首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
While natural CD4(+)Foxp3(+) regulatory T (nT(REG)) cells have long been viewed as a stable and distinct lineage that is committed to suppressive functions in vivo, recent evidence supporting this notion remains highly controversial. We sought to determine whether Foxp3 expression and the nT(REG) cell phenotype are stable in vivo and modulated by the inflammatory microenvironment. Here, we show that Foxp3(+) nT(REG) cells from thymic or peripheral lymphoid organs reveal extensive functional plasticity in vivo. We show that nT(REG) cells readily lose Foxp3 expression, destabilizing their phenotype, in turn, enabling them to reprogram into Th1 and Th17 effector cells. nT(REG) cell reprogramming is a characteristic of the entire Foxp3(+) nT(REG) population and the stable Foxp3(NEG) T(REG) cell phenotype is associated with a methylated foxp3 promoter. The extent of nT(REG) cell reprogramming is modulated by the presence of effector T cell-mediated signals, and occurs independently of variation in IL-2 production in vivo. Moreover, the gut microenvironment or parasitic infection favours the reprogramming of Foxp3(+) T(REG) cells into effector T cells and promotes host immunity. IL-17 is predominantly produced by reprogrammed Foxp3(+) nT(REG) cells, and precedes Foxp3 down-regulation, a process accentuated in mesenteric sites. Lastly, mTOR inhibition with the immunosuppressive drug, rapamycin, stabilizes Foxp3 expression in T(REG) cells and strongly inhibits IL-17 but not RORγt expression in reprogrammed Foxp3(-) T(REG) cells. Overall, inflammatory signals modulate mTOR signalling and influence the stability of the Foxp3(+) nT(REG) cell phenotype.  相似文献   

2.
Non-obese diabetic (NOD) mice develop spontaneous T-cell responses against pancreatic beta-cells, leading to islet cell destruction and diabetes. Despite high genetic similarity, non-obese resistant (NOR) mice do not develop diabetes. We show here that spleen cells of both NOD and NOR mice respond to the islet cell antigen glutamic acid decarboxylase-65 in IFN-gamma-ELISPOT assays. Moreover, NOR-T cells induce periinsulitis in NOD SCID recipient mice. Thus, a potentially pathogenic islet cell-specific T-cell response arises in NOR and NOD mice alike; the mechanism that prevents the autoimmune progression of self-reactive T cells in NOR mice presumably acts at the level of effector function. Consistent with this hypothesis, CD4+CD25+ cell-depleted spleen cells from NOR mice mediated islet cell destruction and overt diabetes in NOD SCID mice. Therefore, islet cell-specific effector cells in NOR mice appear to be under the control of CD4+CD25+ regulatory T cells, confirming the importance of regulatory cells in the control of autoimmune diabetes.  相似文献   

3.
Autoantigen-based immunotherapy can modulate autoimmune diabetes, perhaps due to the activation of Ag-specific regulatory T cells. Studies of these regulatory T cells should help us understand their roles in diabetes and aid in designing a more effective immunotherapy. We have used class II MHC tetramers to isolate Ag-specific T cells from nonobese diabetic (NOD) mice and BALB/c mice treated with glutamic acid decarboxylase 65 peptides (p206 and p221). Based on their cytokine secretion profiles, immunization of NOD mice with the same peptide induced different T cell subsets than in BALB/c mice. Treatment of NOD mice induced not only Th2 cells but also IFN-gamma/IL-10-secreting T regulatory type 1 (Tr1) cells. Adoptive transfer experiments showed that isolated tetramer(+) T cells specific for p206 or p221 could inhibit diabetes development. These cells were able to suppress the in vitro proliferation of other NOD mouse T cells without cell-cell contact. They performed their regulatory functions probably by secreting cytokines, and Abs against these cytokines could block their suppressive effect. Interestingly, the presence of both anti-IL-10 and anti-IFN-gamma could enhance the target cell proliferation, suggesting that Tr1 cells play an important role. Further in vivo experiments showed that the tetramer(+) T cells could block diabetogenic T cell migration into lymph nodes. Therefore, treatment of NOD mice with autoantigen could induce Th2 and Tr1 regulatory cells that can suppress the function and/or block the migration of other T cells, including diabetogenic T cells, and inhibit diabetes development.  相似文献   

4.
It is clear that functional heterogeneity of T cells may be explained by differential cytokine production. The aim of this paper was to review evidence for regulatory cells, generated after HgCl(2)-exposure. They differ from classical Th1 and Th2 cells, produce transforming growth factor-beta and interleukin-10 and exert their regulatory functions in a Th1/Th2-unrestricted fashion.  相似文献   

5.
Several genetic insulin-dependent diabetes (Idd) intervals that confer resistance to autoimmune diabetes have been identified in mice and humans, but the mechanisms by which they protect against development of diabetes have not been elucidated. To determine the effect of Idd9 on the function of islet-specific T cells, we established novel BDC-Idd9 mice that harbor BDC2.5 TCR transgenic T cells containing the Idd9 of diabetes-resistant B10 mice. We show that the development and functional responses of islet-specific T cells from BDC-Idd9 mice are not defective compared with those from BDC mice, which contain the Idd9 of diabetes-susceptible NOD mice. Upon transfer, BDC T cells rapidly induced severe insulitis and diabetes in NOD.scid mice, whereas those from BDC-Idd9 mice mediated a milder insulitis and induced diabetes with a significantly delayed onset. BDC and BDC-Idd9 T cells expanded comparably in recipient mice. However, BDC-Idd9 T cells accumulated in splenic periarteriolar lymphatic sheaths, whereas BDC T cells were mainly found in pancreatic lymph nodes and pancreata of recipients, indicating that the transferred T cells differed in their homing. We provide evidence that the migration pattern of transferred BDC and BDC-Idd9 T cells at least partly depends on their differential chemotaxis toward the CCR7 ligand CCL19. Taken together, our data show that the Idd9 locus regulates development of type 1 diabetes by affecting the homing of islet-specific T cells.  相似文献   

6.
T regulatory cells 1 inhibit a Th2-specific response in vivo   总被引:20,自引:0,他引:20  
We recently described a new population of CD4(+) regulatory T cells (Tr1) that inhibits proliferative responses of bystander T cells and prevents colitis induction in vivo through the secretion of IL-10. IL-10, which had been primarily described as a Th2-specific cytokine inhibiting Th1 responses, has displayed in several models a more general immune suppression on both types of effector T cell responses. Using an immediate hypersensitivity model in which BALB/c mice immunized with OVA (alum) normally generate Th2-dominated responses, we examined the ability of OVA-specific Tr1 T cell clones to inhibit OVA-specific cytokines and Ab responses. In contrast to Th2 or Th1 T cell clones, transfer of Tr1 T cell clones coincident with OVA immunization inhibited Ag-specific serum IgE responses, whereas IgG1 and IgG2a synthesis were not affected. This specific inhibition was mediated in part through IL-10 secretion as anti-IL-10 receptor Abs treatment reverted the inhibitory effect of Tr1 T cell clones. Although specifically targeted to IgE responses, Tr1 clones' inhibitory effects were more profound as they affected Ag-specific Th2 cell priming both in term of proliferative responses and cytokine secretion. These results suggest that regulatory T cells may play a fundamental role in maintaining the balance of the immune system to prevent allergic disorders.  相似文献   

7.
Although IFN-gamma is necessary for survival of Mycobacterium tuberculosis infection in people and animal models, it may not be sufficient to clear the infection, and IFN-gamma is not a reliable correlate of protection. To determine whether IFN-gamma-independent mechanisms of immunity exist, we developed a murine ex vivo culture system that directly evaluates the ability of splenic or lung lymphocytes to control the growth of M. tuberculosis within infected macrophages, and that models in vivo immunity to tuberculosis. Surprisingly, CD4(+) T cells controlled >90% of intracellular M. tuberculosis growth in the complete absence of IFN-gamma stimulation of macrophages, via a NO-dependent mechanism. Furthermore, bacillus Calmette-Guerin-vaccinated IFN-gamma-deficient mice exhibited significant protection against M. tuberculosis challenge that was lost upon depletion of CD4(+) T cells. These findings demonstrate that CD4(+) T cells possess IFN-gamma-independent mechanisms that can limit the growth of an intracellular pathogen and are dominant in secondary responses to M. tuberculosis.  相似文献   

8.
CD4(+) regulatory T cells have been shown to prevent intestinal inflammation; however, it is not known whether they act to prevent the priming of colitogenic T cells or actively control these cells as part of the memory T cell pool. In this study, we describe the presence of colitogenic Th1 cells within the CD4(+)CD45RB(low) population. These pathogenic cells enrich within the CD25(-) subset and are not recent thymic emigrants. CD4(+)CD45RB(low) cells from germfree mice were significantly reduced in their ability to transfer colitis to immune deficient recipients, suggesting the presence of commensal bacteria in the donor mice drives colitogenic T cells into the Ag-experienced/memory T cell pool. This potentially pathogenic population of Ag-experienced T cells is subject to T cell-mediated regulation in vivo by both CD4(+)CD25(+) and CD4(+)CD25(-) cells in an IL-10-dependent manner. Furthermore, administration of an anti-IL-10R mAb to unmanipulated adult mice was sufficient to induce the development of colitis. Taken together, these data indicate that colitogenic Th1 cells enter into the Ag-experienced pool in normal mice, but that their function is controlled by regulatory T cells and IL-10. Interestingly, IL-10 was not absolutely required for CD4(+)CD25(+) T cell-mediated inhibition of colitis induced by transfer of naive CD4(+)CD45RB(high) cells, suggesting a differential requirement for IL-10 in the regulation of naive and Ag-experienced T cells.  相似文献   

9.
A deficiency of CD4+CD25+ regulatory T cells (CD25+ Tregs) in lymphopenic mice can result in the onset of autoimmune gastritis. The gastric H/K ATPase alpha (H/Kalpha) and beta (H/Kbeta) subunits are the immunodominant autoantigens recognized by effector CD4+ T cells in autoimmune gastritis. The mechanism by which CD25+ Tregs suppress autoimmune gastritis in lymphopenic mice is poorly understood. To investigate the antigenic requirements for the genesis and survival of gastritis-protecting CD25+ Tregs, we analyzed mice deficient in H/Kbeta and H/Kalpha, as well as a transgenic mouse line (H/Kbeta-tsA58 Tg line 224) that lacks differentiated gastric epithelial cells. By adoptive transfer of purified T cell populations to athymic mice, we show that the CD25+ Treg population from mice deficient in either one or both of H/Kalpha and H/Kbeta, or from the H/Kbeta-tsA58 Tg line 224 mice, is equally effective in suppressing the ability of polyclonal populations of effector CD4+ T cells to induce autoimmune gastritis. Furthermore, CD25+ Tregs, from either wild-type or H/Kalpha-deficient mice, dramatically reduced the expansion of pathogenic H/Kalpha-specific TCR transgenic T cells and the induction of autoimmune gastritis in athymic recipient mice. Proliferation of H/Kalpha-specific T cells in lymphopenic hosts occurs predominantly in the paragastric lymph node and was dependent on the presence of the cognate H/Kalpha Ag. Collectively, these studies demonstrate that the gastritis-protecting CD25+ Tregs do not depend on the major gastric Ags for their thymic development or their survival in the periphery, and that CD25+ Tregs inhibit the Ag-specific expansion of pathogenic T cells in vivo.  相似文献   

10.
The small GTPase Rap1 is transiently activated during TCR ligation and regulates integrin-mediated adhesion. To understand the in vivo functions of Rap1 in regulating T cell immune responses, we generated transgenic (Tg) mice, which express the active GTP-bound mutant Rap1E63 in their T lymphocytes. Although Rap1E63-Tg T cells exhibited increased LFA-1-mediated adhesion, ERK1/2 activation and proliferation of Rap1E63-Tg CD4+ T cells were defective. Rap1E63-Tg T cells primed in vivo and restimulated with specific Ag in vitro, exhibited reduced proliferation and produced reduced levels of IL-2. Rap1E63-Tg mice had severely deficient T cell-dependent B cell responses, as determined by impaired Ig class switching. Rap1E63-Tg mice had an increased fraction of CD4+CD103+ regulatory T cells (Treg), which exhibited enhanced suppressive efficiency as compared with CD4+CD103+ Treg from normal littermate control mice. Depletion of CD103+ Treg significantly restored the impaired responses of Rap1E63-Tg CD4+ T cells. Thus Rap1-GTP is a negative regulator of Th cell responses and one mechanism responsible for this effect involves the increase of CD103+ Treg cell fraction. Our results show that Rap1-GTP promotes the generation of CD103+ Treg and may have significant implications in the development of strategies for in vitro generation of Treg for the purpose of novel immunotherapeutic approaches geared toward tolerance induction.  相似文献   

11.
Insulin, an autoantigen in type 1 diabetes, when administered mucosally to diabetes-prone NOD mice induces regulatory T cells (T(reg)) that protect against diabetes. Compared with protein, Ag encoded as DNA has potential advantages as a therapeutic agent. We found that intranasal vaccination of NOD mice with plasmid DNA encoding mouse proinsulin II-induced CD4+ T(reg) that suppressed diabetes development, both after adoptive cotransfer with "diabetogenic" spleen cells and after transfer into NOD mice given cyclophosphamide to accelerate diabetes onset. In contrast to prototypic CD4+ CD25+ T(reg), CD4+ T(reg) induced by proinsulin DNA were both CD25+ and CD25- and not defined by markers such as glucocorticoid-induced TNFR-related protein (GITR), CD103, or Foxp3. Intriguingly, despite induction of T(reg) and reduced islet inflammation, diabetes incidence in proinsulin DNA-treated mice was unchanged. However, diabetes was prevented when DNA vaccination was performed under the cover of CD40 ligand blockade, known to prevent priming of CTL by mucosal Ag. Thus, intranasal vaccination with proinsulin DNA has therapeutic potential to prevent diabetes, as demonstrated by induction of protective T(reg), but further modifications are required to improve its efficacy, which could be compromised by concomitant induction of pathogenic immunity.  相似文献   

12.
In the nonobese diabetic (NOD) mouse, pathogenic and suppressor CD4(+) T cells can be distinguished by the constitutive expression of CD25. In this study, we demonstrate that the progression of autoimmune diabetes in NOD mice reflects modifications in both T cell subsets. CD4(+)CD25(+) suppressor T cells from 8-, but not 16-wk-old NOD mice delayed the onset of diabetes transferred by 16-wk-old CD25-depleted spleen cells. These results were paralleled by the inhibition of alloantigen-induced proliferation of CD4(+)CD25(-) cells, indicating an age-dependent decrease in suppressive activity. In addition, CD4(+)CD25(-) pathogenic T cells became progressively less sensitive to immunoregulation by CD4(+)CD25(+) T cells during diabetes development. CD4(+)CD25(-) T cells showed a higher proliferation and produced more IFN-gamma, but less IL-4 and IL-10, whereas CD4(+)CD25(+) T suppressor cells produced significantly lower levels of IL-10 in 16- compared with 8-wk-old NOD mice. Consistent with these findings, a higher frequency of Th1 cells was observed in the pancreas of 16-wk-old compared with 8-wk-old NOD mice. An increased percentage of CD4(+)CD25(-) T cells expressing CD54 was present in 16-wk-old and in diabetic NOD, but not in BALB/c mice. Costimulation via CD54 increased the proliferation of CD4(+)CD25(-) T cells from 16-, but not 8-wk-old NOD mice, and blocking CD54 prevented their proliferation, consistent with the role of CD54 in diabetes development. Thus, the pathogenesis of autoimmune diabetes in NOD mice is correlated with both an enhanced pathogenicity of CD4(+)CD25(-) T cells and a decreased suppressive activity of CD4(+)CD25(+) T cells.  相似文献   

13.
Regulatory CD4(+)CD25(+) T cells (Tregs) are defective numerically and functionally in autoimmune hepatitis (AIH). We have investigated and compared the mechanism of action of Tregs in healthy subjects and in AIH patients using Transwell experiments, where Tregs are cultured either in direct contact with or separated from their targets by a semipermeable membrane. We also studied Treg FOXP3 expression and effect on apoptosis. Direct contact is necessary for Tregs to suppress proliferation and IFN-gamma production by CD4(+)CD25(-) and CD8(+) T cells in patients and controls. Moreover, in both, direct contact of Tregs with their targets leads to increased secretion of regulatory cytokines IL-4, IL-10, and TGF-beta, suggesting a mechanism of linked immunosuppression. Tregs/CD4(+)CD25(-) T cell cocultures lead to similar changes in IFN-gamma and IL-10 secretion in patients and controls, whereas increased TGF-beta secretion is significantly lower in patients. In contrast, in patients, Tregs/CD8(+) T cell cocultures lead to a higher increase of IL-4 secretion. In AIH, Treg FOXP3 expression is lower than in normal subjects. Both in patients and controls, FOXP3 expression is present also in CD4(+)CD25(-) T cells, although at a low level and not associated to suppressive function. Both in patients and controls, addition of Tregs does not influence target cell apoptosis, but in AIH, spontaneous apoptosis of CD4(+)CD25(-) T cells is reduced. In conclusion, Tregs act through a direct contact with their targets by modifying the cytokine profile and not inducing apoptosis. Deficient CD4(+)CD25(-) T cell spontaneous apoptosis may contribute to the development of autoimmunity.  相似文献   

14.
Invariant NK T (iNKT) cells regulate immune responses, express NK cell markers and an invariant TCR, and recognize lipid Ags in a CD1d-restricted manner. Previously, we reported that activation of iNKT cells by alpha-galactosylceramide (alpha-GalCer) protects against type 1 diabetes (T1D) in NOD mice via an IL-4-dependent mechanism. To further investigate how iNKT cells protect from T1D, we analyzed whether iNKT cells require the presence of another subset(s) of regulatory T cells (Treg), such as CD4+ CD25+ Treg, for this protection. We found that CD4+ CD25+ T cells from NOD.CD1d(-/-) mice deficient in iNKT cell function similarly in vitro to CD4+ CD25+ T cells from wild-type NOD mice and suppress the proliferation of NOD T responder cells upon alpha-GalCer stimulation. Cotransfer of NOD diabetogenic T cells with CD4+ CD25+ Tregs from NOD mice pretreated with alpha-GalCer demonstrated that activated iNKT cells do not influence the ability of T(regs) to inhibit the transfer of T1D. In contrast, protection from T1D mediated by transfer of activated iNKT cells requires the activity of CD4+ CD25+ T cells, because splenocytes pretreated with alpha-GalCer and then inactivated by anti-CD25 of CD25+ cells did not protect from T1D. Similarly, mice inactivated of CD4+ CD25+ T cells before alpha-GalCer treatment were also not protected from T1D. Our data suggest that CD4+ CD25+ T cells retain their function during iNKT cell activation, and that the activity of CD4+ CD25+ Tregs is required for iNKT cells to transfer protection from T1D.  相似文献   

15.
目的:比较自身免疫性肝炎(autoimmune hepatitis,AIH)患者与健康对照者(healthy controls,HCs)外周血CD4+CD25+调节性T细胞(CD4+CD25+Tregs)数量、免疫抑制功能的变化,探讨CD4+CD25+Tregs参与AIH发病的可能机制.方法:采用流式细胞仪检测8例AIH患者及15例健康对照组的外周血CD4+CD25+Tregs数量的百分比及绝时数量;采用共同培养方法检测AIH患者外周血CD4+CD25+Tregs的免疫抑制功能的变化;实时荧光定量聚合酶链反应(RT-FQ-PCR)检删AIH患者外周血CD4+CD25+Tregs中FoxP3mRNA的表达.结果:AIH患者外周血CD4+CD25+Tregs数量明显低于HCs(p<0.01);混合淋巴细胞共同培养结果显示,AIH患者外周血CD4+CD25+Tregs抑制功能明显低于HCs组(p<0.01);AIH患者外周血CD4+CD25+Tregs的FoxP3 mRNA相对表达量显著降低,与HCs组比较有显著性差异(p<0.01).结论:CD4+CD25+Tregs细胞的数量的减少和Foxp3表达的降低所造成的CD4+CD25+Tregs细胞免疫抑制功能受损可能是AIH发病的一个因素.  相似文献   

16.

Background

There is consensus that experimental autoimmune encephalomyelitis (EAE) can be mediated by myelin specific T cells of Th1 as well as of Th17 phenotype, but the contribution of either subset to the pathogenic process has remained controversial. In this report, we compare functional differences and pathogenic potential of “monoclonal” T cell lines that recognize myelin oligodendrocyte glycoprotein (MOG) with the same transgenic TCR but are distinguished by an IFN-γ producing Th1-like and IL-17 producing Th17-like cytokine signature.

Methods and Findings

CD4+ T cell lines were derived from the transgenic mouse strain 2D2, which expresses a TCR recognizing MOG peptide 35–55 in the context of I-Ab. Adoptive transfer of Th1 cells into lymphopenic (Rag2−/−) recipients, predominantly induced “classic” paralytic EAE, whereas Th17 cells mediated “atypical” ataxic EAE in approximately 50% of the recipient animals. Combination of Th1 and Th17 cells potentiated the encephalitogenicity inducing classical EAE exclusively. Th1 and Th17 mediated EAE lesions differed in their composition but not in their localization within the CNS. While Th1 lesions contained IFN-γ, but no IL-17 producing T cells, the T cells in Th17 lesions showed plasticity, substantially converting to IFN-γ producing Th1-like cells. Th1 and Th17 cells differed drastically by their lytic potential. Th1 but not Th17 cells lysed autoantigen presenting astrocytes and fibroblasts in vitro in a contact-dependent manner. In contrast, Th17 cells acquired cytotoxic potential only after antigenic stimulation and conversion to IFN-γ producing Th1 phenotype.

Conclusions

Our data demonstrate that both Th1 and Th17 lineages possess the ability to induce CNS autoimmunity but can function with complementary as well as differential pathogenic mechanisms. We propose that Th17-like cells producing IL-17 are required for the generation of atypical EAE whereas IFN-γ producing Th1 cells induce classical EAE.  相似文献   

17.
CD1d-restricted NKT cells and CD4+CD25+ regulatory T (Treg) cells are thymus-derived subsets of regulatory T cells that have an important role in the maintenance of self-tolerance. Whether NKT cells and Treg cells cooperate functionally in the regulation of autoimmunity is not known. We have explored this possibility in experimental autoimmune myasthenia gravis (EAMG), an animal model of human myasthenia gravis, induced by immunization of C57BL/6 mice with the autoantigen acetylcholine receptor. We have demonstrated that activation of NKT cells by a synthetic glycolipid agonist of NKT cells, alpha-galactosylceramide (alpha-GalCer), inhibits the development of EAMG. alpha-GalCer administration in EAMG mice increased the size of the Treg cell compartment, and augmented the expression of foxp3 and the potency of CD4+CD25+ cells to inhibit proliferation of autoreactive T cells. Furthermore, alpha-GalCer promoted NKT cells to transcribe the IL-2 gene and produce IL-2 protein. Depletion of CD25+ cells or neutralization of IL-2 reduced the therapeutic effect of alpha-GalCer in this model. Thus, alpha-GalCer-activated NKT cells can induce expansion of CD4+CD25+ Treg cells, which in turn mediate the therapeutic effects of alpha-GalCer in EAMG. Induced cooperation of NKT cells and Treg cells may serve as a superior strategy to treat autoimmune disease.  相似文献   

18.
Agonistic anti-4-1BB Ab is known to ameliorate experimental autoimmune encephalomyelitis. 4-1BB triggering typically leads to the expansion of CD8(+) T cells, which produce abundant IFN-γ, and this in turn results in IDO-dependent suppression of autoimmune responses. However, because neutralization of IFN-γ or depletion of CD8(+) T cell only partially abrogates the effect of 4-1BB triggering, we sought to identify an additional mechanism of 4-1BB-triggered suppression of autoimmune responses using IFN-γ- or IFN-γR-deficient mice. 4-1BB triggering inhibited the generation of Th17 cells that is responsible for experimental autoimmune encephalomyelitis induction and progression, and increased Foxp3(+)CD4(+) regulatory T (Treg) cells, particularly among CD4(+) T cells. This was not due to a direct effect of 4-1BB signaling on CD4(+) T cell differentiation: 4-1BB signaling not only reduced Th17 cells and increased Treg cells in wild-type mice, which could be due to IFN-γ production by the CD8(+) T cells, but also did so in IFN-γ-deficient mice, in that case by downregulating IL-6 production. These results show that although secondary suppressive mechanisms evoked by 4-1BB triggering are usually masked by the strong effects of IFN-γ, 4-1BB signaling seems to modulate autoimmune responses by a number of mechanisms, and modulation of the Th17 versus Treg cell balance is one of those mechanisms.  相似文献   

19.
Statins have anti-inflammatory and immune-regulating properties. To investigate the effects of atorvastatin on experimental autoimmune neuritis (EAN), an animal model of Guillain–Barré syndrome (GBS), atorvastatin was administered to Lewis rats immunized with bovine peripheral myelin in complete Freund’s adjuvant. We found that atorvastatin ameliorated the clinical symptoms of EAN, decreased the numbers of inflammatory cells as well as IFN-γ+ and IL-17+ cells in sciatic nerves, decreased the CD80 expression and increased the number of CD25+Foxp3+ cells in mononuclear cells (MNC), and decreased the levels of IFN-γ in MNC culture supernatants. These data provide strong evidence that atorvastatin can act as an inhibitor in EAN by inhibiting the immune response of Th1 and Th17, decreasing the expression of co-stimulatory molecule, and up-regulating the number of T regulatory cells. These data demonstrated that statins could be used as a therapeutic strategy in human GBS in future.  相似文献   

20.
Regulatory T cells play a major role in modulating the immune response. However, most information on these cells centers on autoimmunity, and there is also considerable controversy on the functional characteristics of these cells. Here we provide direct in vitro and in vivo evidence that CD4+CD25+ regulatory T cells inhibit the differentiation and functions of both Th1 and Th2 cells. Importantly, CD4+CD25+ T cells suppressed the disease development of Leishmania major infection in SCID mice reconstituted with naive CD4+CD25- T cells. Furthermore, CD4+CD25+ T cells inhibited the development of colitis induced by both Th1 and Th2 cells in SCID mice. Our results therefore document that CD4+CD25+ regulatory T cells suppress both Th1 and Th2 cells and that these regulatory T cells have a profound therapeutic potential against diseases induced by both Th1 and Th2 cells in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号