首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Records from 183 nonlactating mares that experienced spontaneous multiple ovulation were examined to determine if: 1) double ovulations are as likely to be unilateral as bilateral; 2) the interval between two ovulations is shorter when the ovulations are unilateral than when they are bilateral; 3) the mean diameter of the two follicles on the day prior to ovulation is less when the ovulations are synchronous and unilateral; 4) for both unilateral and bilateral ovulation, twin embryos are more likely to be detected when double ovulations are asynchronous; and 5) for both synchronous and asynchronous ovulations, twin embryos are more likely to be detected when the ovulations are bilateral. Mares were teased daily with a stallion and follicular development was assessed daily during estrus by ultrasonography. Mares were inseminated daily during estrus and embryo recovery attempts were performed 6 to 7 d post ovulation. Double ovulations occurred as frequently from the same, as from opposite ovaries. The interval between the double ovulations was not shorter (P > 0.05) in unilateral versus bilateral ovulations. In addition, size of the largest and second largest preovulatory follicles was not altered (P > 0.05) by type of ovulation (bilateral vs unilateral) or synchrony of ovulation. Synchrony of ovulations had no affect (P > 0.05) on the incidence of twin embryos recovered. However, more (P < 0.05) twin embryos were recovered from bilateral ovulators compared to unilateral ovulators.  相似文献   

2.
The follicular dynamics of 112 mares treated with an equine pituitary extract were studied. Follicles >10 mm in diameter at day 15 post-ovulation appeared to represent the follicles which were induced with pituitary extract to grow and ovulate. This was shown by the greater number of >10 mm follicles in mares which subsequently had higher ovulation rates and by the subsequent decrease in number of small follicles (<20 mm) which corresponded with the increase in number of large follicles (>/=20 mm). The difference in diameter (mm) between the largest and second largest follicle on day 15 post-ovulation was greater (P<0.05) for extract-treated mares which subsequently had single ovulations than for extract-treated mares which subsequently had multiple ovulations (7.7 +/-1.5 vs 2.8 +/-0.6). The observed ratio of bilateral to unilateral multiple ovulations was not different (P>0.1) from the expected ratio which was calculated on the assumption that side of ovulation occurred independently (59:19 vs 62:16, observed vs expected).  相似文献   

3.
Crossbred gilts and sows (n=116) were used for the collection of 1-cell zygotes for DNA microinjection and transfer. Retrospectively, estrus synchronization and superovulation schemes were evaluated to assess practicality for zygote collection. Four synchronization and superovulation procedures were used: 1) sows were observed for natural estrous behavior; 1000 IU human chorionic gonadotrophin (hCG) was administered at the onset of estrus (NAT); 2) cyclic gilts were synchronized with 17.6 mg altrenogest (ALT)/day for 15 to 19 days followed by superovulation with 1500 IU pregnant mares serum gonadotropin (PMSG) and 500 IU hCG (LALT); 3) gilts between 11 and 16 days of the estrous cycle received 17.6 mg ALT for 5 to 9 days and PMSG and hCG were used to induce superovulation (SALT); and 4) precocious ovulation was induced in prepubertal gilts with PMSG and hCG (PRE). A total of 505 DNA microinjected embryos transferred into 17 recipients produced 7 litters and 50 piglets, of which 8 were transgenic. The NAT sows had less (P < 0.05) ovarian activity than gilts synchronized and superovulated by all the other procedures. Synchronization treatments with PMSG did not differ (P > 0.05) in the number of corpora hemorrhagica or unovulated follicles, but SALT and PRE treaments had higher ovulation rates than LALT (24.7 +/- 2.9, 24.3 +/- 1.8 vs 11.6 +/- 2.7 ovulations; X +/- SEM). The SALT and PRE treatments yielded 12.3 +/- 2.6 and 17.7 +/- 1.7 zygotes. Successful transgenesis was accomplished with SALT and PRE procedures for estrus synchronization and superovulation.  相似文献   

4.
In a study of 4 cyclic dry cows (Trial I) and 6 cyclic puberal heifers (Trial II), unilateral ovariectomy increased the number of ovulatory follicles, did not alter the hormone profile, cycle length or the number of follicular waves. Ovarian follicular development in all 4 cows was monitored daily using transrectal ultrasonography until the day of ovulation, during which period daily blood samples were also taken from the tail vein for determination of plasma FSH, LH and P4 concentrations. Unilateral ovariectomy was performed on the day after ovulation and ovarian activity was again monitored daily (ultrasonography and blood sampling for FSH, LH and P4) for 2 consecutive cycles (8 cycles in all). Estrus in all 6 heifers was synchronized using 2 injections of PGF2 alpha given 12 d apart. Similarly, ovarian activity in the 6 puberal heifers was monitored daily using ultrasonography and blood sampling for 1 complete control cycle. Following estrus and ovulation the left ovary was removed in all the animals, and thereafter 1 complete cycle was followed. Mean cycle length, FSH, LH and P4 concentrations before and after unilateral ovariectomy were compared using paired sample t-test. The results show that unilateral ovariectomy neither altered the cycle length nor the number of follicular waves in the cows, but it increased the number of ovulatory follicles (2 follicles developed and ovulated in 6 of the 8 cycles). The mean diameter of the largest follicle was 16.1 +/- 0.9 mm and the second largest 12.5 +/- 0.9 mm. No significant (P > 0.05) differences were observed in FSH (0.72 +/- 0.09 vs 0.71 +/- 0.07), LH (0.42 +/- 0.1 vs 0.37 +/- 0.07) and P4 (2.8 +/- 0.6 vs 2.6 +/- 0.4) levels before and after unilateral ovariectomy. Of the 6 heifers, 5 had 2 waves and 1 heifer had 3 waves of follicular growth during the control cycle, and this pattern did not change after the procedure. Mean cycle length (20.7 +/- 0.9 vs 21 +/- 0.9) did not differ before and after unilateral ovariectomy, and 4 of the 6 heifers ovulated twin follicles following ovariectomy. The mean diameter of the largest follicle was 14.5 +/- 0.7 mm and second largest measured 12.1 +/- 0.8 mm. No significant (P > 0.05) differences were observed in FSH (0.16 +/- 0.09 vs 0.21 +/- 0.07), LH (0.11 +/- 0.1 vs 0.15 +/- 0.07) and P4 levels (3.6 +/- 0.26 vs 3.8 +/- 0.29) before and after unilateral ovariectomy. Based on these results, we conclude that unilateral ovariectomy is an ideal method for obtaining twin ovulations in cows and heifers.  相似文献   

5.
Follicular growth and ovulation in response to FSH, progesterone and hCG were evaluated in postpartum beef cows. In Experiment 1, on Day 21 post partum, cows received an injection of either saline (control; n = 6), FSH (200 mg; n = 6), or a PRID (n = 5) for 10 d. Both FSH and PRID prolonged maintenance of a dominant follicle (15.5 +/- 1.16 and 14.4 +/- 1.29 d, respectively, vs 8.4 +/- 1.22 d in control; P < 0.01), and increased the maximum diameter of the dominant follicle (14.0 +/- 0.91 and 16.4 +/- 1.01 mm, respectively, vs 10.9 +/- 0.95 mm in control; P < 0.05). The PRID-maintained dominant follicle ovulated in 60% of cows, followed by normal estrous cycles (vs 0% in control; P = 0.01), whereas the dominant follicle ovulated in 33% of FSH-treated cows (P = 0.08). The PRID regimen shortened the interval to first ovulation preceding a normal cycle and continued cyclicity (44 +/- 4.1 vs 60 +/- 4.4 d in control; P = 0.02). In Experiment 2, on Day 21 post partum, cows received either saline (control), saline + PRID, or FSH + PRID (n = 16/group). Sixty hours after PRID withdrawal, cows received either saline or hCG (1,500 IU, n = 8/treatment). The FSH + PRID regimen increased the number of large (> 10 mm in diameter) follicles (3.6 +/- 0.43 vs 1.9 +/- 0.39 in control; P = 0.005). Both PRID and FSH + PRID prolonged maintenance of the largest follicle (11.0 +/- 0.82 and 11.2 +/- 0.91 d, respectively, vs 8.7 +/- 0.81 d in control; P < 0.05). The PRID-maintained dominant follicle ovulated in 50% of cows, followed by normal estrous cycles. The FSH + PRID-maintained largest follicle had become atretic at PRID withdrawal and was anovulatory. The FSH + PRID + hCG regimen increased the incidence of ovulation preceding a cycle of normal duration and continued cyclicity (100 vs 50% in PRID; P = 0.03), and reduced the interval to first ovulation preceding a cycle of normal duration and continued cyclicity (38 +/- 6.5 vs 58 +/- 6.3 d in control; P = 0.04). The area under the progesterone curve during the induced cycle was reduced after (PRID +/- FSH) + hCG than after PRID +/- FSH (P = 0.002). These results indicate that PRID alone or with FSH/hCG has the potential to modify the dominant follicle and initiate cyclicity in postpartum beef cows.  相似文献   

6.
This study examined the effect of treating mares with equine pituitary extract (EPE) alone or in combination with hCG on the recovery rate of immature follicles by transvaginal follicular aspiration (ovum pick-up; OPU). Ten normally cycling crossbred mares aged 3-15 years and weighing 350-400 kg were subjected to each of three treatments in a random sequence with each exposure to a new treatment separated by a rest cycle during which a spontaneous ovulation occurred. The treatments were (1) superovulated with 25mg EPE and treated with 2500 IU hCG, (2) superovulation with 25mg EPE, and (3) control (no exogenous treatment). Treatments 7 days after spontaneous ovulation; and all the follicles >10mm were aspirated 24h after the largest follicle achieved a diameter of 27-30 mm for control group, and most follicles reached 22-27 mm for the EPE alone treatment. To the group EPE+hCG, when the follicles reached 22-27 mm, hCG was administered, 24h before OPU. Superovulation increased the number of follicles available for aspiration. The total number of follicles available for aspiration was 61 in the EPE/hCG group, 63 in the EPE group and 42 in the control. The proportion of follicles aspirated varied from 63.5% to 73.8%. Oocyte recovery rate ranged from 15.0% to 16.7% and the proportion of mares that yielded at least one oocyte was 70% (7/10) in the EPE/hCG, 60% (6/10) in the EPE alone and 50% (5/10) in control group. The EPE/hCG treatment had a higher proportion of follicles with expanded granulose cells (64.4%) than the control (3.3%; p<0.05) and the EPE treatment (25.0%). The intervals from spontaneous ovulation to aspiration were similar for all treatments (11-12 days). However, superovulatory treatment significantly increased the aspiration to ovulation interval from 15+/-4 days for control to 27+/-15 days for EPE (p<0.05) and to 23+/-13 days for EPE/hCG treatment with commensurate increases in the time between spontaneous ovulations.  相似文献   

7.
The objectives of this study were: 1) to document age-related ovulation failure in mares and 2) to contrast the number of ovarian follicles, occurrence of ovulations, and postovulatory concentrations of progesterone in aged versus young mares. In Experiment 1, 4 of 10 aged (25- to 33-years-old) mares were anovulatory between July 1 and September 1, 1989. In Experiment 2, two of 25 aged (20- to 30-years-old) and none of 21 young (3- to 12-years-old) mares were anovulatory between February 1 and June 30, 1990. The average (+/- SEM) day of the first ovulation was later (P<0.05) for aged versus young mares (May 9 +/- 7.1 vs April 25 +/- 7.4 days, respectively). There tended (P<0.10) to be fewer 11- to 20-mm ovarian follicles in aged versus young mares (2.8 +/- 0.2 vs 5.3 +/- 0.1, respectively), but there was no difference (P>0.10) in the total number of ovarian follicles in aged versus young mares (21.0 +/- 0.3 vs 26.1 +/- 0.2, respectively) during the pooled periovulatory period of the first and second (single) ovulations. The number of ovulatory cycles during the study period was less (P=0.01) for aged versus young mares (2.2 +/- 0.3 vs 3.2 +/- 0.3). Plasma progesterone concentrations on Days 10 and 15 of the first ovulatory cycle were higher (P<0.05) in aged versus young mares.  相似文献   

8.
Methods for the control of ovulation with GnRH or the GnRH analog D-Phe6 -LHRH (GnRH-A), were evaluated in gilts and sows as the last step in development of a fixed-time Al protocol. This involved 3 field trials using 2,744 gilts (10 units) and 71,628 sows (33 units). In Trial 1, the GnRH-A (75 microg) was given subsequent to treatment with altrenogest for cycle control or eCG for the stimulation of uniform follicle development in gilts. The release of LH was followed by ovulations which commenced within 36.4 +/- 3.3 hr and were terminated at 39.0 +/- 2.8 hr after administration of GnRH-A. This degree of synchronization of ovulations enabled the use of fixed-time AI. Consequently, subsequent to pretreatment with altrenogest and eCG, in 10 production units 1,285 gilts received 50 microg GnRH-A and 1,459 gilts 500 IU hCG serving as positive controls (Trial 2); all the gilts were inseminated 24 and 42 hr after treatment. Pregnancy rate and piglet index (n of piglets per 100 first inseminations) following GnRH-A vs hCG were 78.8% and 779 vs 74.4% and 728, respectively (P < 0.05). In field trials with first litter gilts and multiparous sows (33 units holding from 250 to 6,000 sows), 1,000 IU eCG was used for estrus control after weaning and 25 microg or 50 microg GnRH-A were given 55 to 58 hours after eCG (n = 19,954 and 20,701) (Trial 3). Sows treated during the same time period with 300 microg GnRH plus 300 IU. hCG (n = 30,973) served as positive controls; all sows were inseminated 24 and 42 hours after treatment. Pregnancy rates for 50 microg GnRH-A, 25 microg GnRH-A and 300 microg GnRH plus 300 IU hCG were 83.0%, 81.7% and 80.7%, and the piglet indices 913, 899 and 880, respectively (P < 0.05). Unit size and parity had significant effects on fertility and productivity. In all studies, results with 50 microg GnRH-A were superior. In year-long studies, highest levels of fertility in response to these treatments were seen from December to May.  相似文献   

9.
Variability in the superovulation response is an important problem for the embryo transfer industry. The objective of this study was to determine whether FSH treatment at the beginning of the cycle would improve the ovulation rate and embryo yield in dairy cows. Twenty-eight postpartum cyclic dairy cows were allocated at random to 4 treatment groups (A, B, C and D). Group A cows (n = 10) received FSH (35 mg) at a decreasing dose, starting on Day 9 (Day 0 = day of estrus) for 5 days followed by PGF(2alpha) (35 mg) on Day 12. Cows assigned to Groups B, C and D (n = 6 cows each, respectively) were given 35 mg FSH at a decreasing dose from Days 2 to 6 followed by PGF(2alpha) on Day 7. Group C and D cows received PRID inserts from Day 3 to Day 7. Cows in Group D additionally received 1000 IU hCG 60 hours after PGF(2alpha) treatment. Ovaries were scanned daily using a real time ultrasound scanner from the beginning of FSH treatment until embryo recovery, to monitor follicular development, ovulation and the number of unovulated follicles. Embryos were recovered from the uterus by a nonsurgical flushing technique 7 days after breeding. There were no differences (P>0.01) in the number of follicles > 10 mm at 48 hours after PGF(2alpha) treatment among the 4 groups. The mean numbers of follicles were 10.6 +/- 1.2, 9.3 +/- 1.3, 12.2 +/- 1.3 and 15.0 +/- 2.9 for Groups A, B, C and D, respectively. A significantly (P<0.001) higher number of ovulations was observed and a larger number of embryos was recovered in Group A than in the other groups. The results of this study indicate that superovulation with FSH at the beginning of the cycle causes sufficient follicular development but results in very low ovulation and embryo recovery rates.  相似文献   

10.
The aim of this work was to evaluate the effect of different doses of eCG administered subcutaneously (0, 50 and 200 IU) and the hormonal induction of ovulation (GnRH or hCG) on embryo recovery and in vitro development of embryos post-vitrification in two selected lines of rabbit does. The two selected lines were line V (selected for the litter size at weaning) and line R (selected for growth rate). Administration of 200 IU of eCG significantly increased ovulation rate (19.2 +/- 1.2 versus 15.5 +/- 1.1 and 12.2 +/- 1.3, and the number of haemorrhagic follicles (13.8+/-1.6 versus 3.8+ /- 1.4 and 3.8 +/- 1.7), but significantly decreased recovery rate (28.8 +/- 6.3 versus 47.7 +/- 5.7 and 48.7 +/- 6.7, 200 IU versus 50 IU and 0 IU eCG, respectively), the number of normal embryos recovered per doe with at least one embryo (5.8 +/- 0.9 versus 8.2 +/- 0.9, 200 IU versus 50 IU eCG doses) and the in vitro development of embryos post-vitrification (51.9% versus 66.1%, 200 IU versus 50 IU eCG doses, respectively). Inducing ovulation with hCG significantly increased ovulation rate when compared with GnRH (17.3 +/- 0.8 versus 13.8+/-1.4), but no significant differences in embryo recovery and embryo development post-vitrification were observed between the two treatments. No significant differences were observed between the two selected lines in ovulation and recovery rates, the number of haemorrhagic follicles and the number of recovered embryos per doe. However, the post-vitrification in vitro rate of development was 59.7% for line R and 51.9% for line V (p < 0.05). It was concluded that the use of 50 IU of eCG subcutaneous with hCG or GnRH prior to embryo cryopreservation programmes in rabbits achieves the best results for embryo recovery, with the best development of recovered embryos post-vitrification.  相似文献   

11.
Data in the literature on twin ovulations and twin pregnancies were used to examine the distribution (unilateral vs bilateral) of twin ovulations and associated effects on embryo survival. Unilateral twin ovulations averaged 52% but there was significant heterogeneity among sources. Twenty-five percent of subjects which became pregnant following twin ovulations had unilateral twin ovulations. This suggests that fertilisation failure or embryo mortality, or both, are greater for unilateral twin ovulations. Using data on pregnant cows, the probability of embryo loss increased by an estimated 0.22 for unilateral twin ovulations compared with bilateral twin ovulations or single ovulations. Using the estimates obtained, the expected litter size was calculated for a range of ovulation rates with varying proportions of unilateral twin ovulations and different levels of embryo mortality. Litter size was not very sensitive to the distribution of twin ovulations.  相似文献   

12.
Lactating Friesian dairy cows (2nd-4th parity) which calved in spring (N = 7) or autumn (N = 15) were used. Their ovaries were examined by ultrasound scanning and blood samples were obtained daily for progesterone and oestradiol concentrations from the 5th day after calving until the first post-partum ovulation occurred. Five autumn-calving cows selected at random were bled every 15 min over a 6-h period on 1 day each week for 4 weeks after calving to assess the patterns of LH secretion. Follicular development during the post-partum anoestrous period was characterized by the growth and regression of small (less than or equal to 4 mm) and medium-sized (5-9 mm) follicles, until a dominant follicle (greater than 10 mm) was detected. The first detected dominant follicle ovulated in 14 cows, became cystic in 4 cows (all in autumn), and failed to ovulate in 1 cow. It was not possible to detect a dominant follicle in 3 cows due to scanning difficulties. The post-partum interval to detection of the first dominant follicle (mean +/- s.d.) was shorter (P less than 0.05) in autumn (6.8 +/- 1.8 days) than in spring (20 +/- 10.1 days). However, there was no significant difference between the respective intervals to first ovulation (autumn 27.4 +/- 25.9 and spring 27.3 +/- 18.9 days). Autumn-calved cows which had cysts had longer (P less than 0.001) intervals to first ovulation (58.2 +/- 23.5 days) than did normal cows (12.0 +/- 2.5 days). All cows with cysts had twin ovulations at their first post-partum ovulation. A pulsatile pattern of LH secretion was detected in the first week post-partum and LH pulse frequency was 2-3 per 6-h period in Weeks 1 and 2 post partum and increased to 5-7 pulses per 6-h period in the presence of a dominant or cystic follicle. Concentrations of progesterone in plasma during post-partum anoestrus were usually low (less than 0.2 ng/ml); oestradiol concentrations were also low (less than 5 pg/ml), but higher values (5-110 pg/ml) were observed in cows that had a dominant or a cystic follicle.  相似文献   

13.
Ovulation failure and double ovulation rates were examined in 1917 inseminations performed in high-yielding dairy cows under standard commercial conditions. The ovulation rate was determined 11 days post-insemination by ultrasound detection of at least one corpus luteum in the ovaries. Analyzing the double ovulation and pregnancy rates, the study population consisted only of ovulated cows (n = 1792). Data were analyzed using logistic regression methods. A failure to ovulate was recorded in 125/1917 (6.5%) services: 82/663 (12.4%) during the warm and 43/1254 (3.4%) during the cool period. Based on the odds ratios, the risk of ovulation failure was 3.9 times higher for inseminations performed during the warm period. No significant effects of estrous synchronization, milk production and days in milk at AI, and service and lactation number on ovulation failure were found. Double ovulation was recorded in 277/1792 (15.5%) services: 146 (52.7%) unilateral double ovulations (42.5% left versus 57.5% right); 115 (41.5%) bilateral double ovulations; and 16 (5.8%) triple ovulations. Double ovulation was recorded in 72 (12.4%) and 205 (16.9%) AI during the warm and the cool period, respectively. The percentages of double ovulation for first, second and third or more lactations were 6.7, 16.6 and 25%, respectively. Double ovulation rates for early (less than 90 days), mid- (90-150 days) and late (more than 150 days) lactation periods were 13, 20.7 and 14.2%, respectively. Reaching estrus during the warm period decreased the likelihood of double ovulation by a factor of 0.86; the risk of double ovulation was lower in cows with higher milk production (a 1 kg increase in milk yield led to a 0.97-fold reduced risk of double ovulation); cows in their second and in their third or more lactations showed a likelihood of double ovulation (using the first lactation as reference) increased by factors of 3.4 and 5.6, respectively; and reaching estrus during the early and late lactation period was related to a decreased probability of double ovulation (using the mid-lactation period as reference) by factors of 0.56 and 0.84, respectively. No significant effects of synchronization and service number on the double ovulation rate were found. Pregnancy was recorded in 914/1792 (51%) services: rates of 53.5% (811/1515) were recorded for single ovulations; 37.2% (103/277) for double ovulations: 28.8% (42/146) for unilateral double ovulations; 45.2% (52/115) for bilateral double ovulations; and 56.3% (9/16) for triple ovulations. The likelihood of pregnancy diminished in cows: inseminated during the warm period (by a factor of 0.5); inseminated by one particular bull (by a factor of 0.33); with higher milk production (a 1 kg increase in milk yield decreased the probability of pregnancy by a factor of 0.98); or undergoing unilateral (by a factor of 0.31) and bilateral (by a factor of 0.64) double ovulation. Logistic regression analysis indicated no significant effects of synchronization, days in milk, lactation number and service number on pregnancy rate. Collectively, our results indicate that cows showing estrus in conditions of heat stress had a high risk of ovulation failure. The effect of milk production on double ovulation was negative, whereas lactation number was positively correlated with this factor; the highest incidence of double ovulation occurring during the mid-lactation period.  相似文献   

14.
One hundred and thirteen crossbred gilts were used in three experiments to examine the relationship between the pattern or sequence of ovulation and subsequent variation in the morphology of Day 11 embryos. In the first experiment, the percentage of follicles that had ovulated was determined in individual gilts at 26, 30, 34, or 38 h after the onset of estrus (n = 20) and 39, 41, 43, 45, or 47 h post-injection of human chorionic gonadotropin (n = 25; hCG, 1000 IU). The second experiment consisted of observing the percentage of follicles ovulated in 52 additional gilts at 34 h after the onset of estrus (Day 0). In the third experiment, the morphological variation among littermate embryos was compared on Day 11 between sham-operated control gilts (n = 8) and gilts whose nonovulated follicles were destroyed by electrocautery (n = 8) on Day 1. Results of these experiments indicated that the pattern of ovulation in gilts was skewed (p less than 0.01). Ovulation, induced with hCG, appeared to occur in a majority of follicles during a short period of time, whereas the remaining ovulations occurred over a longer interval. Of the 57 gilts observed at 34 h after natural estrus, ovaries of 25 gilts contained corpora hemorrhagica (CH) and follicles; one gilt had 1 CH and 17 follicles, and 24 others had 10-17 CH with 1-4 follicles remaining. Destruction of these nonovulated follicles resulted in a more (p less than 0.01) uniform group of Day 11 embryos and with fewer (p less than 0.05) small embryos. These data demonstrated that the pattern of ovulation may affect morphological variation in embryonic development such that some of the later ovulating follicles may represent smaller embryos within a litter.  相似文献   

15.
Because cow ovaries do not contain a dominant follicle before Day 3 of the estrous cycle, we hypothesized that gonadotropin treatment early in the estrous cycle would induce growth of multiple follicles and could be used to induce superovulation. In Experiment 1, when 16 cows were treated with FSH-P beginning on Day 2 of the estrous cycle and were slaughtered on Day 5, all cows responded to gonadotropin treatment by exhibiting a large number ( approximately 19) of estrogenactive follicles >/= 6 mm. In Experiment 2, in response to FSH-P treatment from Day 2 to Day 7, and fenprostalene treatment on Day 6, 11 of 15 cows exhibited estrus and had a mean ovulation rate of 23.7 +/- 1.5. In Experiment 3, an FSH-P treatment regimen identical to that used in Experiment 2 was administered to cows beginning either on Day 2 (Day-2 cows; n=14) or Day 10 (Day-10 cows; n=11) of the estrous cycle. Twelve of 14 Day-2 cows and all Day-10 cows exhibited estrus after fenprostalene treatment. Day-2 cows exhibited 34.3 +/- 7.0 ovulations, which was less (P < 0.05) than that exhibited by Day-10 cows (48.3 +/- 4.4). However, the proportion of embryos recovered per corpus luteum was about 2-fold greater (P < 0.05) for Day-2 cows than for Day-10 cows (0.49 +/- 0.08 vs 0.27 +/- 0.06). These data indicate that beginning gonadotropin treatment early in the estrous cycle, when a dominant follicle is not present, provides an efficacious means to induce growth of multiple follicles and superovulation in cows. However, when FSH was administered for 6 d, beginning the treatment on Day 10 also resulted in a consistent and efficacious response.  相似文献   

16.
We hypothesized that reducing the size of the ovulatory follicle using aspiration and GnRH would reduce the size of the resulting CL, reduce circulating progesterone concentrations, and alter conception rates. Lactating dairy cows (n=52) had synchronized ovulation and AI by treating with GnRH and PGF2alpha as follows: Day -9, GnRH (100 microg); Day -2, PGF2alpha (25 mg); Day 0, GnRH (100 microg); Day 1, AI. Treated cows (aspirated group; n=29) had all follicles > 4 mm in diameter aspirated on Days -5 or -6 in order to start a new follicular wave. Control cows (nonaspirated group: n=23) had no follicle aspiration. The size of follicles and CL were monitored by ultrasonography. The synchronized ovulation rate (ovulation rate to second GnRH injection: 42/52=80.8%) and double ovulation rate of synchronized cows (6/42=14.3%) did not differ (P > 0.05) between groups. Aspiration reduced the size of the ovulatory follicle (P < 0.0001; 11.5 +/- 0.2 vs 14.5 +/- 0.4 mm), and serum estradiol concentrations at second GnRH treatment (P < 0.0002; 2.5 +/- 0.4 vs 5.7 +/- 0.6 pg/mL). The volume of CL was less (P < 0.05) for aspirated than nonaspirated cows on Day 7 (2,862 +/- 228 vs 5,363 +/- 342 mm3) or Day 14 (4,652 +/- 283 vs 6,526 +/- 373 mm3). Similarly, serum progesterone concentrations were less on Day 7 (P < 0.05) and Day 14 (P < 0.10) for aspirated cows. Pregnancy rate per AI for synchronized cows was lower (P < 0.05) for aspirated (3/21=14.3%) than nonaspirated (10/21=47.6%) cows. In conclusion, ovulation of smaller follicles produced lowered fertility possibly because development of smaller CL decreased circulating progesterone concentrations.  相似文献   

17.
The present study was designed to examine mechanism(s) of the anti-ovulatory action of the anti-androgen, hydroxyflutamide (OH-F). Prepubertal rats were treated with 4 IU pregnant mare's serum gonadotropin (PMSG) (day -2) to induce first estrus and ovulation. They received OH-F in sesame oil or oil alone at 08:00 and 20:00 h on day 0 (the day of proestrus) and ovulations were assessed on the morning of day 1. Eighty-three percent of control animals ovulated with a mean of 7.7 +/- 1.1 corpora lutea per rat. Hydroxyflutamide blocked ovulation in all but 2 of the 12 rats receiving this drug alone. All of OH-F treated rats that received 5 and 25 IU human chorionic gonadotropin (hCG) ovulated with means +/- SEM of 9.1 +/- 0.1 and 7.3 +/- 1.4 corpora lutea per rat, respectively. The dose of 0.2 IU hCG was essentially ineffective, while the effect of 1.0 IU hCG was intermediate. At the dose of 20 ng and above (100 and 500 ng) luteining hormone-releasing hormone (LHRH) completely overcame the ovulation blockade in the OH-F treated animals, while a 4-ng dose was ineffective. At 18:00 h on the day of proestrus, serum LH levels in control animals were 17.56 +/- 2.60 ng/mL, which were 920% above basal levels (1.90 +/- 0.13) indicating a spontaneous LH surge. This surge was suppressed in OH-F treated rats. Injection of LHRH, at the dose of 20 ng and above, reinstated the LH release in OH-F treated animals. Thus, the anti-androgen, OH-F, inhibits ovulation in PMSG-treated immature rats through its interference with the preovulatory LH surge; the inhibition can be reversed by hCG or LHRH. Hydroxyflutamide does not appear to interfere at the level of the pituitary, but may have direct action at the hypothalamic and (or) extrahypothalamic sites involved in the generation of positive feedback signals that control LH release.  相似文献   

18.
Experiments were designed to test the hypotheses that ovarian follicular response to superstimulatory treatment initiated during Wave 1 is equivalent to that of Wave 2, and recovery rate and quality of ova embryos derived from follicles of Wave 1 are equivalent to those derived from follicles of Wave 2. In a preliminary experiment (Experiment 1), heifers were given Folltropin-V (20 mg NIH-FSH-P1, im, bid for 5 d) beginning the day after emergence of the first (n=10) or second (n=10) follicular wave of the estrous cycle, equivalent to approximately Day 1 and Day 10, respectively (Day 0=ovulation). Luteolysis was induced with cloprostenol (500 mug im, bid) on the fourth day of treatment. Fewer (P<0.05) ovulations per heifer were induced in the Wave 1 group than in the Wave 2 group (4.6+/-1.0 vs 9.1+/-1.3). However, the interval from wave emergence to initiation of treatment was found, in retrospect, to have been longer (P<0.05) in the Wave 1 group, i.e., treatment was initiated relatively later with respect to wave emergence. Experiment 2 was designed to correct this disparity and to initiate the same treatment protocol on the day of wave emergence rather than the day after (n=21 per Wave group). There was no difference between Wave 1 and Wave 2 groups in the interval from wave emergence to initiation of treatment (0.4+/-0.1 d), the number of ovulations detected by ultrasonography (6.6+/-1.0 vs 8.2+/-1.7), the number of CL detected at slaughter (6.5+/-0.9 vs 8.1+/-1.8), the total number of ova embryos recovered (5.2+/-0.7 vs 5.1+/-0.8), or the number of fertilized embryos collected (2.8+/-0.6 vs 3.0+/-0.6). In addition, there was no difference between groups in the proportion of heifers that ovulated in either experiment; collectively, luteolysis and ovulation was induced in 58 of 60 heifers. The results supported the general hypothesis that follicles and oocytes of the first and second follicular waves are equivalent in the response to superstimulatory treatment. Regardless of which follicular wave, initiation of treatment near the time of wave emergence appears critical for maximal superovulatory response. Because of the consistency in the time of emergence of Wave 1 (day of ovulation) and equivalence in superovulatory response, use of Wave 1 rather than subsequent follicular waves may be more convenient and time-sparing in superovulation programs; the day of estrus (day before ovulation) may be used as a consistent point of reference for the start of treatment.  相似文献   

19.
Two consecutive experiments were conducted. In Experiment 1, 24 Friesian lactating cows were randomly assigned to two groups. Cows in Group I received intramuscularly (i.m.) 500 mcg of cloprostenol, 1250 IU of human chorionic gonadotropin (hCG) and 5 mg of estradiol benzoate 12 h after cloprostenol treatment. Cows in Group II received 750 IU i.m. of hCG and 3 mg of estradiol benzoate 12 h after cloprostenol treatment. Treatment was given on Day 16 after estrus in both groups. All animals showed estrus within 24 to 48 h after cloprostenol treatment. The average interval from cloprostenol injection to the onset of estrus was not influenced by treatments. Four cows in Group I failed to ovulate and became cystic. In Experiment 2, 71 Friesian lactating cows were randomly assigned to two groups. Cows in Group I received 500 mcg i.m. of cloprostenol after corpus luteum detection by palpation per rectum. Cows in Group II received 500 mcg of cloprostenol plus 750 IU of hCG and 3 mg of estradiol benzoate 12 h after. When estrus ready for service was confirmed by rectal examination, cows were inseminated. The percentage of cows ready for service tended to be lower (P < 0.06) between cows in Group I (88%) and those in Group II (100%). The average interval from cloprostenol treatment to service was longest (P < 0.001) in Group I (78.7 h +/- 14.9, X +/- SD) vs Group II (48 h +/- 2.9). The degree of readiness for service synchrony was lowest (P < 0.001) in Group I (59.3%) vs Group II (94.2%). The pregnancy rates of cows synchronized or treated were not altered by hCG-estradiol benzoate treatment (P > 0.25). These results suggest that in dairy cows treated with cloprostenol following palpation per rectum of a corpus luteum and then with 750 IU of hCG and 3 mg of estradiol benzoate 12 h later, a single fixed-time insemination at 48 h after cloprostenol treatment should be performed.  相似文献   

20.
We used immunoneutralization of endogenous estradiol to investigate deficiencies in the estradiol-feedback regulation of LH secretion as a primary cause of follicular cysts in cattle. Twenty-one cows in the prostaglandin (PG) F(2alpha)-induced follicular phase were assigned to receive either 100 ml of estradiol antiserum produced in a castrated male goat (n = 11, immunized group) or the same amount of castrated male goat serum (n = 10, control group). The time of injection of the sera was designated as 0 h and Day 0. Five cows in each group were assigned to subgroups in which we determined the effects of estradiol immunization on LH secretion and follicular growth during the periovulatory period. The remaining six estradiol-immunized cows were subjected to long-term analyses of follicular growth and hormonal profiles, including evaluation of pulsatile secretion of LH. The remaining five control cows were used to determine pulsatile secretion of LH on Day 0 (follicular phase) and Day 14 (midluteal phase). The control cows exhibited a preovulatory LH surge within 48 h after injection of the control serum, followed by ovulation of the dominant follicle that had developed during the PGF(2alpha)-induced follicular phase. In contrast, the LH surge was not detected after treatment with estradiol antiserum. None of the 11 estradiol-immunized cows had ovulation of the dominant follicle, which had emerged before estradiol immunization and enlarged to more than 20 mm in diameter by Day 10. Long-term observation of the six immunized cows revealed that five had multiple follicular waves, with maximum follicular sizes of 20-45 mm at 10- to 30-day intervals for more than 50 days. The sixth cow experienced twin ovulations of the initial persistent follicles on Day 18. The LH pulse frequency in the five immunized cows that showed the long-term turnover of cystic follicles ranged from 0.81 +/- 0.13 to 0.97 +/- 0.09 pulses/h during the experiment, significantly (P < 0.05) higher than that in the midluteal phase of the control cows (0.23 +/- 0.07). The mean LH concentration in the immunized cows was also generally higher than that in the luteal phase of the control cows. However, the LH pulse and mean concentration of LH after immunization were similar to those in the follicular phase of the control cows. Plasma concentrations of total inhibin increased (P < 0.01) concomitant with the emergence of cystic follicles and remained high during the growth of cystic follicles, whereas FSH concentrations were inversely correlated with total inhibin concentrations. In conclusion, neutralization of endogenous estradiol resulted in suppression of the preovulatory LH surge but a normal range of basal LH secretion, and this circumstance led to an anovulatory situation similar to that observed with naturally occurring follicular cysts. These findings provide evidence that lack of LH surge because of dysfunction in the positive-feedback regulation of LH secretion by estradiol can be the initial factor inducing formation of follicular cysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号