首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The activity of L-arginine decarboxylase (EC 4.1.1.19) and L-ornithine decarboxylase (EC 4.1.1.17), polyamine content, and incorporation of arginine and ornithine into polyamines, were determined in mung bean [Vigna radiata (L.) Wilczek] plants subjected to salt (hypertonic) stress (NaCl at 0.51–2.27 MPa). Changes in enzyme activity in response to hypotonic stress were determined as well in several halophytes [Pulicaria undulata (L.), Kostei, Salsola rosmarinus (Ehr.) Solms-Laub, Mesembryanthemum forskahlei Hochst, and Atriplex halimus L.]. NaCl stress, possibly combined with other types of stress that accompanied the experimental conditions, resulted in organ-specific changes in polyamine biosynthesis and content in mung bean plants. The activity of both enzymes was inhibited in salt-stressed leaves. In roots, however, NaCl induced a 2 to 8-fold increase in ornithine decarboxylase activity. Promotion of ornithine decarboxylase in roots could be detected already 2 h after exposure of excised roots to NaCl, and iso-osmotic concentrations of NaCl and KCl resulted in similar changes in the activity of both enzymes. Putrescine level in shoots of salt-stressed mung bean plants increased considerably, but its level in roots decreased. The effect of NaCl stress on spermidine content was similar, but generally more moderate, resulting in an increased putrescine/spermidine ratio in salt-stressed plants. Exposure of plants to NaCl resulted also in organ-specific changes in the incorporation of both arginine and ornithine into putrescine: incorporation was inhibited in leaf discs but promoted in excised roots of salt-stressed mung bean plants. In contrast to mung bean (and several other glycophytes), ornithine and arginine decarboxylase activity in roots of halophytes increased when plants were exposed to tap water or grown in a pre-washed soil—i.e. a hypotonic stress with respect to their natural habitat. NaCl, when present in the enzymatic assay mixture, inhibited arginine and ornithine decarboxylase in curde extracts of mung bean roots, but did not affect the activity of enzymes extracted from roots of the halophyte Pulicaria. Although no distinct separation between NaCl stress and osmotic stress could be made in the present study, the data suggest that changes in polyamines in response to NaCl stress in mung bean plants are coordinated at the organ level: activation of biosynthetic enzymes concomitant with increased putrescine biosynthesis from its precursors in the root system, and accumulation of putrescine in leaves of salt-stressed plants. In addition, hypertonic stress applied to glycophytes and hypotonic stress applied to halophytes both resulted in an increase in the activity of polyamine biosynthetic enzymes in roots.  相似文献   

2.
The effects of the inhibitors of polyamine biosynthesis, canavanineand -methyl ornithine on growth, the activities of argininedecarboxylase (EC 4.1.1.19 [EC] ) and ornithine decarboxylase (EC4.1.1.17 [EC] ) and on polyamine content were examined in two differentgrowth regions of Phaseolus vulgaris L. cv. Taylor's Horticulturalroots. Separately, in the same manner, in the same bean rootsystem exogenous putrescine effect and the interaction of canavaninewith putrescine were determined. The arginine and ornithine decarboxylase activities found inroot apex were high where cell division activity was highest.Polyamine (putrescine and spermine) content did not correlatewith these activities, but polyamine level was high in the rootbase where cell elongation is the main process. The arginineanalogue, canavanine, inhibited arginine decayboxylase activityand polymine liters. Putrescine partially reversed the canavanineinhibition of root growth as well as arginine decarboxylaseactivity and polyamine content. Similarly -methyl ornithineslightly inhibited the root length and ornithine decarboxylaseactivity in the root apex. Besides, exogenous putrescine didnot effect significantly the endogenous polyamine titers. Theseresults reinforce the growing connection between polyaminesand the rates of cell devision in the roots of bean plants.Separately, arginine decarboxylase is the main enzyme in thebean roots. (Received November 10, 1986; Accepted March 3, 1987)  相似文献   

3.
The ornithine urea cycle, polyamine synthesis, nitric oxide synthesis and metabolism of arginine to putrescine have been investigated in L3 and adult Haemonchus contortus and Teladorsagia circumcincta. Neither parasite had a detectable arginine deiminase/dihydrolase pathway nor a functional ornithine urea cycle. Nitric oxide synthase was present in central and peripheral nerves, but was not detected in whole parasite homogenates. Both arginase (E.C. 3.5.3.1) and agmatinase (E.C. 3.5.3.11) activities were present in both species. Arginase did not require added Mn2+ and had an optimal pH of 8.5. Polyamine metabolism differed in the two species and from that in mammals. Ornithine decarboxylase (E.C. 4.1.1.17) was present in both parasites, but no arginine decarboxylase (E.C. 4.1.1.19) activity was detected in T. circumcincta. The flexibility of synthesis of putrescine in H. contortus may make this pathway less useful as a target for parasite control than in T. circumcincta, in which only the ornithine decarboxylase pathway was detected.  相似文献   

4.
This review considers the role of antizyme, of amino acids and of protein synthesis in the regulation of polyamine biosynthesis.The ornithine decarboxylase of eukaryotic ceils and ofEscherichia coli coli can be non-competitively inhibited by proteins, termed antizymes, which are induced by di-and poly- amines. Some antizymes have been purified to homogeneity and have been shown to be structurally unique to the cell of origin. Yet, the E. c o l i antizyme and the rat liver antizyme cross react and inhibit each other's biosynthetic decarboxylases. These results indicate that aspects of the control of polyamine biosynthesis have been highly conserved throughout evolution.Evidence for the physiological role of the antizyme in mammalian cells rests upon its identification in normal uninduced cells, upon the inverse relationship that exists between antizyme and ornithine decarboxylase as well as upon the existence of the complex of ornithine decarboxylase and antizyme in vivo. Furthermore, the antizyme has been shown to be highly specific; its Keq for ornithine decarboxylase is 1.4 x 1011 M-1. In addition, mammalian ceils contain an anti-antizyme, a protein that specifically binds to the antizyme of an ornithine decarboxylase-antizyme complex and liberates free ornithine decarboxylase from the complex. In B. coli , in which polyamine biosynthesis is mediated both by ornithine decarboxylase and by arginine decarboxylase, three proteins (one acidic and two basic) have been purified, each of which inhibits both these enzymes. They do not inhibit the biodegradative ornithine and arginine decarboxylases nor lysine decarboxylase. The two basic inhibitors have been shown to correspond to the ribosomal proteins S20/L26 and L34, respectively. The relationship of the acidic antizyme to other known B. coli proteins remains to be determined.  相似文献   

5.
Background: Helicobacter pylori infection is a major cause of gastritis and gastric carcinoma. Aspirin has anti‐inflammatory and antineoplastic activity. The aim of the present study was to determine the effects of aspirin on H. pylori‐induced gastritis and the development of heterotopic proliferative glands. Methods: H. pylori strain SS1 was inoculated into the stomachs of Mongolian gerbils. Two weeks after inoculation, the animals were fed with the powder diets containing 0 p.p.m. (n = 10), 150 p.p.m. (n = 10), or 500 p.p.m. (n = 10) aspirin. Mongolian gerbils were killed after 36 weeks of infection. Uninfected Mongolian gerbils (n = 10) were used as controls. Histologic changes, epithelial cell proliferation and apoptosis, and prostaglandin E2 (PGE2) levels of gastric tissue were determined. Results: H. pylori infection induced gastric inflammation. Administration of aspirin did not change H. pylori‐induced gastritis, but alleviated H. pylori‐induced hyperplasia and the development of heterotopic proliferative glands. Administration of aspirin accelerated H. pylori‐associated apoptosis but decreased H. pylori‐associated cell proliferation. In addition, the increased gastric PGE2 levels due to H. pylori infection were suppressed by treatment with aspirin, especially at the dose of 500 p.p.m. Conclusions: Aspirin alleviates H. pylori‐induced hyperplasia and the development of heterotopic proliferative glands. Moreover, aspirin increases H. pylori‐induced apoptosis. We demonstrated the antineoplastic activities of aspirin in H. pylori‐related gastric carcinogenesis.  相似文献   

6.
7.
Polyamine content and enzyme activities in the biosynthetic and degradative pathways of polyamine metabolism were investigated in sieve-tube sap, xylem sap and tissues of seedlings and adult plants of Ricinus communis L. Polyamines were present in tissues and translocation fluids of both seedlings and adult plants in relatively high amounts. Only free polyamines were translocated through the plant, as indicated by the finding that only the free form was detected in the phloem and the xylem sap. Removal of the endosperm increased the polyamine content in the sieve-tube exudate of seedlings. The level and pattern of polyamines in tissue of adult leaves changed during leaf age, but not, however, in the sieve-tube sap. Xylem sap was relatively poor in polyamines. Polyamine loading in the phloem was demonstrated by incubating cotyledons with [14O]putrescine and several unlabelled polyamines. Feeding cotyledons with cadaverine and spermidine led to a decrease in the level of putrescine in sieve-tube sap, indicating a competitive effect. Comparison of polyamine content in the tissue and export rate showed that the export would deplete the leaves of polyamines within 1–3 d, if they were not replenished by biosynthesis. Polyamine biosynthesis in Ricinus proceeds mostly via arginine decarboxylase, which in vitro is 100-fold more active than ornithine decarboxylase. The highest arginine decarboxylase, ornithine decarboxylase and diamine oxidase activities were detected in cotyledons, while in sieve-tube sap only a slight arginine decarboxylase activity was found. Received: 18 March 1997 / Accepted: 20 August 1997  相似文献   

8.
The polyamines putrescine, spermidine, and spermine and their biosynthetic enzymes arginine decarboxylase, ornithine decarboxylase and S-adenosyl-l-methionine decarboxylase are present in all parts of dormant potato (Solanum tuberosum L.) tubers. They are equally distributed among the buds of apical and lateral regions and in nonbud tissues. However, the breaking of dormancy and initiation of sprouting in the apical bud region are accompanied by a rapid increase in ornithine decarboxylase and S-adenosyl-l-methionine decarboxylase activities, as well as by higher levels of putrescine, spermidine, and spermine in the apical buds. In contrast, the polyamine biosynthetic enzyme activities and titer remain practically unchanged in the dormant lateral buds and in the nonbud tissues. The rapid rise in ornithine decarboxylase, but not arginine decarboxylase activity, with initiation of sprouting suggests that ornithine decarboxylase is the rate-limiting enzyme in polyamine biosynthesis. The low level of polyamine synthesis during dormancy and its dramatic increase in buds in the apical region at break of dormancy suggest that polyamine synthesis is linked to sprouting, perhaps causally.  相似文献   

9.
Background: Animal models have been widely used to study Helicobacter pylori infection. Evaluation of H. pylori infection status following experimental inoculation of mice usually requires euthanasia. The 13C‐urea breath test (13C‐UBT) is both sensitive and specific for detection of H. pylori in humans. Thus, it would be very useful to have such a test with the same accuracy for the follow‐up of this infection in animal models of gastric infection. Accordingly, the purpose of this study was to develop and evaluate a 13C‐UBT method for following the course of H. pylori infection in a mouse model. Material and Methods: A total of 50 female C57BL/6 mice were gavaged three times with either 108 colony‐forming units of H. pylori (n = 29) or saline solution only (n = 21). After 2 months of infection, mice were fasted for 14 hours and 13C‐UBT was performed using 300 μg of 13C‐urea. The mice were killed, and the stomach was removed and processed for immunohistochemistry and PCR. Results: The optimal time for breath sample collection in mice was found to be 15 minutes. The 13C‐UBT cutoff was set at 3.0‰δPDB. Using PCR as the gold standard, the sensitivity of 13C‐UBT and immunohistochemistry was 96.6 and 72.4%, respectively, while the specificity was 85.7 and 95.2%, respectively. Conclusions: 13C‐UBT was shown to be a reliable method for the detection of H. pylori infection in C57BL/6 mice and was even more accurate than immunohistochemistry. The use of 13C‐UBT in the mouse model of H. pylori infection can be very useful to detect the bacterium without the need to kill the animals in long‐term time course studies.  相似文献   

10.
During the life cycle of Chlorella vulgaris Beijerinck var vulgaris fa. vulgaris growing synchronously, the specific activity of ornithine decarboxylase peaked at the 2nd hour of the cycle, whereas that of arginine decarboxylase changed only slightly, increasing towards the end of the cycle. The endogenous level of putrescine and spermidine on a per cell basis increased gradually up to the 8th hour of the cycle, and declined thereafter. Thus, the peak of ornithine decarboxylase activity and the polyamine increase preceded both DNA replication (which took place between the 6th and 8th hours of the cycle) and autospore release (which started at the 8th hour). A 2-fold increase in the light intensity caused doubling of the DNA content, resulting in doubling of the number of autospores per mother cell. It also brought about a 2-fold increase in the specific activity of ornithine decarboxylase and polyamine content, the peaks being at the same hour of the cycle under high and low light intensities. The increase in cell number and polyamine content in a Chlorella culture grown under high light intensity was inhibited by α-difluoromethyl ornithine, a specific inhibitor of ornithine decarboxylase, this inhibition being partially reversed by putrescine.

It is suggested that in C. vulgaris the sequence of events which relates polyamine biosynthesis to cell division is as follows: increased ornithine decarboxylase activity, accumulation of polyamines, DNA replication, and autospore release.

  相似文献   

11.
Background. Low recurrence of gastritis is seen in patients infected with Helicobacter pylori carrying the type II urease B gene, compared with H. pylori carrying types I and III. The underlying mechanism has been studied in terms of the urease activity and interleukin (IL)‐8 production capacity of different strains of H. pylori. Materials and Methods. Forty‐five patients infected with different strains of H. pylori (type I; 15, type II; 15 and type III; 15) were enrolled in the study. H. pylori was isolated from gastric mucosa and cultured in the presence of urea at pH 5.5 to evaluate urease activity. The capacity of different strains of H. pylori to induce IL‐8 mRNA and IL‐8 from a human gastric cancer cell line and human peripheral blood mononuclear cells was evaluated. Results. The urease activity of type II H. pylori[523 ± 228 µg of ammonia/dl/108 colony‐forming units (CFU)/ml] was significantly lower than that of type I (1355 ± 1369 µg of ammonia/dl/108 CFU/ml) and type III (1442 ± 2229 µg of ammonia/dl/108 CFU/ml) (p < .05). Gastric cancer cells cocultured with type II H. pylori produced lower levels of IL‐8 mRNA compared with type I and type III H. pylori. The levels of IL‐8 were also significantly lower in cultures induced by type II H. pylori compared with those induced by type I and type III H. pylori. Peripheral blood mononuclear cells also produced lower levels of IL‐8 when cocultured with type II compared with type I H. pylori. Conclusions. These results indicate that both the lower level of urease activity and the low IL‐8‐inducing capacity of type II H. pylori might underlie the lower recurrence rate of gastritis caused by type II H. pylori.  相似文献   

12.
Background. Helicobacter pylori (H. pylori) infection is associated with chronic infiltration into the stomach by T cells and plasma cells producing IFN‐γ and antibodies of various specificities, respectively. It is unknown whether these lymphocyte‐products may play coordinated roles in the gastric pathology of this infection. Aims. To know how IFN‐γ may relate to anti‐H. pylori antibodies in their roles in pathogenesis, we determined the isotype subclass of those antibodies as well as their cross‐reactivity and cytotoxicity to gastric epithelium. Methods and Results. We infected BALB/c mice with H. pylori (SS1, Sydney Strain 1) and generated monoclonal antibodies, which were comprised of 240 independent clones secreting immunoglobulin and included 80 clones reactive to SS1. Ninety percent of the SS1‐reactive clones had IgG2a isotype. Two clones, 2B10 and 1A9, were cross reactive to cell surface antigens in H. pylori and to antigens of 28 KDa and 42 KDa, respectively, which were present on the cell surface of and shared by both mouse and human gastric epithelial cells. The antigens recognized by these monoclonal antibodies localized a distinctive area in the gastric glands. In the presence of complement, 2B10 showed cytotoxicity to gastric epithelial cells. The effect was dose dependant and augmented by IFN‐γ. Finally, administration of 2B10 to mice with SS1 infection aggravated gastritis by increasing cellular infiltration. Conclusion. IFN‐γ by gastric T cells may participate in pathogenesis of the H. pylori infected stomach by directing an isotype‐switch of anti‐H. pylori antibodies to complement‐binding subclass and by augmenting cytotoxic activity of a certain autoantibody. This may explain a host‐dependent diversity in gastric pathology of the patients with H. pylori infection.  相似文献   

13.
Transgenic tobacco plants expressing the putrescine synthesis gene ornithine decarboxylase from mouse were raised to study the effects of up-regulation of a metabolic pathway as critical as the polyamine biosynthesis on the plant growth and development, in vitro-morphogenesis and their response to salt stress. Further, the response of the alternate pathway (arginine decarboxylase) for putrescine synthesis to the modulation of the ornithine decarboxylase pathway has also been investigated. The over-expression of the odc gene and increased levels of putrescine in tobacco led to a delay in plant regeneration on selection medium which could be overcome by the exogenous application of polyamine biosynthesis inhibitors and spermidine. Further, the lines generated had a variable in vitro morphogenic potential, which could be correlated to the shifts in their polyamine metabolism. These studies have brought forward the critical role played by polyamines in the normal development of plants and also their role in plant regeneration. Since polyamines are known to accumulate in cells under abiotic stress conditions, the tolerance of the transgenics to salt stress was also investigated and the transgenics with their polyamine metabolism up-graded showed increased tolerance to salt stress.  相似文献   

14.
Five polyamines which could be separated by high performance liquid chromatography were found in Acanthamoeba castellanii (strain Neff). These included in order of decreasing abundance: 1,3-diaminopropane, spermidine, spermine, norspermidine, and putrescine. Only diaminopropane and norspermidine had been found previously. Spermine was present in cultures grown in broth, but not in defined medium. Radioactive substrates were used to establish that putrescine was synthesized by decarboxylation of ornithine, ornithine was synthesized from arginine or citrulline, and diaminopropane was synthesized from spermidine. The presence of ornithine decarboxylase (EC 4.1.1.17), arginase (EC 3.5.3.1), and urease (EC 3.5.1.5) and the absence of arginine decarboxylase (EC 4.1.1.19) were established. A scheme for polyamine biosynthesis in A. castellanii is proposed.  相似文献   

15.
A purified preparation of arginine decarboxylase fromCucumis sativus seedlings displayed ornithine decarboxylase activity as well. The two decarboxylase activities associated with the single protein responded differentially to agmatine, putrescine andPi. While agmatine was inhibitory (50 %) to arginine decarboxylase activity, ornithine decarboxylase activity was stimulated by about 3-fold by the guanido arnine. Agmatine-stimulation of ornithine decarboxylase activity was only observed at higher concentrations of the amine. Inorganic phosphate enhanced arginine decarboxylase activity (2-fold) but ornithine decarboxylase activity was largely uninfluenced. Although both arginine and ornithine decarboxylase activities were inhibited by putrescine, ornithine decarboxylase activity was profoundly curtailed even at 1 mM concentration of the diamine. The enzyme-activated irreversible inhibitor for mammalian ornithine decarboxylase,viz. α-difluoromethyl ornithine, dramatically enhanced arginine decarboxylase activity (3–4 fold), whereas ornithine decarboxylase activity was partially (50%) inhibited by this inhibitor. At substrate level concentrations, the decarboxylation of arginine was not influenced by ornithine andvice-versa. Preliminary evidence for the existence of a specific inhibitor of ornithine decarboxylase activity in the crude extracts of the plant is presented. The above results suggest that these two amino acids could be decarboxylated at two different catalytic sites on a single protein.  相似文献   

16.
Background. It is still a point of controversy whether Helicobacter pylori‐infected patients are more likely to develop mucosal damage while taking NSADIs. Selective cyclooxygenase (COX‐2) inhibitors may be associated with less severe gastric mucosal damage than conventional NSAIDs, but this association is undefined in H. pylori‐induced gastritis. The aim of this study was to evaluate the effects of selective COX‐2 and nonselective NSAIDs on H. pylori‐induced gastritis. Methods. After intragastric administration of indomethacin, NS‐398 or vehicle alone, once daily for 5 days in H. pylori‐infected and uninfected Mongolian gerbils, we evaluated gastric mucosal damage, inflammatory cell infiltration and prostaglandin E2 (PGE2) concentration. We investigated whether H. pylori infection induced the COX‐2 expression. Results. In H. pylori‐uninfected groups, the indomethacin‐treated group showed the highest mucosal damage score and the lowest PGE2 concentration. There was no difference in mucosal damage scores and PGE2 concentration between NS‐398 and vehicle‐alone treated group. In H. pylori‐infected groups, there was no difference in mucosal damage scores, irrespective of the type of drugs administered. The indomethacin‐treated group showed the lowest PGE2 concentration, similar to that of the NS‐398 and vehicle‐alone treated groups, both without H. pylori infection. Gastric neutrophil and monocyte infiltration scores were higher in H. pylori‐infected groups than in uninfected groups. However, there was no difference in these scores according to the type of drugs administered, within H. pylori‐infected or uninfected groups. COX‐2 protein expression was observed in H. pylori‐infected Mongolian gerbils but not in uninfected ones. Conclusions. Our animal study showed that H. pylori infection induced COX‐2 expression and increased prostaglandin concentration. Administration of NSAIDs decreased the prostaglandin concentration, but did not increase mucosal damage in H. pylori‐induced gastritis. Selective COX‐2 inhibitors, instead of conventional NSIADs, had no beneficial effect on preventing mucosal damage in H. pylori‐induced gastritis.  相似文献   

17.
Background: Osteopontin (OPN) is involved in the gastric cancer progression. The study validated whether OPN expressions correlate with Helicobacter pylori‐related chronic gastric inflammation and the precancerous change as intestinal metaplasia (IM). Methods: This study included 105 H. pylori‐infected patients (63 without and 42 with IM) and 29 H. pylori‐negative controls. In each subject, the gastric OPN expression intensity was evaluated by immunohistochemistry, and graded from 0 to 4 for the epithelium, lamina propria, and areas with IM, respectively. For the H. pylori‐infected subjects, the gastric inflammation was assessed by the Updated Sydney System. Forty‐nine patients received follow‐up endoscopy to assess OPN change on gastric mucosa after H. pylori eradication. The in vitro cell‐H. pylori coculture were performed to test the cell origin of OPN. Results: The H. pylori‐infected patients had higher gastric OPN expression than the noninfected controls (p < .001). For the H. pylori‐infected patients, an increased OPN expression correlated with more severe chronic gastric inflammation (p < .001) and the presence of IM (OR: 2.6, 95% CI: 1.15–5.94, p = .02). Within the same gastric bits, lamina propria expressed OPN stronger than epithelium (p < .001), suggesting OPN predominantly originates from inflammatory cells. The in vitro assay confirmed H. pylori stimulate OPN expression in the monocytes, but not in the gastric epithelial cells. After H. pylori eradication, the gastric OPN expression could be decreased only in areas without IM (p < .05). Conclusions: Increased gastric OPN expression by H. pylori infection can correlate with a more severe gastric inflammation and the presence of IM.  相似文献   

18.
Helicobacter pylori (H. pylori) causes chronic inflammation which is a key precursor to gastric carcinogenesis. It has been suggested that H. pylori may limit this immunopathology by inducing the production of interleukin 33 (IL‐33) in gastric epithelial cells, thus promoting T helper 2 immune responses. The molecular mechanism underlying IL‐33 production in response to H. pylori infection, however, remains unknown. In this study, we demonstrate that H. pylori activates signalling via the pathogen recognition molecule Nucleotide‐Binding Oligomerisation Domain‐Containing Protein 1 (NOD1) and its adaptor protein receptor‐interacting serine–threonine Kinase 2, to promote production of both full‐length and processed IL‐33 in gastric epithelial cells. Furthermore, IL‐33 responses were dependent on the actions of the H. pylori Type IV secretion system, required for activation of the NOD1 pathway, as well as on the Type IV secretion system effector protein, CagA. Importantly, Nod1+/+ mice with chronic H. pylori infection exhibited significantly increased gastric IL‐33 and splenic IL‐13 responses, but decreased IFN‐γ responses, when compared with Nod1?/? animals. Collectively, our data identify NOD1 as an important regulator of mucosal IL‐33 responses in H. pylori infection. We suggest that NOD1 may play a role in protection against excessive inflammation.  相似文献   

19.
Background: Lactobacillus and Bifidobacterium species have shown beneficial effects in the treatment of Helicobacter pylori infection; however, the mechanisms behind such effects are not fully understood. In this study, we have investigated the immunomodulatory effects of probiotics in a mouse model of H. pylori infection. Materials and methods: H. pylori‐infected C57BL/6 mice were treated with L. casei L26, B. lactis B94, or no probiotics for 5 weeks, respectively. Mice not infected with H. pylori were included as normal controls. Gastric histology, protein levels of interleukin (IL)‐1β, IL‐10, IL‐12/23p40, and H. pylori colonization density in the gastric tissues, as well as H. pylori‐specific antibodies were examined. Results: In mice receiving L. casei L26 and B. lactis B94, gastric neutrophil infiltration and IL‐1β were significantly decreased and IL‐10 was significantly increased as compared with mice receiving no probiotics. In mice receiving B. lactis B94, IL‐12/23p40 was significantly increased and H. pylori IgG was significantly reduced as compared with mice receiving no probiotics. No significant difference of H. pylori colonization was observed among the three groups of mice. Conclusion: The reduced level of IL‐1β and neutrophil infiltration observed in mice infected with H. pylori following treatment with L. casei L26 and B. lactis B94 resulted from a modulation of immune response rather than a decrease of H. pylori colonization. Furthermore, B. lactis B94 has the intrinsic ability to promote a Th1 immune response through an increase in IL‐12/IL‐23.  相似文献   

20.
Characterization of arginine transport in Helicobacter pylori   总被引:1,自引:0,他引:1  
Mendz GL  Burns BP 《Helicobacter》2003,8(4):245-251
Background. The amino acid L‐arginine is an essential requirement for growth of Helicobacter pylori. Several physiological roles of this amino acid have been identified in the bacterium, but very little is known about the transport of L‐arginine and of other amino acids into H. pylori. Methods. Radioactive tracer techniques using L‐(U‐14C) arginine and the centrifugation through oil method were employed to measure the kinetic parameters, temperature dependence, substrate specificity, and effects of analogues and inhibitors on L‐arginine transport. Results. The transport of arginine at millimolar concentrations was saturable with a Km of 2.4 ± 0.3 mM and Vmax of 1.3 ± 0.2 pmole min?1 (µl cell water)?1 or 31 ± 3 nmole per minute (mg protein)?1 at 20°C, depended on temperature between 4 and 40°C, and was susceptible to inhibitors. These characteristics suggested the presence of one or more arginine carriers. The substrate specificity of the transport system was studied by measuring the effects of L‐arginine analogues and amino acids on the rates of transport of L‐arginine. The absence of inhibition in competition experiments with L‐lysine and L‐ornithine indicated that the transport system was not of the Lysine‐Arginine‐Ornithine or Arginine‐Ornithine types. The presence of different monovalent cations did not affect the transport rates. Several properties of L‐arginine transport were elucidated by investigating the effects of potential inhibitors. Conclusions. The results provided evidence that the transport of L‐arginine into H. pylori cells was carrier‐mediated transport with the driving force supplied by the chemical gradient of the amino acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号