首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
P S Wissel 《Life sciences》1988,42(11):1139-1145
Doxorubicin (DOX) and Mitomycin-C (MMC) are two anthraquinones which, when administered to rats, result in a decrease in the content of hepatic cytochrome P-450 and mixed function oxidase activities. DOX administration produced a dose-dependent immediate decrease in cytochrome P-450 content at all doses but a parallel dose-dependent decrease in the rate of antipyrine metabolite formation of the two higher doses. The lower dose of DOX produced an increase in metabolite formation and produced a less than 20% reduction in cytochrome P-450 content. MMC administration produced an immediate, modest (less than 10% of control levels) suppression of hepatic cytochrome P-450 content, and had no effect on antipyrine metabolite formation. These findings demonstrates that two drugs of the same class can produce similar suppressions of cytochrome P-450 content and that a threshold suppression of cytochrome P-450 content is needed to produce alterations in in vivo drug biotransformations.  相似文献   

2.
D C Swinney  D E Ryan  P E Thomas  W Levin 《Biochemistry》1987,26(22):7073-7083
Quantitative high-pressure liquid chromatographic assays were developed that separate progesterone and 17 authentic monohydroxylated derivatives. The assays were utilized to investigate the hydroxylation of progesterone by 11 purified rat hepatic cytochrome P-450 isozymes and 8 different rat hepatic microsomal preparations. In a reconstituted system, progesterone was most efficiently metabolized by cytochrome P-450h followed by P-450g and P-450b. Seven different monohydroxylated progesterone metabolites were identified. 16 alpha-Hydroxyprogesterone, formed by 8 of the 11 isozymes, was the only detectable metabolite formed by cytochromes P-450b and P-450e. 2 alpha-Hydroxyprogesterone was formed almost exclusively by cytochrome P-450h, and 6 alpha-hydroxyprogesterone and 7 alpha-hydroxyprogesterone were only formed by P-450a. 6 beta-hydroxylation of progesterone was catalyzed by four isozymes with cytochrome P-450g being the most efficient, and 15 alpha-hydroxyprogesterone was formed as a minor metabolite by cytochromes P-450g, P-450h, and P-450i. None of the isozymes catalyzed 17 alpha-hydroxylation of progesterone, and only cytochrome P-450k had detectable 21-hydroxylase activity. 16 alpha-Hydroxylation catalyzed by cytochrome P-450b was inhibited in the presence of dilauroylphosphatidylcholine (1.6-80 microM), while this phospholipid either stimulated (up to 3-fold) or had no effect on the metabolism of progesterone by the other purified isozymes. Results of microsomal metabolism in conjunction with antibody inhibition experiments indicated that cytochromes P-450a and P-450h were the sole 7 alpha- and 2 alpha-hydroxylases, respectively, and that P-450k or an immunochemically related isozyme contributed greater than 80% of the 21-hydroxylase activity observed in microsomes from phenobarbital-induced rats.  相似文献   

3.
The enzymatic oxidation of tetrachloro-1,4-hydroquinone (1,4-TCHQ), resulting in covalent binding to protein of tetrachloro-1,4-benzoquinone (1,4-TCBQ), was investigated, with special attention to the involvement of cytochrome P-450 and reactive oxygen species. 1,4-TCBQ itself reacted very rapidly and extensively with protein (58% of the 10 nmol added to 2 mg of protein, in a 5-min incubation). Ascorbic acid and glutathione prevented covalent binding of 1,4-TCBQ to protein, both when added directly and when formed from 1,4-TCHQ by microsomes. In microsomal incubations as well as in a reconstituted system containing purified cytochrome P-450b, 1,4-TCHQ oxidation and subsequent protein binding was shown to be completely dependent on NADPH. The reaction was to a large extent, but not completely, dependent on oxygen (83% decrease in binding under anaerobic conditions). Inhibition of cytochrome P-450 by metyrapone, which is also known to block the P-450-mediated formation of reactive oxygen species, gave a 80% decrease in binding, while the addition of superoxide dismutase prevented 75% of the covalent binding, almost the same amount as found in anerobic incubations. A large part of the conversion of 1,4-TCHQ to 1,4-TCBQ is apparently not catalyzed by cytochrome P-450 itself, but is mediated by superoxide anion formed by this enzyme. The involvement of this radical anion is also demonstrated by microsomal incubations without NADPH but including the xantine/xantine oxidase superoxide anion generating system. These incubations resulted in a 1.6-fold binding as compared to the binding in incubations with NADPH but without xantine/xantine oxidase. 1,4-TCHQ was shown to stimulate the oxidase activity of microsomal cytochrome P-450. It is thus not unlikely that 1,4-TCHQ enhances its own microsomal oxidation.  相似文献   

4.
The mechanism by which the hepatic cytochrome P-450 (Cyt. P-450) containing mixed-function oxidase system oxidizes the analgesic drug paracetamol (PAR) to a hepatotoxic metabolite was studied. Since previous studies excluded the possibility of oxygenation of PAR, three other mechanisms, namely direct 1-electron oxidation by a Cyt. P-450-ferrous-dioxygen complex under concomitant formation of H2O2 to N-acetyl-p-semiquinone imine (NAPSQI), direct 2-electron oxidation by a Cyt. P-450-ferric-oxene complex to N-acetyl-p-benzoquinone imine (NAPQI) and indirect oxidation by active oxygen species released from Cyt. P-450, were considered. Indirect oxidation by active oxygen species was not involved, as active oxygen scavengers such as superoxide dismutase, catalase and DMSO did not affect the oxidation of PAR in hepatic microsomes. No reaction products characteristic for a direct 1-electron oxidation of PAR by Cyt. P-450 were observed: neither NAPSQI radical formation was detectable by ESR, nor PAR-dimer formation, nor stimulation of the microsomal H2O2 production was found to occur. In fact, PAR inhibited the spontaneous microsomal H2O2 formation. Studies on the reactions of NAPSQI with glutathione (GSH) revealed that NAPSQI hardly conjugated with GSH to a 3-glutathionyl-paracetamol conjugate (PAR-GSH) conjugate. The reactions of the elusive reactive metabolite formed during microsomal oxidation of PAR in the presence of GSH closely resembled those of synthetic NAPQI: both PAR-GSH and oxidized glutathione (GSSG) formation occurred. Furthermore, in agreement with a 2-electron oxidation hypothesis, iodosobenzene-dependent oxidation of PAR by cyt. P-450 in the presence of GSH resulted in the formation of the PAR-GSH conjugate. It is concluded that bioactivation of PAR by the Cyt. P-450 containing mixed-function oxidase system consists of a direct 2-electron oxidation to NAPQI.  相似文献   

5.
Treatment of fasted rats with relatively high doses of morphine rapidly results in depletion of hepatic glutathione (GSH) content and marked elevation of serum transaminase activity. Such morphine-induced response has been generally attributed to central nervous system mediated effects of the drug. We now report that this response might be due to a direct effect of the drug in the liver. That is, its metabolic activation to reactive electrophilic metabolite(s), by the hepatic cytochrome P-450-dependent mixed function oxidase system. Structure-activity relationships of morphine and its congeners indicate that the (-)-3-hydroxy-N- methylmorphinan moiety is linked with the potential of these opioids to deplete hepatic GSH and to raise serum transaminases in rats.  相似文献   

6.
The hepatotoxicity of chloroform (CHCl3) is thought to require biotransformation, by the polysubstrate monooxygenase system (P-450), to a reactive intermediate(s). Therefore, the potentiation of CHCl3-induced hepatotoxicity, which occurs following exposure to certain ketones, may hypothetically be explained by a reduced capacity of the cell to form glutathione conjugates (detoxicate the intermediate) and (or) by an increased rate of reactive intermediate(s) generation secondary to a modification of the P-450 system. To test these hypotheses, liver damage, as indicated by elevation in plasma alanine aminotransferase and ornithine carbamyl transferase activities, was modulated in male Sprague-Dawley rats by varying the time interval (10, 18, 24, 48, 72, 96 h) between acetone, 2-butanone, or 2-hexanone (15 mmol/kg, p.o.) pretreatment and CHCl3 (0.5 mL/kg, p.o.) administration. These data were compared with hepatic glutathione and with various parameters of the polysubstrate monooxygenase system: cytochrome P-450, cytochrome c reductase, cytochrome b5, and microsomal binding of 14CHCl3-derived radiolabel. Reduced detoxication capacity does not appear to be involved as hepatic glutathione levels were not reduced. Globally, a relationship between modifications to the polysubstrate monooxygenase system and potentiation of CHCl3-induced hepatotoxicity appears to exist. The rank order of each ketone's ability to modify P-450 parameters was the same in most instances as that based on peak ability to potentiate CHCl3-induced hepatotoxicity: 2-hexanone greater than 2-butanone greater than or equal to acetone. Therefore, these results suggest that a general relationship exists between the ketone-induced potentiation of CHCl3-induced hepatotoxicity and increased CHCl3 reactive metabolite generation. However, other factors may also contribute to the phenomenon.  相似文献   

7.
The purpose of this study was to purify and characterize the forms of cytochrome P-450 induced in chicken liver by acetone or ethanol. Using high performance liquid ion-exchange chromatography, we were able to isolate at least four different forms of cytochrome P-450 which were induced by acetone in chicken liver. All four forms of cytochrome P-450 proved to be distinct proteins, as indicated by their N-terminal amino acid sequences and their reconstituted catalytic activities. Two of these forms, also induced by glutethimide in chicken embryo liver, appeared to be cytochromes P450IIH1 and P450IIH2. Both of these cytochromes P-450 have identical catalytic activities towards benzphetamine demethylation. However, they differ in their abilities to hydroxylate p-nitrophenol and to convert acetaminophen into a metabolite that forms a covalent adduct with glutathione at the 3-position. Another form of cytochrome P-450 induced by acetone is highly active in the hydroxylation of p-nitrophenol and in the conversion of acetaminophen to a reactive metabolite, similar to reactions catalysed by mammalian cytochrome P450IIE. Yet the N-terminal amino acid sequence of this form has only 30-33% similarity with cytochrome P450IIE purified from rat, rabbit and human livers. A fourth form of cytochrome P-450 was identified whose N-terminal amino acid sequence and enzymic activities do not correspond to any mammalian cytochromes P-450 reported to be induced by acetone or ethanol.  相似文献   

8.
The interaction of isosafrole, 3,4,5,3',4',5'-hexabromobiphenyl (HBB) and hexachlorobiphenyl (HCB) with cytochrome P-450d was evaluated by characterization of estradiol 2-hydroxylase activity. Displacement of the isosafrole metabolite from microsomal cytochrome P-450d derived from isosafrole-treated rats resulted in a 160% increase in estradiol 2-hydroxylase. The increase was fully reversed by incubation with 1 microM HBB. Although isosafrole is capable of forming a complex with many different cytochrome P-450 isozymes, it appears to bind largely to cytochrome P-450d in vivo as was demonstrated by measuring the enzymatic activity of microsomal cytochromes P-450b, P-450c, and P-450d from isosafrole-treated rats. When estradiol 2-hydroxylase was measured in rats treated with increasing doses of HCB, there was a gradual decrease in microsomal enzyme activity despite a 20-fold increase in cytochrome P-450d. The ability of cytochrome P-450d ligands to stabilize the enzyme was investigated in two ways. First, cytochromes P-450c and P-450d were quantitated immunochemically in microsomes from rats treated with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), at a dose which maximally induced total cytochrome P-450, followed by a single dose of a second inducer. The specific content of cytochrome P-450d was significantly increased when isosafrole or HCB was the second inducer but not when 3-methylcholanthrene was the second inducer. Second, the relative turnover of cytochrome P-450d was measured by the dual label technique. Following TCDD treatment, microsomal protein was labeled in vivo with [3H]leucine, the second inducer was given and protein was again labeled 3 days later with [14C]leucine. A higher ratio of 3H/14C in the cytochrome P-450d from isosafrole + TCDD- and HCB + TCDD-treated rats relative to TCDD (control)-treated rats suggested that isosafrole and HCB were able to retard the degradation of cytochrome P-450d, presumably by virtue of being tightly bound to the enzyme.  相似文献   

9.
1. A comparison was made between rat hepatic and plant microsomal cytochrome P-450 and cytochrome P-450 linked enzymic activities. 2. The results show that, compared with plant microsomes, rat hepatic microsomal protein concentrations were 165-fold higher, and rat hepatic cytochrome P-450 concentration were 32-fold higher. 3. Rat hepatic Cytochrome P-450 linked enzyme activities were 1765-fold and 25-fold greater when compared with plant microsomes using aldrin and biphenyl as substrates, respectively. 4. Rats metabolised biphenyl to 2- and 4-hydroxybiphenyl, whereas plants produced only the latter metabolite. 5. Pretreatment of rats and plant tissues with biphenyl, Aroclor 1248 and the sodium salt of phenobarbital increased significantly the microsomal protein concentrations, and enzyme activities linked to cytochrome P-450. 6. Unlike rat microsomes, those of plants were unable to metabolise halosubstituted biphenyls at measurable rates.  相似文献   

10.
The 14C-isosafrole metabolite-rat hepatic cytochrome P-450 complex is stable to dialysis but is readily dissociated by cyclohexane (1 mM) to release free cytochrome P-450 and radioactive ligand. The ratio of cytochrome P-450: isosafrole metabolite in the complex is unity.  相似文献   

11.
Effect of acute exposure (24 hr) to different oral doses of dimethoate on hepatic microsomal cytochrome P-450 (Cyt. P-450) content and cytosolic glutathione S-transferase (GST) activity were determined in pigeon and rat to ascertain difference in the metabolic response as a measure of species selective toxicity. Dimethoate at five different doses caused a statistically significant decrease in Cyt. P-450 content both in pigeon and rat. However, reduction in GST activity was significant at three doses in pigeon and at high dose in rat. Thus, a different quantum of hepatic Cyt. P-450 decrease and a differed response of GST activity against dimethoate exposure in pigeon and rat may be one of the possible causes for relatively higher toxicity of dimethoate in birds.  相似文献   

12.
Anaerobic in vitro incubation of microsomes from phenobarbital(PB)-induced rats with halothane results in an irreversible decrease of measurable cytochrome P-450. There is a parallel decrease in heme content under the same incubation conditions. However, microsomes from 3-methylcholanthrene(3-MC)-induced or untreated animals do not show a reduction in cytochrome P-450 content. Aerobic incubation with halothane results in a decrease of cytochrome P-450 which can be completely reversed by dialysis or the addition of potassium ferricyanide. These latter treatments only partially restore the cytochrome P-450 levels following anaerobic incubations. The decrease in cytochrome caused by halothane is not associated with measureable heme N-alkyl adduct formation; lipid peroxidation does not play a role as indicated by the lack of effect of 1 mM EDTA or a decrease in glucose-6-phosphatase activity. Halothane metabolites are bound irreversibly to microsomal protein as determined by gel electrophoresis only when the oxygen concentration is very low. The mechanism of cytochrome P-450 decrease is consistent with the formation of a reactive metabolite which binds to the protein portion and also destroys heme.  相似文献   

13.
Studies were done to determine the role of the 17 alpha-hydroxylase in the conversion of 7 alpha-thiospironolactone (7 alpha-thio-SL) to a reactive metabolite causing the degradation of testicular cytochrome P-450. Incubation of guinea pig testicular microsomes with 7 alpha-thio-SL plus NADPH resulted in an approx. 70% decline in cytochrome P-450 content and even greater loss of 17 alpha-hydroxylase activity. Addition of the 17 alpha-hydroxylase inhibitor, SU-10'603, to the incubation medium prevented the degradation of P-450 by 7 alpha-thio-SL. Similarly, preincubation of testicular microsomes with anti-P-45017 alpha,lyase IgG to inhibit 17 alpha-hydroxylation, diminished the subsequent loss of P-450 caused by 7 alpha-thio-SL. The results indicate that the 17 alpha-hydroxylase catalyzes the conversion of 7 alpha-thio-SL to the reactive metabolite responsible for P-450 destruction. The accompanying loss of 17 alpha-hydroxylase activity supports the hypothesis that suicide inhibition is the mechanism involved.  相似文献   

14.
Chiu PY  Mak DH  Poon MK  Ko KM 《Life sciences》2005,77(23):2887-2895
In order to explore the role of cytochrome P-450 (P-450) in schisandrin B (Sch B)-induced antioxidant and heat shock responses, the effect of 1-aminobenzotriazole (ABT, a broad spectrum inhibitor of P-450) on hepatic mitochondrial glutathione antioxidant status (mtGAS) and heat shock protein (Hsp)25/70 expression was examined in Sch B-treated mice. The non-specific and partial inhibition of cytochrome P-450 (P-450) by ABT pretreatment significantly caused a protraction in the time-course of Sch B-induced enhancement in hepatic mitGAS and Hsp25/70 expression in mice. Using mouse liver microsomes as a source of P-450, Sch B, but not dimethyl diphenyl bicarboxylate (a non-hepatoprotective analog of Sch B), was found to serve as a co-substrate for the P-450-catalyzed NADPH oxidation reaction, with a concomitant production of oxidant species. Taken together, the results suggest that oxidant species generated from P-450-catalyzed reaction with Sch B may trigger the antioxidant and heat shock responses in mouse liver.  相似文献   

15.
In order to elucidate the isozyme specificity of complex formation between cytochrome P-450 and the isosafrole metabolite the effect of complex dissociation on different steroid hydroxylation pathways was studied in hepatic microsomal fractions. Isosafrole induction was found to increase the 16 beta- and 7 alpha-hydroxylation of androst-4-ene-3,17-dione approximately 2.8- and 1.7-fold, respectively, whereas the 16 alpha-hydroxylation pathway was decreased to about one-quarter of control activity; 6 beta-hydroxylation was unchanged from control activity. More striking changes were apparent following dissociation of the isosafrole metabolite from its complex with ferricytochrome P-450 by the steroid substrate. Thus an approximate fourfold elevation of 16 beta-hydroxylase activity was observed after displacement and 6 beta-hydroxylation increased about twofold; 7 alpha-hydroxylase activity was decreased to 0.75-fold of undisplaced activity and 16 alpha-hydroxylase activity was unchanged. These data provide convincing evidence that at least two forms of phenobarbital-inducible cytochrome P-450 (cytochromes P-450PB-B and P-450PB/PCN-E) are present to some extent in a catalytically inactive complexed state in isosafrole-induced rat hepatic microsomes. Furthermore, there is now evidence to suggest that the constitutive isozymes cytochrome P-450UT-A and cytochrome P-450UT-F are not complexed to any degree in hepatic microsomes from isosafrole-induced rats.  相似文献   

16.
N-Acetylcysteine (NAC) is protective against acetaminophen-induced hepatotoxicity primarily by providing precursor for the glutathione synthetase pathway, while cysteamine has been demonstrated to alter the cytochrome P-450 dependent formation of toxic acetaminophen metabolite. Mice administered acetaminophen (500 mg/kg) had elevations of serum alanine aminotransferase (ALT) to 273.0 +/- 37.5 and 555.8 +/- 193.4 U/mL at 12 and 24 h, respectively, after injection. Administration of cysteamine (100 mg/kg) or NAC (500 mg/kg) significantly reduced serum ALT activity (p less than 0.001). Reducing the dose of NAC or cysteamine by 50% greatly reduced their hepatoprotective effect while the co-administration of the reduced doses of NAC (250 mg/kg) and cysteamine (50 mg/kg) following acetaminophen overdose prevented elevation of serum ALT activity (39.2 +/- 1.17 and 32.5 +/- 5.63 U/mL at 12 and 24 h post-injection, p less than 0.001) and preserved normal mouse hepatic histology. Neither NAC (500 mg/kg), cysteamine (100 mg/kg), or the lower doses in combination of both agents were found to alter the half-life or peak levels of acetaminophen. Liver microsomal aryl hydrocarbon hydroxylase activity measured 24 h after drug administration was not significantly different between treatment groups and controls receiving only saline. These results indicate a possible role for the concomitant use of NAC and cysteamine in the prevention of hepatic necrosis following toxic doses of acetaminophen. Neither decrease in plasma acetaminophen levels nor depression of cytochrome P-450 enzyme activity appears to be the mechanism of protection when these doses of NAC, cysteamine, or both drugs together are administered with a toxic dose of acetaminophen in mice.  相似文献   

17.
Cytochrome P-450 function as mono-oxygenases and metabolize xenobiotics. CYP1A1, a cytochrome P-450 enzyme, bioactivates polycyclic aromatic hydrocarbons to reactive metabolite(s) that bind to DNA and initiate carcinogenesis. Northern and immunoblot analyses revealed constitutive expression of Cyp1a1 and CYP1A1 in rat and human brain, respectively. CYP1A1 mRNA and protein were localized predominantly in neurons of cerebral cortex, Purkinje and granule cell layers of cerebellum and pyramidal neurons of CA1, CA2, and CA3 subfields of the hippocampus. RT-PCR analyses using RNA obtained from autopsy human brain samples demonstrated the presence of a splice variant having a deletion of 87 bp of exon 6. This splice variant was present in human brain, but not in the liver from the same individual, and was absent in rat brain and liver. Structural modeling indicated broadening of the substrate access channel in the brain variant. The study demonstrates the presence of a unique cytochrome P-450 enzyme in human brain that is generated by alternate splicing. The presence of distinct cytochrome P-450 enzymes in human brain that are different from well-characterized hepatic forms indicates that metabolism of xenobiotics including drugs could occur in brain by pathways different from those known to occur in liver.  相似文献   

18.
A simple and rapid method for the determination of (S)-mephenytoin 4-hydroxylase activity by human liver microsomal cytochrome P-450 has been developed. [Methyl-14C] mephenytoin was synthesized by alkylation of S-nirvanol with 14CH3I and used as a substrate. After incubation of [methyl-14C]mephenytoin with human liver microsomes or a reconstituted monooxygenase system containing partially purified human liver cytochrome P-450, the 4-hydroxylated metabolite of mephenytoin was separated by thin-layer chromatography and quantified. The formation of the metabolite depended on the incubation time, substrate concentration, and cytochrome P-450 concentration and was found to be optimal at pH 7.4. The Km and Vmax rates obtained with a human liver microsomal preparation were 0.1 mM and 0.23 nmol 4-hydroxymephenytoin formed/min/nmol cytochrome P-450, respectively. The hydroxylation activity showed absolute requirements for cytochrome P-450, NADPH-cytochrome P-450 reductase, and NADPH in a reconstituted monooxygenase system. Activities varied from 5.6 to 156 pmol 4-hydroxymephenytoin formed/min/nmol cytochrome P-450 in 11 human liver microsomal preparations. The basic system utilized for the analysis of mephenytoin 4-hydroxylation can also be applied to the estimation of other enzyme activities in which phenol formation occurs.  相似文献   

19.
《Free radical research》2013,47(4):189-195
Metabolism of hydrazine derivatives, procarbazine and iproniazid, to reactive free radical intermediates has been studied using spin-trapping techniques in intact human promyelocytic leukemia (HL60) and mouse hepatic cell lines. While HL60 cells have been shown to contain both myeloperoxidase and cytochrome P-450 enzymes, the hepatic cell line shows only cytochrome P-450 activity. Both peroxidases and cytochrome P-450 have been reported to catalyze biotransformation of hydrazines. Procarbazine and iproniazid were rapidly metabolized in these cell lines to methyl and isopropyl radicals, respectively. However, in HL60 cells, procarbazine was metabolized by myeloperoxidase while iproniazid was metab olized mostly by the cytochrome P-450 system. In the hepatic cells, both of these compounds were metabolized by the P-450 system.  相似文献   

20.
Metabolism of hydrazine derivatives, procarbazine and iproniazid, to reactive free radical intermediates has been studied using spin-trapping techniques in intact human promyelocytic leukemia (HL60) and mouse hepatic cell lines. While HL60 cells have been shown to contain both myeloperoxidase and cytochrome P-450 enzymes, the hepatic cell line shows only cytochrome P-450 activity. Both peroxidases and cytochrome P-450 have been reported to catalyze biotransformation of hydrazines. Procarbazine and iproniazid were rapidly metabolized in these cell lines to methyl and isopropyl radicals, respectively. However, in HL60 cells, procarbazine was metabolized by myeloperoxidase while iproniazid was metab olized mostly by the cytochrome P-450 system. In the hepatic cells, both of these compounds were metabolized by the P-450 system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号