150 nM compared to 5 nM in membranes prepared from cerebral cortex. The elevation of cyclic AMP levels in NCB-20 cells produced by 5-HT was found additive to that produced by cholera toxin but synergistic with that produced by either prostaglandin E1 (PGE1) or forskolin, suggesting that these latter two agents elevate cyclic AMP levels by a different mechanism than 5-HT. The elevation of cyclic AMP levels by either 5-HT or PGE1 was reversed by [D-Ala2,D-Leu5]enkephalin (DADLE), morphine, clonidine, and 3,4-dihydroxyphenylethylamine (dopamine) on a short (30 min) time scale. However, continued exposure to DADLE resulted in loss of the initial inhibitory effects of DADLE after 6 h and return of cyclic AMP levels to that seen with either 5-HT or PGE1 alone. When the DADLE exposure time was increased to 48 h, 5-HT produced a further twofold increase in cyclic AMP levels, but there was no increase in the responsiveness of the cells to PGE1 unless naloxone was added 1 h prior to treatment with PGE1. Scatchard analysis showed that the increased potency of 5-HT resulted from an increase in receptor affinity for 5-HT (from a KD of 150 +/- 20 nM to one of 20 +/- 7 nM), with a reduction in the number of apparent binding sites. The 5-HT supersensitivity observed in NCB-20 cells may be a good model for neurotransmitter interactions that produce desensitization or facilitation in the intact nervous system.  相似文献   

4.
Regulation of migration and proliferation by calpain has been shown in various cell types; however, no data are available concerning calpain 2 (capn2) localization in embryonic tissues. Here, we report the expression pattern of capn2 during mouse embryonic development. Expression of the capn2 gene is observed throughout embryonic development. From ES cells and the 8-cell stage to late neurulation stages, CAPN2 is expressed in the cytoplasm and nuclear compartments, with a clear co-localisation with chromatin. Whole-mount in situ hybridization analysis from E8.5 to 14.5 stages indicates high levels of capn2 expression in the nervous system, heart and mesodermal tissues. Up-regulation is maintained during later developmental stages in proliferating cells and in precursor cells involved in muscle (myoblasts) or bone formation (chondrocytes). At later developmental stages, elevated mRNA levels coincided with CAPN2 nuclear localization in these cell types, while differentiated cells maintained cytoplasmic expression. This detailed analysis reveals dynamic expression: nuclear localization was associated either with active cell mitosis in embryonic stem cells and early developmental stages or with precursor cells later during organogenesis. Thus, these data indicate that CAPN2 may represent a key factor in development from the first cell division.  相似文献   

5.
Abstract. The timing and spatial distribution of cells containing FMRFamide-related molecules in the embryogenesis of the polychaete Ophryotrocha labronica were studied immunocytochemically. FMRFamide-like molecules emerge early during embryonic development. They are found at the one-cell stage, are asymmetrically distributed in the first phases of cleavage, associated with gastrular movements, and label the central nervous system morphogenesis. Moreover, during embryogenesis, the pattern of gut cells with the FMRFamide-like phenotype that is present in adults is already established. The early occurrence of FMRFamide-like molecules in O. labronica suggests that these molecules are involved as pre-nervous growth signals in the regulation of basic neuronal cell behaviors.  相似文献   

6.
The functions of P2X purinoceptors (P2X1-7) in the nervous system of adults have been widely studied. However, little is known about their roles during embryonic development. Our previous work has reported an extensive expression of P2X5 receptors in the adult mouse central nervous system. In the present study, we have examined the expression pattern of P2X5 receptor mRNA and protein during prenatal development of the mouse nervous system (from embryonic day E8 to E17). P2X5 receptors appeared in the neural tube as early as E8 and were gradually confined to new-born neurons in the cortical plate and ventral horn of the spinal cord. Heavy signals for P2X5 receptors were also found in dorsal root ganglia (DRG), retina, olfactory epithelium, and nerve fibers in skeletal muscles. In conclusion, P2X5 receptors were strongly represented in the developing mouse nervous system. The transient high expression pattern of P2X5 receptors in epithelium-like structures suggests a role during early neurogenesis.  相似文献   

7.
8.
Pituitary adenylate cyclase-activating polypeptide (PACAP) has been implicated in several physiological functions. Several lines of evidence from in vitro studies have shown that PACAP plays some important roles in development of nervous system such as neural proliferation and differentiation. Recently, mice lacking PACAP have been reported to show a higher mortality shortly after birth, impaired thermal adaptation, and altered psychomotor behaviors. Inasmuch as monoaminergic nervous systems are implicated in these phenotypes and a quite few data have been reported on the role of this peptide in nervous development in vitro, we studied early development [embryonic days 10.5 (E10.5) and 12.5 (E12.5)] of monoaminergic nervous systems in mice lacking PACAP. The fetuses lacking PACAP showed immunoreactivities (IRs) for tyrosine hydroxylase (TH) and serotonin (5-HT) similarly to the wild type. We observed TH-IR in the forebrain [striatal differentiating zone (dz) and hypothalamic dz], midbrain, hindbrain, neural-crest-derived sympathetic ganglionic primordia, ventral spinal cord dz, and bowel at E10.5 in both PACAP null and wild type with no difference. At E12.5, in the wild-type- and PACAP-gene-deficient mice, no differences of 5-HT- and TH-IRs were observed in several brain regions, including brainstem (midbrain and pons). Thus, the depletion of PACAP does not affect monoaminergic nervous systems in the early development.  相似文献   

9.
Autoregulatory mechanisms affecting serotonin [5-hydroxytryptamine (5-HT)] release and synthesis during the early period of development were investigated in dissociated cell cultures raised from embryonic rostral rat rhombencephalon. The presence of 5-HT1A and 5-HT1B receptors in serotoninergic neurons was assessed using binding assays. The involvement of 5-HT1A and 5-HT1B receptors in the control of the synthesis and release of [3H]5-HT was studied using biochemical approaches with several serotoninergic receptor ligands. A mean decrease of 30% in [3H]5-HT synthesis and release was observed in the presence of 5-HT (10(-8) M), the 5-HT1A agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT), the 5HT1B/1A agonist 5-methoxy-3-(1,2,5,6-tetrahydro-4-pyridinyl)-1H-indole (RU 24969), the 5-HT1B agonist 3-(1,2,5,6-tetrahydropyrid-4-yl)pyrrolo[3,2-b]pyrid-5-one (CP-93,129), and the 5-HT(1D/1B) agonist sumatriptan. Inhibition of 5-HT synthesis and release induced by 8-OH-DPAT was blocked by chiral N-tert-butyl-3-[1-[1-(2-methoxy)phenyl]piperazinyl]-1-phenylpropionam ide dihydrochloride quaternary-hydrate (WAY 100135) (10(7) M) or methyl 4-[4-[4-(1,1,3-trioxo-2H-1,2-benzoisothiazol-2-yl)butyl]-1-p iperazinyl]-1Hindole-2-carboxylate (SDZ 216-525) (10(-7)M), and that of CP-93,129 was blocked by methiothepin (10(-7) M). Paradoxically, extracellular levels of [3H]5-HT increased in the presence of 8-OH-DPAT and RU 24969 at 10(-6) M. 5-HT uptake experiments showed that these two agonists interacted with the 5-HT transporter. 5-HT1 binding sites (620 fmol/mg of protein) and 5-HT1A (482 fmol/mg of protein) and 5-HT1B (127 fmol/mg of protein) receptors were detected in 12-day in vitro cell cultures. Experiments carried out with tetrodotoxin suggested that 5-HT1A receptors are located on nerve cell bodies, whereas 5-HT1B receptors are located on the nerve terminals. We concluded that autoregulatory mechanisms involving 5-HT1A and 5-HT1B autoreceptors are functionally mature in cells from rostral raphe nuclei during the early period of development.  相似文献   

10.
The expression of the neural adhesion molecules L1 and N-CAM has been studied in the embryonic and early postnatal olfactory system of the mouse in order to gain insight into the function of these molecules during development of a neural structure which retains neuronal turnover capacities throughout adulthood. N-CAM was slightly expressed and L1 was not significantly expressed in the olfactory placode on Embryonic Day 9, the earliest stage tested. Rather, N-CAM was strongly expressed in the mesenchyme underlying the olfactory placode. In the developing nasal pit, L1 and N-CAM were detectable in the developing olfactory epithelium, but not in regions developing into the respiratory epithelium. At early developmental stages, expression of the so-called embryonic form of N-CAM (E-N-CAM) coincides with the expression of N-CAM, whereas at later developmental stages and in the adult it is restricted to a smaller number of sensory cell bodies and axons, suggesting that the less adhesive embryonic form is characteristic of morphogenetically dynamic neuronal structures. Moreover, E-N-CAM is highly expressed at contact sites between olfactory axons and their target cells in the glomeruli of the olfactory bulb. L1 and N-CAM 180, the component of N-CAM that accumulates at cell contacts by interaction with the cytoskeleton are detectable as early as the first axons extend toward the primordial olfactory bulb. L1 remains prominent throughout development on axonal processes, both at contacts with other axons and with ensheathing cells. Contrary to N-CAM 180 which remains detectable on differentiating sensory neuronal cell bodies, L1 is only transiently expressed on these and is no longer detectable on primary olfactory neuronal cell bodies in the adult. Furthermore, whereas throughout development L1 has a molecular form similar to that seen in other parts of the developing and adult central nervous systems, N-CAM and, in particular, N-CAM 180 retain their highly sialylated form at least partially throughout all ages studied. These observations suggest that E-N-CAM and N-CAM 180 are characteristic of developmentally active structures and L1 may not only be involved in neurite outgrowth, but also in stabilization of contacts among fasciculating axons and between axons and ensheathing cells, as it has previously been found in the developing peripheral nervous system.  相似文献   

11.
12.
The Drosophila genome encodes eight members of the innexin family of gap junction proteins. Most of the family members are expressed in complex and overlapping expression patterns during Drosophila development. Functional studies and mutant analysis have been performed for only few of the innexin genes. The authors generated an antibody against Innexin7 and studied its expression and functional role in embryonic development by using transgenic RNA interference (RNAi) lines. The authors found Innexin7 protein expression in all embryonic epithelia from early to late stages of development, including in the developing epidermis and the gastrointestinal tract. In early embryonic stages, the authors observed a nuclear localization of Innexin7, whereas Innexin7 was found in a punctuate pattern in the cytoplasm and at the membrane of most epithelial tissues at later stages of development. During central nervous system (CNS) development, Innexin7 was expressed in cells of the neuroectoderm and the mesectoderm and at later stages of embryogenesis, its expression was largely restricted to a segmental pattern of few glia and neuronal cells derived from the midline precursors. Coimmunostaining experiments showed that Innexin7 is expressed in midline glia, and in two different neuronal cells, the pCC and MP2 neurons, which are pioneer cells for axon guidance. RNAi-mediated knock down was used to gain insight into the embryonic function of innexin7. Down-regulation of innexin7 expression resulted in a severe disruption of embryonic nervous system development. Longitudinal, posterior, and anterior commissures were disrupted and the outgrowth of axon fibers of the ventral nerve cord was aberrant, causing peripheral nervous system defects. The results suggest an essential role for innexin7 for axon guidance and embryonic nervous system development in Drosophila.  相似文献   

13.
In mouse blastocysts six facilitative glucose transporter isoforms (GLUT)1-4, 8 and 9 are expressed. We have used the mouse embryonic stem (ES) cell line D3 and spontaneously differentiating embryoid bodies (EB) to investigate GLUT expression and the influence of glucose during differentiation of early embryonic cells. Both ES cells and EBs (2d-20d) expressed GLUT1, 3, and 8, whereas the isoforms 2 and 4 were detectable exclusively in EBs. Differentiation-associated expression of GLUT was analyzed by double staining with stage-specific embryonic antigen (SSEA-1), cytokeratins (CK18, 19), nestin, and desmin. Similar to trophoblast cells in mouse blastocysts the outer cell layer of endoderm-like cells showed a high GLUT3 expression in early EBs. In 20-day-old EBs no GLUT3 protein and only minor GLUT3 mRNA amounts could be detected. A minimal glucose concentration of 5 mM applied during 2 and 8 days of EB culture resulted in up-regulated GLUT4, Oct-4 and SSEA-1 levels and a delay in EB differentiation. We conclude that GLUT expression depends on cellular differentiation and that the expression is modulated by glucose concentration. The developmental and glucose-dependent regulation of GLUT strongly suggests a functional role of glucose and glucose transporters in ES cell differentiation and embryonic development.  相似文献   

14.
Recent studies indicate a role for Wnt signaling in regulating lens cell differentiation (Stump et al., 2003). Here we investigated expression patterns of Wnt receptors, the Frizzleds (Fzs) and the Wnt signaling regulators, the secreted frizzled-related proteins (Sfrps), during rodent lens development. RT-PCR showed that Fz receptors, Fz1-Fz8 are expressed in lens. In situ hybridization showed that all the Fz genes examined have similar expression patterns. Fzs are expressed throughout the early lens primordium. At embryonic day 14.5 (E14.5), Fz gene expression is predominantly localized to the epithelium and elongating cells at the lens equator. Fz expression is absent from lens fibers. This pattern of Fz gene expression continues throughout early postnatal development. Immunolocalization studies showed that Fz protein distribution closely follows that of the mRNAs. In addition, epithelial cells in FGF-treated explants show strongest Fz reactivity in cellular protrusions as they migrate and elongate. Sfrp1- Sfrp5 are expressed and all, except Sfrp2, have similar patterns of expression to each other and to the Fzs during lens development. Sfrp2 is strongly expressed in all lens pit cells but becomes restricted to the presumptive epithelial cells of the lens vesicle. By E14.5, Sfrp2 is only present in a few cells above the lens equator. Sfrp2 is not detected in the lens at E18.5 or at later stages. This study shows that multiple Fz and Sfrp genes are expressed during lens morphogenesis and differentiation. This is consistent with a role for Wnt-Fz signaling during both embryonic and postnatal lens development.  相似文献   

15.
TBX20 gain-of-function mutations in humans are associated with congenital heart malformations and myocardial defects. However the effects of increased Tbx20 function during cardiac chamber development and maturation have not been reported previously. CAG-CAT-Tbx20 transgenic mice were generated for Cre-dependent induction of Tbx20 in myocardial lineages in the developing heart. βMHCCre-mediated overexpression of Tbx20 in fetal ventricular cardiomyocytes results in increased thickness of compact myocardium, induction of cardiomyocyte proliferation, and increased expression of Bmp10 and pSmad1/5/8 at embryonic day (E) 14.5. βMHCCre-mediated Tbx20 overexpression also leads to increased expression of cardiac conduction system (CCS) genes Tbx5, Cx40, and Cx43 throughout the ventricular myocardium. In contrast, Nkx2.5Cre mediated overexpression of Tbx20 in the embryonic heart results in reduced cardiomyocyte proliferation, increased expression of a cell cycle inhibitor, p21(CIP1), and decreased expression of Tbx2, Tbx5, and N-myc1 at E9.5, concomitant with decreased phospho-ERK1/2 expression. Together, these analyses demonstrate that Tbx20 differentially regulates cell proliferation and cardiac lineage specification in embryonic versus fetal cardiomyocytes. Induction of pSmad1/5/8 at E14.5 and inhibition of dpERK expression at E9.5 are consistent with selective Tbx20 regulation of these pathways in association with stage-specific effects on cardiomyocyte proliferation. Together, these in vivo data support distinct functions for Tbx20 in regulation of cardiomyocyte lineage maturation and cell proliferation at embryonic and fetal stages of heart development.  相似文献   

16.
A specific effort was made to obtain monoclonal antibodies that bind to macromolecules that play a role in the development of the nervous system. It was considered that good candidates for such molecules were those that were only transiently present in the embryonic nervous system. Hybridomas were prepared from spleen cells taken from mice that had been immunized with nerve cords from cockroach embryos at the 43-50% stage of development. The hybridoma supernatants were screened for antibody binding to frozen sections of both embryonic and adult thoracic ganglia. Cell lines that produced monoclonal antibodies that transiently bound to the embryonic nervous system were saved and cloned. These developmental stage-specific monoclonal antibodies either did not bind to the adult nervous system or bound to it with a pattern very different from that in the embryonic nervous system. The developmental stage-specific antigens detected by these monoclonal antibodies were organized into four categories based on the part of the embryonic nervous system in which they were transiently localized. These include binding to the cell bodies of all neurons, cell bodies of subsets of neurons or neuroblasts, subsets of axons, and the neuropile. Preliminary biochemical characterization of the antigens showed that many of these antibodies were recognizing carbohydrate epitopes. Functions for these antigens, most of which are components of the cell surface, are tentatively proposed.  相似文献   

17.
The overflow and metabolism of serotonin (5-hydroxytryptamine; 5-HT) from transplants of embryonic medullary and mesencephalic raphe neurones in the previously 5-HT-denervated hippocampus have been analyzed in vivo using intracerebral dialysis. The average density of 5-HT-immunoreactive fibres in the grafted hippocampus was less than in nonlesioned hippocampus. Nonetheless, both basal and potassium-stimulated levels of 5-HT in the dialysates were restored to approximately normal after transplantation of medullary raphe cells, whereas mesencephalic implants resulted in over twice the 5-HT output observed in control hippocampus. However, 5-hydroxyindoleacetic acid (5-HIAA) overflow was increased only after grafting of mesencephalic raphe and then only to normal levels; medullary implants, by contrast, failed to enhance 5-HIAA output above that from lesion-only hippocampus. The evidence of a relative hyperactivity of the grafted neurones may explain the disproportionate improvements in various lesion-induced behavioural deficits after grafting of nervous tissue. In addition, differences in the presynaptic regulation of 5-HT release and metabolism are also apparent in the transplants; these variations are dependent on the precise origin of the serotoninergic cells.  相似文献   

18.
Radial glia are among the first cells that develop in the embryonic central nervous system. They are progenitors of glia and neurons but their relationship with restricted precursors that are also derived from neuroepithelia is unclear. To clarify this issue, we analyzed expression of cell type specific markers (BLBP for radial glia, 5A5/E-NCAM for neuronal precursors and A2B5 for glial precursors) on cortical radial glia in vivo and their progeny in vitro. Clones of cortical cells initially expressing only BLBP gave rise to cells that were A2B5+ and eventually lost BLBP expression in vitro. BLBP is expressed in the rat neuroepithelium as early as E12.5 when there is little or no staining for A2B5 and 5A5. In E13.5-15.5 forebrain, A2B5 is spatially restricted co-localizing with a subset of the BLBP+ radial glia. Analysis of cells isolated acutely from embryonic cortices confirmed that BLBP expression could appear without, or together with, A2B5 or 5A5. The numbers of BLBP+/5A5+ cells decreased during neurogenesis while the numbers of BLBP+/A2B5+ cells remained high through the beginning of gliogenesis. The combined results demonstrate that spatially restricted subpopulations of radial glia along the dorsal-ventral axis acquire different markers for neuronal or glial precursors during CNS development.  相似文献   

19.
The epigenetic factors involved in regulating the proliferation and differentiation of cells of the developing mammalian central nervous system are largely unknown. In this study, laminin, a molecule which is present in the basal lamina from the earliest stage of neural tube formation, has been examined in vitro for its possible regulatory role in mammalian neural development. Purified populations of murine neuroepithelial (NEP) cells isolated from the 10-day embryonic telencephalon and mesencephalon respond in vitro to laminin by undergoing aggregation, proliferation, and extensive neurite elaboration. The proliferation and differentiation of NEP cells induced by the interaction with laminin were dependent upon an early cell aggregation, since precoating of wells with poly-L-ornithine, a procedure which prevented such aggregation, completely blocked these responses. The previously reported proliferative effect of acidic fibroblast growth factor (FGF) on NEP cells was found to be synergistic with that of laminin. This observation is consistent with the idea that laminin may regulate cell responses in several ways: by direct stimulation via laminin receptors; by optimal presentation of FGF molecules to neural cells; and finally by upregulation of FGF receptor numbers on responsive cells. The in vitro response of laminin is mimicked by its long arm elastase digestion fragment, E8, whereas the cross arm fragment of laminin, E1-4, had no effect. In addition, antibodies specific for epitopes on the long arm blocked the effect seen with the whole laminin molecule. Binding studies of 125I-labeled laminin and its fragment performed on freshly isolated NEP cells confirmed the specificity of the in vitro observations: whole laminin and the E8 fragment bound to the NEP cell surface whereas the E1-4 fragment did not. These studies demonstrate mechanisms by which laminin, specifically through its long arm fragment, may assert a regulatory function during development of the mammalian central nervous system.  相似文献   

20.
Lineage of radial glia in the chicken optic tectum.   总被引:7,自引:0,他引:7  
In many parts of the central nervous system, the elongated processes of radial glial cells are believed to guide immature neurons from the ventricular zone to their sites of differentiation. To study the clonal relationships of radial glia to other neural cell types, we used a recombinant retrovirus to label precursor cells in the chick optic tectum with a heritable marker, the E. coli lacZ gene. The progeny of the infected cells were detected at later stages of development with a histochemical stain for the lacZ gene product. Radial glia were identified in a substantial fraction of clones, and these were studied further. Our main results are the following. (a) Clones containing radial glia frequently contained neurons and/or astrocytes, but usually not other radial glia. Thus, radial glia derive from a multipotential progenitor rather than from a committed radial glial precursor. (b) Production of radial glia continues until at least embryonic day (E) 8, after the peak of neuronal birth is over (approximately E5) and after radial migration of immature neurons has begun (E6-7). Radial glial and neuronal lineages do not appear to diverge during this interval, and radial glia are among the last cells that their progenitors produce. (c) As they migrate, many cells are closely apposed to the apical process of their sibling radial glia. Thus, radial glia may frequently guide the migration of their clonal relatives. (d) The population of labelled radial glia declines between E15 and E19-20 (just before hatching), concurrent with a sharp increase in the number of labelled astrocytes. This result suggests that some tectal radial glia transform into astrocytes, as occurs in mammalian cerebral cortex, although others persist after hatching. To reconcile the observations that many radial glia are present early, that radial glia are among the last offspring of a multipotential stem cell, and that most clones contain only a single radial glial cell, we suggest that the stem cell is, or becomes, a radial glial cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号