首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The characterization of monoamine oxidase (MAO) activity in lymphocytes and granulocytes was studied by using cells prepared from human blood. The specific activities of the enzyme towards beta-phenylethylamine (PEA), benzylamine (Bz), tyramine (TYR) and 5-hydroxytryptamine (5-HT) were found to be 5-times higher in lymphocytes than in granulocytes. The absence of the semicarbazide-sensitive amine oxidase (SSAO) was confirmed by the lack of effect of semicarbazide on the benzylamine oxidation. The presence of MAO-B was corroborated by the inhibition of PEA oxidation with nanomolar deprenyl concentrations and by inhibition of TYR oxidation with high clorgyline concentrations, as well as by the simple sigmoid curve obtained in both cases. These results, together with the substrate preferences, suggest that the MAO activity of human granulocytes and lymphocytes is predominantly of the B form. For each fraction the kinetic constants were determined towards PEA, TYR and Bz as substrates. The Km values were similar for both cellular samples, whereas the Vmax values were higher in lymphocytes than in granulocytes. MAO-B was titrated with [3H]pargyline in order to find out the number of active sites. The corresponding molecular concentration, Kcat values and turnover number showed the presence of related enzymes in human granulocytes and lymphocytes.  相似文献   

2.
The substrate specificities of monoamine oxidase (MAO) A isolated from human placenta and of human liver expressed in yeast have been compared in homogeneous preparations with respect to Vmax and Km values for natural and synthetic substrates and Ki values for competitive inhibitors. MAO A from these two sources is known to differ in at least 5 amino acid residues. While the Km and Ki values were found to be nearly identical in the enzymes from these two sources, the Vmax differed significantly on bulky synthetic substrates.  相似文献   

3.
Complete solubilization of both the A and B forms of human brain monoamine oxidase (MAO) occurred when crude mitochondria were incubated in the presence of 50 mM octylglucoside (OG). Upon removal of this nonionic detergent by dialysis, approximately 100% of the starting activity was present in the dialysate. The effects of solubilization were examined by comparison of several properties of the membrane-bound and OG-treated oxidases. The percentage inhibition of phenylethylamine (PEA) and the 5-hydroxytryptamine (5-HT) deamination by deprenyl and clorgyline were identical. The Km values obtained for the deamination of PEA, a B-selective substrate, 5-HT, an A-selective substrate, and tyramine (TYR), a nonselective substrate, were also comparable. OG was found to inhibit type A (I50 = 8.1 mM) and B (I50 = 4.7 mM) MAO activities at concentrations at least 10-fold below those used to solubilize the oxidases. Kinetic studies revealed that OG was an apparent competitive inhibitor of PEA deamination whereas OG produced a mixed-type pattern of inhibition when 5-HT was the variable substrate. Inhibition of TYR deamination by either the A or B form of MAO produced a mixed pattern of inhibition. The findings herein suggest that solubilization of the A and B forms of MAO by OG does not significantly alter the substrate and inhibitor specificity of the oxidases following removal of detergent. However, in the presence of concentrations of OG 50 times less than the critical micellar concentration of this detergent, marked inhibition of deamination by both forms of human brain MAO is observed. Accordingly, the usefulness of OG is limited to situations where the detergent is completely removed before quantitation of MAO activity.  相似文献   

4.
Studies using clorgyline, deprenyl and semicarbazide as inhibitors showed that carp heart homogenate contained a new type of monoamine oxidase (MAO) and a clorgyline- and deprenyl-resistant amine oxidase (CRAO). The deamination of monoamines by carp heart MAO proceeded in two steps by a double-displacement (ping-pong) mechanism. The Km values of the MAO for oxygen (K0 values) with tyramine, 5-hydroxytryptamine (5-HT) and beta-phenylethylamine (PEA) as substrates were identical (59 microM).  相似文献   

5.
N-Methyl-1,2,3,4-tetrahydroisoquinoline (NMTIQ) was found to be oxidized by monoamine oxidase (MAO) into N-methylisoquinolinium ion, which was proved to inhibit enzymes related to the metabolism of catecholamines, such as tyrosine hydroxylase, aromatic-L-amino acid decarboxylase, and MAO. NMTIQ was oxidized by both types A and B MAO in human brain synaptosomal mitochondria. Oxidation was dependent on the amount of MAO sample and the reaction time. Enzyme activity with respect to NMTIQ reached optimum at a pH of approximately 7.25, as was the case with other substrates. Type A MAO had higher activity for this substrate than type B. The Km and Vmax values of the oxidation by types A and B MAO were 571 +/- 25 microM and 0.29 +/- 0.06 pmol/min/mg protein, and 463 +/- 43 microM and 0.16 +/- 0.03 pmol/min/mg protein, respectively. The Vmax values of types A and B MAO for NMTIQ were much smaller than those for other substrates such as kynuramine. NMTIQ was the first tetrahydroisoquinoline shown to be oxidized into the isoquinolinium ion by MAO in the brain.  相似文献   

6.
To explore the usefulness of Caco-2 cells in the study of intestinal dopaminergic and 5-hydroxytryptaminergic physiology, we have undertaken the study of aromatic L-amino acid decarboxylase (AADC), catechol-O-methyltransferase (COMT) and type A and B monoamine oxidase (MAO-A and MAO-B) activities in these cells using specific substrates. The activity of these enzymes was also evaluated in isolated rat jejunal epithelial cells. The results showed that Vmax values (in nmol mg protein(-1) h(-1)) for AADC, using L-DOPA as the substrate, in rat jejunal epithelial cells (127.3+/-11.4) were found to be 6-fold higher than in Caco-2 cells (22.5+/-2.6). However, Km values in Caco-2 cells (1.24+/-0.37 mM) were similar to those observed in rat jejunal epithelial cells (1.30+/-0.29 mM). Similar results were obtained when AADC activity was evaluated using L-5HTP as substrate; in rat jejunal epithelial cells Vmax values (in nmol mg prot(-1) h(-1)) were found to be 5-fold that in Caco-2 cells (16.3+/-1.0 and 3.0+/-0.2, respectively), and Km values in Caco-2 cells (0.23+/-0.08 mM) were again similar to those observed in rat intestinal epithelial cells (0.09+/-0.03 mM). Caco-2 cells were not able to O-methylate dopamine, in contrast to rat jejunal epithelial cells (Vmax = 8.6+/-0.4 nmol mg protein(-1)(h-1); Km = 516+/-57 microM). Vmax values (in nmol mg protein(-1)(h-1)) for type A and B MAO in Caco-2 cells (19.0+/-0.6 and 5.4+/-0.6, respectively) were found to be significantly lower (P<0.05) than those in rat jejunal epithelial cells (46.9+/-3.1 and 9.6+/-1.2, respectively); however, no significant differences in the Km values were observed between Caco-2 and rat jejunal epithelial cells for both type A and B MAO. In conclusion, Caco-2 cells in culture are endowed with the synthetic and metabolic machinery needed to form and degrade DA and 5-HT, though, no COMT activity could be detected in these cells.  相似文献   

7.
The kinetic parameters of monoamine oxidase (MAO; E.C 1.4.3.4) and catechol-O-methyltransferase (COMT; EC 2.1.1.6) were evaluated in extracts of adrenergic and non-adrenergic mouse neuroblastoma cells and in rat glioma cells. Using the naturally-occurring substrates tyramine, tryptamine, serotonin and norepinephrine, the affinity of MAO for a given substrate was independent of the presence of the catecholaminergic pathway or cell type used, with apparent Km values ranging from 8-14 microM for tryptamine to 510-580 microM for norepinephrine. The MAO activity in glioma cells was substantially greater than in either neuroblastoma clone, but Vmax values varied little with substrate among cell lines. Both the neuronal and glial COMT had a similar Km for 1-norepinephrine (200 microM); the corresponding Vmax values were also similar among the different cell lines, but represented only 2-10% of the maximal MAO activity. Neuroblastoma and glioma cells, when grown from early logarithmic to stationary phase, showed no significant changes in specific activity of either MAO or COMT. Growth of cells for 3 days with 1 mM-N6,O2'-dibutyryl adenosine-3',5'-cyclic monophosphate resulted in no marked change in either MAO or COMT activity. These results suggest that in neurons neither MAO nor COMT plays a major role in the type of transmitter inactivation that is analogous to that of acetylcholinesterase in cholinergic synapses. The occurrence of considerable MAO and acetylcholinesterase activities in glioma cells may indicate a role for these cells in neurotransmitter inactivation.  相似文献   

8.
Monoamines are able to increase the thyroid iodine organification in vitro. A predominance of the A form of monoamine oxidase (MAO) has been previously demonstrated to exist in bovine thyroid tissue. In the present study we have investigated the form of MAO that could be involved in the iodotyrosine formation induced by tyramine, 5-hydroxytryptamine (5-HT) and beta-phenylethylamine (PEA) in a bovine thyroid subcellular fraction. The relative capacity of these monoamines to generate H2O2 and to incorporate iodine into tyrosine has also been studied. The MAO A inhibitor clorgyline (10(-9) M) produced a strong inhibition on the iodotyrosine formation induced by tyramine, 5-HT and PEA. In contrast, only a slight reduction was observed with deprenyl as MAO B inhibitor. Among the three monoamines, tyramine produced the highest H2O2 generation and iodotyrosine formation. The lowest Km value obtained was for 5-HT and the highest for PEA. Regarding the Vmax, the lowest value was for 5-HT and the highest for tyramine. The amount of iodine incorporated to tyrosine was not equivalent to the H2O2 generated by the monoamines nor to that exogenously added. Our results indicate that in bovine thyroid tissue mainly the A form of MAO is involved in the monoamine metabolism.  相似文献   

9.
Abstract

The substrate- and inhibitor-related characteristics of monoamine oxidase (MAO) were studied for catfish brain and liver. The kinetic constants for MAO in both tissues were determined using 5-hydroxytryptamine (5-HT), tyramine and β-phenylethylamine (PEA) as substrates. For both tissues, the Vmax values were highest with 5-HT and lowest with PEA. The Km value for the brain was highest with 5-HT, followed by tyramine and PEA; but for the liver its value was highest with PEA, followed by 5-HT and tyramine, although all values were in the same order of magnitude. The inhibition of MAO by clorgyline and deprenyl by use of 5-HT, tyramine and PEA as substrates showed that the MAO-A inhibitor clorgyline was more effective than the MAO-B inhibitor deprenyl for both catfish tissues; a single form was present since inhibition by clorgyline or deprenyl with 1000 μM PEA showed single phase sigmoid curves. It is concluded that catfish brain and liver contain a single form of MAO, relatively similar to mammalian MAO-A.  相似文献   

10.
M E Bembenek 《Life sciences》1990,46(25):1873-1877
The ability of highly purified preparations of human monoamine oxidase A and B (MAO A and B) to utilize 1-methyl-4-(1-methylpyrrol-2-yl)-4-piperidinol (MMPP) and its dehydration product 1,2,3,6-tetrahydro-1-methyl-4-(methylpyrrol-2-yl) pyridine (TMMP) as substrates was investigated. The results showed that TMMP was a substrate for both forms of MAO with Km,app values of approximately 60 microM. However, MAO B had a Vmax,app for TMMP about 30-fold greater than MAO A. Additional studies revealed that MMPP was a poor substrate of only MAO B (Km,app = 9.5 mM) and that acid treatment of MMPP led to the formation of a product that could be readily oxidized by both MAO A and B. Similar acid pretreatment of TMMP yielded a product that was a much poorer substrate for MAO B than the parent compound. These results may partially explain why orally administered MMPP produces neurotoxicity in monkeys and TMMP fails to induce chemical parkinsonism.  相似文献   

11.
Abstract: Studies were designed to evaluate specificity of the transmitter amines serotonin (5-hydroxytryptamine, 5-HT) and dopamine (DA), as well as the trace amines p -tyramine ( p -TA) and β -phenylethylamine (PEA) for types A and B monoamine oxidase (MAO) in rat striatum. 5-HT was found to be a specific substrate for the type A enzyme. However, the specificity of PEA for the type B enzyme was found to be concentration-dependent. When low concentrations of PEA and 5-HT were used to measure type B and type A activities, respectively, both clorgyline and deprenyl were highly selective for the sensitive form of MAO in vivo. However, as the concentration of PEA was increased, the type B inhibitor deprenyl became less effective in preventing deamination of PEA. Conversely, the type A inhibitor clorgyline became more effective in this regard. Kinetic analysis following selective in vivo inhibition showed PEA deamination by both forms of MAO with a 13-fold greater affinity for the type B enzyme. In vivo dose-response curves obtained with the common substrates DA and p -TA showed approximately 20% deamination by the B enzyme. Kinetic values for DA and p -TA deamination in in vivo -treated tissue possessing only type A or type B MAO activity, revealed a 2.5-fold greater affinity for the type A enzyme. These studies show the importance of concentration on substrate specificity in striatal tissue. The results obtained characterize the common substrate properties of DA and p -TA as well as of PEA in rat striatum. In addition, the presence of regional specificity for 5-HT deamination by only type A MAO is demonstrated.  相似文献   

12.
The oxidative deamination of serotonin (5-HT) to 5-hydroxyindoleacetic acid (5-HIAA) by rat primary astrocyte cultures was investigated in intact cells using HPLC. All detectable 5-HIAA accumulated in the extracellular medium, and its rate of production was proportional to the 5-HT concentration over the tested range of 5 x 10(-7) to 10(-4) M. At 5 x 10(-7) M 5-HT, intracellular 5-HT was detectable only in astrocytes treated with monoamine oxidase (MAO) inhibitors. These findings are consistent with the idea that 5-HT taken up into astrocytes is not stored for re-release, but is rapidly metabolized to 5-HIAA, which is then extruded from the cell. At 5 x 10(-7) M 5-HT, 5-HIAA formation in intact cells was blocked 63% by the selective high-affinity 5-HT uptake inhibitor fluoxetine. 5-HT oxidation to 5-HIAA is carried out principally by MAO-A, because clorgyline was more effective at inhibiting the production of 5-HIAA than was pargyline. Radioenzymatic determinations of MAO activity in cell homogenates supported these findings, because under these conditions clorgyline was 1,000-fold more effective than pargyline at inhibiting MAO activity toward 14C-labelled 5-HT. However, the relatively selective MAO-B substrate beta-phenylethylamine (PEA) was also oxidized, showing that these cultures also contained MAO-B activity; the Km values for MAO-A oxidation of 5-HT and MAO-B oxidation of PEA were 135 and 45 microM, and Vmax values were 88 and 91 nmol/mg of total cell protein/h, respectively. Higher concentrations of PEA (greater than 20 microM) were oxidized by both MAO-A and MAO-B isozymes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Effects of long-term cold exposure on the content of serotonin and its metabolite 5-hydroxyindolacetic acid (5-HIAA) and monoamine oxidase (MAO) activity and kinetic parameters (Km and Vmax) of oxidative deamination of serotonin in rat brain stem. The increase of 5-HIAA level in the initial period of chronic cold exposure was determined by the blockade of active metabolite transport from the brain. The level of serotonin and the rate of its catalytic deamination by MAO were found to be decreased in cold-adapted rats. The magnitude of the Km of serotonin deamination was unchanged.  相似文献   

14.
1. The maximum velocity (Vmax) and apparent Michaelis constant (Km) of brain and liver monoamine oxidase (MAO) in goldfish were different in fish acclimated to 22 degrees C and to 7 degrees C ambient temperature. 2. In brain, Vmax and Km were dependent upon incubation temperature, but both parameters were lower in 7 degrees C, adapted fish over most of the incubation temperature range. 3. The values obtained for Km showed a plateau at incubation temperatures at and below 25 degrees C for warm water fish, and at and below 20 degrees C for cold water fish. The activation energy of brain MAO was lower in fish adapted to the colder water. 4. These results show that goldfish MAO displays changes in functional activity in response to a change in environmental temperature. Apparently the purpose of this adaptation is to compensate for a reduction in enzyme concentration.  相似文献   

15.
We evaluated the concurrent phosphorylation of reconstituted mixtures of three purified human placental calpactins (or lipocortins) by purified bovine brain protein kinase C (PKC). Calpactin-I (p36 or lipocortin-II), calpactin-II (p38 or lipocortin-I), and a 70-kilodalton calpactin-related protein, calpactin-p70, when present together as substrates for PKC, all demonstrated comparable kinetic parameters (Vmax values = 0.3-0.5 nmol phosphate incorporated/min), with calpactin-II and calpactin-p70 exhibiting lower apparent Km values (40 and 30 nM, respectively) than did calpactin-I (Km, 200 nM). Because of the higher Vmax/Km ratios for calpactin-II and calpactin-70 (12.5 and 10.0, respectively) compared with the ratio for calpactin-I (2.0), our data suggest that, intracellularly, where all three calpactins might be co-localized, the higher molecular mass calpactins could be preferred substrates for PKC. Nonetheless, the requirement for relatively high calcium concentrations (greater than or equal to 0.5 mM) suggests that PKC-mediated phosphorylation of the calpactins may take place only in restricted intracellular compartments, wherein calcium concentrations might transiently reach levels much higher than those that are normally found intracellularly (less than or equal to 0.25 mM).  相似文献   

16.
The tricyclic antidepressant drug, amitriptyline, inhibited the B form of human brain mitochondrial monoamine oxidase (MAO) under normal atmospheric conditions in a noncompetitive manner when phenylethylamine (PEA) was used as substrate and competitively when benzylamine (BzNH2) was employed as substrate. In addition, it was also found that PEA and BzNH2 inhibited each other's degradation noncompetitively. Similar results have previously been reported with human platelet MAO. These data suggest that the catalytic binding sites for PEA and BzNH2 on the B form of human brain MAO may be different. Attempts were made to further distinguish these catalytic binding sites on the brain oxidase using the irreversible MAO inhibitors, pargyline and clorgyline. Though these drugs have considerably different affinities for the B form of the oxidase, the degree to which either compound inhibited PEA or BzNH2 deamination was essentially identical. When incubations were performed at elevated oxygen concentrations PEA and BzNH2 became mutually competitive inhibitors of each other's metabolism. Also at the higher levels of oxygen, amitriptyline inhibition of PEA deamination approached a competitive fashion. These results suggest that PEA and BzNH2 share a common catalytic binding site on the B form of MAO and, in addition, bind to an inhibitory site on the reduced form of the oxidase. Accordingly, the data indicate that amitriptyline also binds to both the oxidized and reduced forms of this human brain oxidase.  相似文献   

17.
The enzyme tyrosine hydroxylase catalyzes the first step in the biosynthesis of dopamine, norepinephrine, and epinephrine. Tyrosine hydroxylase is a substrate for cyclic AMP-dependent protein kinase as well as other protein kinases. We determined the Km and Vmax of rat pheochromocytoma tyrosine hydroxylase for cyclic AMP-dependent protein kinase and obtained values of 136 microM and 7.1 mumol/min/mg of catalytic subunit, respectively. These values were not appreciably affected by the substrates for tyrosine hydroxylase (tyrosine and tetrahydrobiopterin) or by feedback inhibitors (dopamine and norepinephrine). The high Km of tyrosine hydroxylase correlates with the high content of tyrosine hydroxylase in catecholaminergic cells. We also determined the kinetic constants for peptides modeled after actual or potential tyrosine hydroxylase phosphorylation sites. We found that the best substrates for cyclic AMP-dependent protein kinase were those peptides corresponding to serine 40. Tyrosine hydroxylase (36-46), for example, exhibited a Km of 108 microM and a Vmax of 6.93 mumol/min/mg of catalytic subunit. The next best substrate was the peptide corresponding to serine 153. The peptide containing the sequence conforming to serine 19 was a very poor substrate, and that conforming to serine 172 was not phosphorylated to any significant extent. The primary structure of the actual or potential phosphorylation sites is sufficient to explain the substrate behavior of the native enzyme.  相似文献   

18.
Deamination of n-octylamine and n-decylamine has been studied in various tissues using a new bioluminescence technique. Selectivity of n-octylamine and n-decylamine as substrates for monoamine oxidase (MAO) A or B has been determined using both clorgyline and (-)-deprenyl inhibition curves and kinetic parameters. Homogenates of rat brain, liver and heart containing predominantly MAO-A or -B were prepared by preincubation for 60 min with (-)-deprenyl or clorgyline (30 nM), respectively. Human placenta (MAO-A) and platelet (MAO-B) were used as reference tissues containing only one MAO form. In tissues (rat liver, brain) containing both MAO forms in equal proportion, inhibition curve studies showed a preference of both substrates for the B form of the enzyme; however, where MAO-A was the major form (rat heart, human placenta), clorgyline was the more effective inhibitor. In the beef brain cortex n-octylamine showed marked preference for MAO-B, whereas n-decylamine was selective toward-MAO-A. Kinetic studies in general supported the picture of greater selectivity of the aliphatic amine substrates for deamination by MAO-B, as reflected by lower Km values for this enzyme type. However, n-octylamine was more selective for MAO-B than n-decylamine in both kinetic and inhibition curve studies. The deamination of these aliphatic amine substrates cannot be explained only by reference to the binary classification of MAO into types A and B.  相似文献   

19.
1. Mitochondrial MAO specific activity was measured in eggs and early embryos of the teleostean fish Esox lucius using tryptamine, 5-hydroxytryptamine (5-HT) and phenylethylamine (PEA) as substrates. 2. Tryptamine is the most readily deaminated substrate in mitochondria isolated from unfertilized eggs and embryos at the stages of cleavage, blastula and gastrula. 3. Monoamine oxidase activity gradually decreases during development and at the gastrula stage it is respectively 80% (tryptamine), 70% (5-HT) and 50% (PEA) of that found in the egg using the corresponding substrate. 4. The inhibition of egg MAO activity by clorgyline and deprenyl measured in E. lucius eggs using tryptamine as substrate, indicates the presence of a single form of MAO not corresponding to the MAO A and MAO B described in terrestrial vertebrates.  相似文献   

20.
1. Monoamine oxidase activity has been studied in hepatopancreas of Octopus vulgaris using 5-HT and PEA as substrates.2. Time courses of MAO activity against 5-HT and PEA show that the enzyme has higher affinity for PEA than for 5-HT.3. MAO activity against 5-HT appears more sensitive than MAO activity against PEA, to variations of the temperature (range 17–67°C).4. The inhibition curves obtained with clorgyline and deprenyl indicate that MAO activity is due to a single form of the enzyme, not corresponding to type A and type B MAO.5. Semicarbazide 10−4 M does not affect the deamination of 5-HT and PEA, demonstrating that a semicarbazide-sensitive amine oxidase is not involved in this process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号