首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The assembly of an HIV-1 particle is a complex, multistep process involving several viral and cellular proteins, RNAs and lipids. While many macroscopic and fixed-cell microscopic techniques have provided important insights into the structure of HIV-1 particles and the mechanisms by which they assemble, analysis of individual particles and their assembly in living cells offers the potential of surmounting many of the limitations inherent in other approaches. In this review, we discuss how the recent application of live-cell microscopic imaging techniques has increased our understanding of the process of HIV-1 particle assembly. In particular, we focus on recent studies that have employed total internal reflection fluorescence microscopy and other single-virion imaging techniques in live cells. These approaches have illuminated the dynamics of Gag protein assembly, viral RNA packaging and ESCRT (endosomal sorting complex required for transport) protein recruitment at the level of individual viral particles. Overall, the particular advantages of individual particle imaging in living cells have yielded findings that would have been difficult or impossible to obtain using macroscopic or fixed-cell microscopic techniques.  相似文献   

2.
The molecular mechanism for packaging of the adenovirus (Ad) genome into the capsid is likely similar to that of DNA bacteriophages and herpesviruses-the insertion of viral DNA through a portal structure into a preformed prohead driven by an ATP-hydrolyzing molecular machine. It is speculated that the IVa2 protein of adenovirus is the ATPase providing the power stroke of the packaging machinery. Purified IVa2 binds ATP in vitro and, along with a second Ad protein, the L4 22-kilodalton protein (L4-22K), binds specifically to sequences in the Ad genome that are essential for packaging. The efficiency of binding of these proteins in vitro was correlated with the efficiency of packaging in vivo. By utilizing a virus unable to express IVa2, pm8002, it was reported that IVa2 plays a role in assembly of the empty virion. We wanted to address the question of whether the ATP binding, and hence the putative ATPase activity, of IVa2 was required for its role in virus assembly. Our results show that ATPase activity was not required for the assembly of empty virus particles. In addition, we present evidence that particles were assembled in the absence of IVa2 by using two viruses null for IVa2-a deletion mutant virus, ΔIVa2, and the previously described mutant virus, pm8002. Empty virus particles produced by these IVa2 mutant viruses did not contain detectable viral DNA. We conclude that the major role of IVa2 is in viral DNA packaging. A characterization of the empty particles obtained from the IVa2 mutant viruses compared to wild-type empty particles is presented.  相似文献   

3.
The design of drugs for treatment of virus infections and the exploitation of viruses as drugs for treatment of diseases could be made more successful by understanding the molecular mechanisms of virus-specific events. The process of assembly, and more specifically packaging of the genome into a capsid, is an obligatory step leading to future infections. To enhance our understanding of the molecular mechanism of packaging, it is necessary to characterize the viral components necessary for the event. In the case of adenovirus, sequences between nucleotides 200 and 400 at the left end of the genome are essential for packaging. This region contains a series of redundant bipartite sequences, termed A repeats, that function in packaging. Synthetic packaging sequences made of multimers of a single A repeat substitute for the authentic adenovirus packaging domain. A repeats are binding sites for the CCAAT displacement protein and the viral protein IVa2. Several lines of evidence implicate these proteins in the packaging process. It was not known, however, whether other cis-acting elements play a role in the packaging process as well. We utilized an in vivo approach to address the role of the inverted terminal repeats and the covalently linked terminal proteins in packaging of the adenovirus genome. Our results show that these elements are not necessary for efficient packaging of the viral genome. A significant implication of these results applicable to gene therapy vector design is that the linkage of the adenovirus packaging domain to heterologous DNA sequences should suffice for targeting to the viral capsid.  相似文献   

4.
Adenovirus type 5 (Ad5) DNA packaging is initiated in a polar fashion from the left end of the genome. The packaging process is dependent on the cis-acting packaging domain located between nucleotides 230 and 380. Seven AT-rich repeats that direct packaging have been identified within this domain. A1, A2, A5, and A6 are the most important repeats functionally and share a bipartite sequence motif. Several lines of evidence suggest that there is a limiting trans-acting factor(s) that plays a role in packaging. Both cellular and viral proteins that interact with adenovirus packaging elements in vitro have been identified. In this study, we characterized a group of recombinant viruses that carry site-specific point mutations within a minimal packaging domain. The mutants were analyzed for growth properties in vivo and for the ability to bind cellular and viral proteins in vitro. Our results are consistent with a requirement of the viral IVa2 protein for DNA packaging via a direct interaction with packaging sequences. Our results also indicate that higher-order IVa2-containing complexes that form on adjacent packaging repeats in vitro are the complexes required for the packaging activity of these sites in vivo. Chromatin immunoprecipitation was used to study proteins that bind directly to the packaging sequences. These results demonstrate site-specific interaction of the viral IVa2 and L1 52/55K proteins with the Ad5 packaging domain in vivo. These results confirm and extend those previously reported and provide a framework on which to model the adenovirus assembly process.  相似文献   

5.
As retroviruses assemble in infected cells, two copies of their full-length, unspliced RNA genomes are selected for packaging from a cellular milieu that contains a substantial excess of non-viral and spliced viral RNAs. Understanding the molecular details of genome packaging is important for the development of new antiviral strategies and to enhance the efficacy of retroviral vectors used in human gene therapy. Recent studies of viral RNA structure in vitro and in vivo and high-resolution studies of RNA fragments and protein-RNA complexes are helping to unravel the mechanism of genome packaging and providing the first glimpses of the initial stages of retrovirus assembly.  相似文献   

6.
《Journal of molecular biology》2019,431(21):4217-4228
The influenza A virus (IAV), a respiratory pathogen for humans, poses serious medical and economic challenges to global healthcare systems. The IAV genome, consisting of eight single-stranded viral RNA segments, is incorporated into virions by a complex process known as genome packaging. Specific RNA sequences within the viral RNA segments serve as signals that are necessary for genome packaging. Although efficient packaging is a prerequisite for viral infectivity, many of the mechanistic details about this process are still missing. In this review, we discuss the recent advances toward the understanding of IAV genome packaging and focus on the RNA features that play a role in this process.  相似文献   

7.
Viruses have to encapsidate their own genomes during the assembly process. For most RNA viruses, there are sequences within the viral RNA and virion proteins needed for high efficiency of genome encapsidation. However, the roles of host proteins in this process are not understood. Here we find that the cellular DEAD-box RNA helicase DDX6 is required for efficient genome packaging of foamy virus, a spumaretrovirus. After infection, a significant amount of DDX6, normally concentrated in P bodies and stress granules, re-localizes to the pericentriolar site where viral RNAs and Gag capsid proteins are concentrated and capsids are assembled. Knockdown of DDX6 by siRNA leads to a decreased level of viral nucleic acids in extracellular particles, although viral protein expression, capsid assembly and release, and accumulation of viral RNA and Gag protein at the assembly site are little affected. DDX6 does not interact stably with Gag proteins nor is it incorporated into particles. However, we find that the ATPase/helicase motif of DDX6 is essential for viral replication. This suggests that the ATP hydrolysis and/or the RNA unwinding activities of DDX6 function in moderating the viral RNA conformation and/or viral RNA-Gag ribonucleoprotein complex in a transient manner to facilitate incorporation of the viral RNA into particles. These results reveal a unique role for a highly conserved cellular protein of RNA metabolism in specifically re-locating to the site of viral assembly for its function as a catalyst in retroviral RNA packaging.  相似文献   

8.
9.
Terminase enzymes are responsible for "packaging" of viral DNA into a preformed procapsid. Bacteriophage lambda terminase is composed of two subunits, gpA and gpNu1, in a gpA(1).gpNu1(2) holoenzyme complex. The larger gpA subunit is responsible for preparation of viral DNA for packaging, and is central to the packaging motor complex. The smaller gpNu1 subunit is required for site-specific assembly of the packaging motor on viral DNA. Terminase assembly at the packaging initiation site is regulated by ATP binding and hydrolysis at the gpNu1 subunit. Characterization of the catalytic and structural interactions between the DNA and nucleotide binding sites of gpNu1 is thus central to our understanding of the packaging motor at the molecular level. The high-resolution structure of the DNA binding domain of gpNu1 (gpNu1-DBD) was recently determined in our lab [de Beer, T., et al. (2002) Mol. Cell 9, 981-991]. The structure reveals the presence of a winged-helix-turn-helix DNA binding motif, but the location of the ATPase catalytic site in gpNu1 remains unknown. In this work, nucleotide binding to the gpNu1-DBD was probed using acrylamide fluorescence quenching and fluorescence-monitored ligand binding studies. The data indicate that the minimal DBD dimer binds both ATP and ADP at two equivalent but highly cooperative binding sites. The data further suggest that ATP and ADP induce distinct conformations of the dimer but do not affect DNA binding affinity. The implications of these results with respect to the assembly and function of a terminase DNA-packaging motor are discussed.  相似文献   

10.
Assembly of adenovirus particles is thought to be similar to that of bacteriophages, in which the double-stranded DNA genome is inserted into a preformed empty capsid. Previous studies from our and other laboratories have implicated the viral IVa2 protein as a key component of the encapsidation process. IVa2 binds to the packaging sequence on the viral chromosome in a sequence-specific manner, alone and in conjunction with the viral L4 22K protein. In addition, it interacts with the viral L1 52/55-kDa protein, which is required for DNA packaging. Finally, a mutant virus that does not produce IVa2 is unable to produce any capsids. Therefore, it has been proposed that IVa2 nucleates capsid assembly. A prediction of such a model is that the IVa2 protein would be found at a unique vertex of the mature virion. In this study, the location of IVa2 in the virion has been analyzed using immunogold staining and electron microscopy, and the copy number of IVa2 in virions was determined using three independent methods, quantitative mass spectrometry, metabolic labeling, and Western blotting. The results indicate that it resides at a unique vertex and that there are approximately six to eight IVa2 molecules in each particle. These findings support the hypothesis that the IVa2 protein plays multiple roles in the viral assembly process.  相似文献   

11.
The Rift Valley fever virus is responsible for periodic, explosive epizootics throughout sub-Saharan Africa. The development of therapeutics targeting this virus is difficult due to a limited understanding of the viral replicative cycle. Utilizing a virus-like particle system, we have established roles for each of the viral structural components in assembly, release, and virus infectivity. The envelope glycoprotein, Gn, was discovered to be necessary and sufficient for packaging of the genome, nucleocapsid protein and the RNA-dependent RNA polymerase into virus particles. Additionally, packaging of the genome was found to be necessary for the efficient release of particles, revealing a novel mechanism for the efficient generation of infectious virus. Our results identify possible conserved targets for development of anti-phlebovirus therapies.  相似文献   

12.
A single retroviral protein, termed Gag, is sufficient for assembly of retrovirus-like particles in mammalian cells. Gag normally selects the genomic RNA of the virus with high specificity; the nucleocapsid (NC) domain of Gag plays a crucial role in this selection process. However, encapsidation of the viral RNA is completely unnecessary for particle assembly. We previously showed that mutant murine leukemia virus (MuLV) particles that lack viral RNA because of a deletion in the cis-acting packaging signal ("Psi") in the genomic RNA compensate for the loss of the viral RNA by incorporating cellular mRNA. The RNA in wild-type and Psi- particles was also found to be necessary for virion core structure. In the present work, we explored the role of RNA in MuLV particles that lack genomic RNA because of mutations in the NC domain of Gag. Using a fluorescent dye assay, we observed that NC mutant particles contain the same amount of RNA that wild-type virions do. Surprisingly enough, these particles contained large amounts of rRNAs. Furthermore, ribosomal proteins were detected by immunoblotting, and ribosomes were observed inside the particles by electron microscopy. The biological significance of the presence of ribosomes in NC mutant particles lacking genomic RNA is discussed.  相似文献   

13.
HIV-1 particles contain RNA species other than the unspliced viral RNA genome. For instance, viral spliced RNAs and host 7SL and U6 RNAs are natural components that are non-randomly incorporated. To understand the mechanism of packaging selectivity, we analyzed the content of a large panel of HIV-1 variants mutated either in the 5'UTR structures of the viral RNA or in the Gag-nucleocapsid protein (GagNC). In parallel, we determined whether the selection of host 7SL and U6 RNAs is dependent or not on viral RNA and/or GagNC. Our results reveal that the polyA hairpin in the 5'UTR is a major packaging determinant for both spliced and unspliced viral RNAs. In contrast, 5'UTR RNA structures have little influence on the U6 and 7SL RNAs, indicating that packaging of these host RNAs is independent of viral RNA packaging. Experiments with GagNC mutants indicated that the two zinc-fingers and N-terminal basic residues restrict the incorporation of the spliced RNAs, while favoring unspliced RNA packaging. GagNC through the zinc-finger motifs also restricts the packaging of 7SL and U6 RNAs. Thus, GagNC is a major contributor to the packaging selectivity. Altogether our results provide new molecular insight on how HIV selects distinct RNA species for incorporation into particles.  相似文献   

14.
Yang TC  Maluf NK 《Biochemistry》2012,51(7):1357-1368
Human adenovirus (Ad) is an icosahedral, double-stranded DNA virus. Viral DNA packaging refers to the process whereby the viral genome becomes encapsulated by the viral particle. In Ad, activation of the DNA packaging reaction requires at least three viral components: the IVa2 and L4-22K proteins and a section of DNA within the viral genome, called the packaging sequence. Previous studies have shown that the IVa2 and L4-22K proteins specifically bind to conserved elements within the packaging sequence and that these interactions are absolutely required for the observation of DNA packaging. However, the equilibrium mechanism for assembly of IVa2 and L4-22K onto the packaging sequence has not been determined. Here we characterize the assembly of the IVa2 and L4-22K proteins onto truncated packaging sequence DNA by analytical sedimentation velocity and equilibrium methods. At limiting concentrations of L4-22K, we observe a species with two IVa2 monomers and one L4-22K monomer bound to the DNA. In this species, the L4-22K monomer is promoting positive cooperative interactions between the two bound IVa2 monomers. As L4-22K levels are increased, we observe a species with one IVa2 monomer and three L4-22K monomers bound to the DNA. To explain this result, we propose a model in which L4-22K self-assembly on the DNA competes with IVa2 for positive heterocooperative interactions, destabilizing binding of the second IVa2 monomer. Thus, we propose that L4-22K levels control the extent of cooperativity observed between adjacently bound IVa2 monomers. We have also determined the hydrodynamic properties of all observed stoichiometric species; we observe that species with three L4-22K monomers bound have more extended conformations than species with a single L4-22K bound. We suggest this might reflect a molecular switch that controls insertion of the viral DNA into the capsid.  相似文献   

15.
The vast majority of viruses consist of a nucleic acid surrounded by a protective icosahedral protein shell called the capsid. During viral infection of a host cell, the timing and efficiency of the assembly process is important for ensuring the production of infectious new progeny virus particles. In the class of single-stranded RNA (ssRNA) viruses, the assembly of the capsid takes place in tandem with packaging of the ssRNA genome in a highly cooperative co-assembly process. In simple ssRNA viruses such as the bacteriophage MS2 and small RNA plant viruses such as STNV, this cooperative process results from multiple interactions between the protein shell and sites in the RNA genome which have been termed packaging signals. Using a stochastic assembly algorithm which includes cooperative interactions between the protein shell and packaging signals in the RNA genome, we demonstrate that highly efficient assembly of STNV capsids arises from a set of simple local rules. Altering the local assembly rules results in different nucleation scenarios with varying assembly efficiencies, which in some cases depend strongly on interactions with RNA packaging signals. Our results provide a potential simple explanation based on local assembly rules for the ability of some ssRNA viruses to spontaneously assemble around charged polymers and other non-viral RNAs in vitro.  相似文献   

16.
The assembly of complex double-stranded DNA viruses includes a genome packaging step where viral DNA is translocated into the confines of a preformed procapsid shell. In most cases, the preferred packaging substrate is a linear concatemer of viral genomes linked head-to-tail. Viral terminase enzymes are responsible for both excision of an individual genome from the concatemer (DNA maturation) and translocation of the duplex into the capsid (DNA packaging). Bacteriophage λ terminase site-specifically nicks viral DNA at the cos site in a concatemer and then physically separates the nicked, annealed strands to mature the genome in preparation for packaging. Here we present biochemical studies on the so-called helicase activity of λ terminase. Previous studies reported that ATP is required for strand separation, and it has been presumed that ATP hydrolysis is required to drive the reaction. We show that ADP and nonhydrolyzable ATP analogues also support strand separation at low (micromolar) concentrations. In addition, the Escherichia coli integration host factor protein (IHF) strongly stimulates the reaction in a nucleotide-independent manner. Finally, we show that elevated concentrations of nucleotide inhibit both ATP- and IHF-stimulated strand separation by λ terminase. We present a model where nucleotide and IHF interact with the large terminase subunit and viral DNA, respectively, to engender a site-specifically bound, catalytically competent genome maturation complex. In contrast, binding of nucleotide to the low-affinity ATP binding site in the small terminase subunit mediates a conformational switch that down-regulates maturation activities and activates the DNA packaging activity of the enzyme. This affords a motor complex that binds tightly, but nonspecifically, to DNA as it translocates the duplex into the capsid shell. These studies have yielded mechanistic insight into the assembly of the maturation complex on viral DNA and its transition to a mobile packaging motor that may be common to all of the complex double-stranded DNA viruses.  相似文献   

17.
During retroviral RNA packaging, two copies of genomic RNA are preferentially packaged into the budding virus particles whereas the spliced viral RNAs and the cellular RNAs are excluded during this process. Specificity towards retroviral RNA packaging is dependent upon sequences at the 5′ end of the viral genome, which at times extend into Gag sequences. It has earlier been suggested that the Mason-Pfizer monkey virus (MPMV) contains packaging sequences within the 5′ untranslated region (UTR) and Gag. These studies have also suggested that the packaging determinants of MPMV that lie in the UTR are bipartite and are divided into two regions both upstream and downstream of the major splice donor. However, the precise boundaries of these discontinuous regions within the UTR and the role of the intervening sequences between these dipartite sequences towards MPMV packaging have not been investigated. Employing a combination of genetic and structural prediction analyses, we have shown that region “A”, immediately downstream of the primer binding site, is composed of 50 nt, whereas region “B” is composed of the last 23 nt of UTR, and the intervening 55 nt between these two discontinuous regions do not contribute towards MPMV RNA packaging. In addition, we have identified a 14-nt G-C-rich palindromic sequence (with 100% autocomplementarity) within region A that has been predicted to fold into a structural motif and is essential for optimal MPMV RNA packaging. Furthermore, we have also identified a stretch of single-stranded purines (ssPurines) within the UTR and 8 nt of these ssPurines are duplicated in region B. The native ssPurines or its repeat in region B when predicted to refold as ssPurines has been shown to be essential for RNA packaging, possibly functioning as a potential nucleocapsid binding site. Findings from this study should enhance our understanding of the steps involved in MPMV replication including RNA encapsidation process.  相似文献   

18.
Flock House virus (FHV; Nodaviridae) is a positive-strand RNA virus that encapsidates a bipartite genome consisting of RNA1 and RNA2. We recently showed that specific recognition of these RNAs for packaging into progeny particles requires coat protein translated from replicating viral RNA. In the present study, we investigated whether the entire assembly pathway, i.e., the formation of the initial nucleating complex and the subsequent completion of the capsid, is restricted to the same pool of coat protein subunits. To test this, coat proteins carrying either FLAG or hemagglutinin epitopes were synthesized from replicating or nonreplicating RNA in the same cell, and the resulting particle population and its RNA packaging phenotype were analyzed. Results from immunoprecipitation analysis and ion-exchange chromatography showed that the differentially tagged proteins segregated into two distinct populations of virus particles with distinct RNA packaging phenotypes. Particles assembled from coat protein that was translated from replicating RNA contained the FHV genome, whereas particles assembled from coat protein that was translated from nonreplicating mRNA contained random cellular RNA. These data demonstrate that only coat proteins synthesized from replicating RNA partake in the assembly of virions that package the viral genome and that RNA replication, coat protein translation, and virion assembly are processes that are tightly coupled during the life cycle of FHV.  相似文献   

19.
20.
While capsid proteins are assembled around single-stranded genomic DNA or RNA in rod-shaped viruses, the lengthy double-stranded genome of other viruses is packaged forcefully within a preformed protein shell. This entropically unfavourable DNA or RNA packaging is accomplished by an ATP-driven viral nanomotor, which is mainly composed of two components, the oligomerized channel and the packaging enzymes. This intriguing DNA or RNA packaging process has provoked interest among virologists, bacteriologists, biochemists, biophysicists, chemists, structural biologists and computational scientists alike, especially those interested in nanotechnology, nanomedicine, AAA+ family proteins, energy conversion, cell membrane transport, DNA or RNA replication and antiviral therapy. This review mainly focuses on the motors of double-stranded DNA viruses, but double-stranded RNA viral motors are also discussed due to interesting similarities. The novel and ingenious configuration of these nanomotors has inspired the development of biomimetics for nanodevices. Advances in structural and functional studies have increased our understanding of the molecular basis of biological movement to the point where we can begin thinking about possible applications of the viral DNA packaging motor in nanotechnology and medical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号