首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It has been observed earlier that gastric cytoprotection produced by PGI2, beta-carotene, small doses of atropine or cimetidine has failed in surgically vagotomized rats. This phenomenon may be in connection with endogenous prostaglandins (PGs) and glutathione (GSH) level of the gastric mucosa. The aims of the study were to evaluate the effect of vagus nerve on the gastric mucosal 6-keto-PGF1 alpha, PGE2 and glutathione after intragastric 96% ethanol (ETOH) treatment. The observations were carried out on CFY rats. The gastric mucosal damage was produced by intragastric administration of 1 ml 96% ETOH. Acute bilateral surgical vagotomy (ASV) was carried out 30 min prior to ETOH application. The animals were sacrificed 1, 5, 15 or 60 min after ETOH installation. The number and the severity of gastric mucosal lesions were noted and 6-keto-PGF1 alpha, PGE2 an GSH contents of gastric mucosa were measured. It has been found that: 1. the number and the severity of gastric mucosal lesions were increased after ASV compared to those with intact vagal nerve, 2. 96% ETOH treatment increased both the gastric mucosal PGs and GSH levels, 3. 6-keto-PGF1 alpha peaked at 5 min PGE2 and GSH peaked at 15 min after ETOH treatment, 4. ASV decreased the gastric mucosal PGs content and delayed the peaks of PGE2 and GSH. It has been concluded that the decreased content of PGs and the delayed GSH increase may play a pathological role in the failure of gastric cytoprotection of rats after ASV.  相似文献   

2.
巯基参与胃粘膜防御机制   总被引:14,自引:4,他引:10  
李铁  张席锦 《生理学报》1990,42(6):571-577
本工作研究了胃粘膜非蛋白质巯基物质(NPSH)在粘膜防御功能中的作用。结果表明,酸性乙醇灌胃或冷冻加束缚应激引起大鼠胃粘膜 NPSH 含量显著下降;补充含-SH 的化合物半胱胺或还原型谷胱甘肽可防止酸性乙醇引起的胃粘膜损伤;在酸性乙醇灌胃或应激后,胃粘膜谷胱甘肽还原酶活性明显降低,并与 NPSH 含量的下降在时间上一致;丙二醛含量在酸性乙醇灌胃后显著升高,自由基清除剂二甲亚砜可减轻胃粘膜损伤。上述结果提示,胃粘膜NPSH 可能通过对自由基的清除作用参与粘膜的局部防御机制;谷胱甘肽还原酶活性下降和自由基生成增加所导致的粘膜 NPSH 含量下降可能是损伤发生过程的重要环节。  相似文献   

3.
Indomethacin (IND) is a non-steroid anti-inflammatory agent that is known to induce severe gastric mucosal lesions. In this study, we investigated the protective effect of selenium (SEL), grape seed extract (GSE), and both on IND-induced gastric mucosal ulcers in rats. Sprague–Dawley rats (200–250 g) were given SEL, GSE, and both by oral gavage for 28 days, and then gastric ulcers were induced by oral administration of 25 mg/kg IND. Malondialdehyde (MDA), non-enzymatic (reduced glutathione, GSH) and enzymatic (superoxide dismutase, catalase, and glutathione peroxidase) antioxidants, prostaglandin E2 (PGE2) in gastric mucosa, and serum tumor necrosis factor alpha (TNF-α) were measured. Moreover, gastric ulcer index and preventive index were determined. Indomethacin increased the gastric ulcer index, MDA, TNF-α, and decreased PGE2 and non-enzymatic (GSH) and enzymatic (superoxide dismutase, catalase, and glutathione peroxidase) antioxidants. Pretreatment with SEL, GSE, and both significantly decreased the gastric ulcer index, MDA, and TNF and increased antioxidants and PGE2. Histopathological observations confirm the gastric ulcer index and biochemical parameters. Selenium and GSE have a protective effect against IND-induced gastric ulcers through prevention of lipid peroxidation, increase of GSH, activation of radical scavenging enzymes, PGE2 generation, and anti-inflammatory activity. Co-administration of GSE and SEL is more effective than GSE or SEL alone.  相似文献   

4.
Recent years have reported a rise in the occurrence of gastric ulceration especially among young children and adults. This study investigated the mechanism by which two types of Saudi honey: Alnahal Aljawal honey (Wadi) or Bin Ghaithan honey (Talh) exerted their antiulcer potential in indomethacin-induced gastric ulceration. Four cohorts of rats were used: Group 1; Healthy controls, Group 2; Ulcerative animals, Group 3; Ulcerative + Wadi honey treatment, Group 4; Ulcerative + Talh honey treatment. We profiled the levels of different indicators of oxidative stress including the activities of gastric mucosal glutathione superoxide dismutase (SOD), catalase (CAT), peroxidase (GPx), reduced glutathione (GSH), and lipid peroxidation (measured as malondialdehyde; MDA). CRP content, IL-10, and plasma tumor necrosis factor-α were also evaluated. The stomach was visually examined for macroscopic lesions and using light microscope for histopathological changes in the glandular mucosa.Wadi or Talh honey significantly reduced the ulcer indices, and essentially protected the glandular mucosa from lesions. Wadi or Talh honey also significantly reduced the gastric mucosal concentrations of GPx, SOD and GSH. In addition, the administration of Wadi or Talh honey decreased gastric mucosal plasma TNF-α and MDA, CRP content, and IL-10 levels. In conclusion, Wadi or Talh honey possibly exerted their antiulcer potential via restoring the homeostasis and stabilizing the enzymatic (SOD and GPx) and non-enzymatic (GSH) antioxidants as well as reducing the levels of inflammatory cytokines (TNF-α, CRP content, IL-10 and, NF-κB activity), and inhibiting the lipid peroxidation in the gastric mucosa. Consequently, Wadi or Talh honey may be of beneficial therapy for patients diagnosed with gastric ulceration. Clinical studies need to be conducted to further support these findings.  相似文献   

5.
The aim of this study was to compare the effects of two nonsteroidal anti-inflammatory drugs (NSAID), members of the same family with a different cyclooxygenase (COX) inhibition selectivity, meloxicam, preferent COX-2 inhibitor, and piroxicam, preferent COX-1 inhibitor, on oxygen radical generation in rat gastric mucosa. Therefore, the activity of oxidative stress-related enzymes such as xanthine oxidase (XO), superoxide dismutase (SOD) and glutathione (GSH) homeostasis were studied in rats. Gastric prostaglandins (PG) were also assessed as a measure of COX-1 inhibition. Both oxicams produced a similar extent of the gastric mucosal damage and a significant decrease in PGE2 synthesis, however only piroxicam induced an increase of both myeloperoxidase (MPO) activity and tumor necrosis factor (TNF)-alpha content in the gastric mucosa, indicating that neutrophil-derived free radicals were involved in gastric injury. Furthermore, both compounds reduced SOD activity and increased XO activity in gastric mucosa. Our results also revealed modifications in GSH metabolism: although glutathione peroxidase (GSH-px) activity was unaffected by meloxicam or piroxicam administration, both glutathione reductase (GSSG-rd) activity and total GSH content were significantly decreased after dosing. These results suggest that under our experimental conditions, meloxicam, preferential COX-2 inhibitor causes rates of gastric lesion in rats comparable to those seen with the traditional NSAID piroxicam, preferential COX-1 inhibitor. In addition to suppression of systemic COX activity, oxygen radicals, probably derived via the XO, and neutrophils play an important role in the production of damage induced by both oxicams. Moreover, the decrease in SOD activity and changes in glutathione homeostasis in gastric mucosa may also contribute to pathogenesis of meloxicam- or piroxicam-induced gastropathy.  相似文献   

6.
The aim of this study was to compare the effects of two nonsteroidal anti-inflammatory drugs (NSAID), members of the same family with a different cyclooxygenase (COX) inhibition selectivity, meloxicam, preferent COX-2 inhibitor, and piroxicam, preferent COX-1 inhibitor, on oxygen radical generation in rat gastric mucosa. Therefore, the activity of oxidative stress-related enzymes such as xanthine oxidase (XO), superoxide dismutase (SOD) and glutathione (GSH) homeostasis were studied in rats. Gastric prostaglandins (PG) were also assessed as a measure of COX-1 inhibition. Both oxicams produced a similar extent of the gastric mucosal damage and a significant decrease in PGE 2 synthesis, however only piroxicam induced an increase of both myeloperoxidase (MPO) activity and tumor necrosis factor (TNF)- &#102 content in the gastric mucosa, indicating that neutrophil-derived free radicals were involved in gastric injury. Furthermore, both compounds reduced SOD activity and increased XO activity in gastric mucosa. Our results also revealed modifications in GSH metabolism: although glutathione peroxidase (GSH-px) activity was unaffected by meloxicam or piroxicam administration, both glutathione reductase (GSSG-rd) activity and total GSH content were significantly decreased after dosing. These results suggest that under our experimental conditions, meloxicam, preferential COX-2 inhibitor causes rates of gastric lesion in rats comparable to those seen with the traditional NSAID piroxicam, preferential COX-1 inhibitor. In addition to suppression of systemic COX activity, oxygen radicals, probably derived via the XO, and neutrophils play an important role in the production of damage induced by both oxicams. Moreover, the decrease in SOD activity and changes in glutathione homeostasis in gastric mucosa may also contribute to pathogenesis of meloxicam- or piroxicam-induced gastropathy.  相似文献   

7.
Impairment of blood perfusion in gastric mucosa results in the formation of erosions and ulcers. Nitric oxide (NO), produced via activity of NO-synthase (NOS), appears to be a one of major factors, involved in the regulation of the gastric blood flow (GBF). Inhibition of this enzyme by N-nitro-L-arginine (L-NNA) results in local decrease of NO production, reduces GBF and impairs gastric mucosal integrity, the effects that can be reversed by the pretreatment with L-arginine, the NOS substrate. However, little information is available regarding the contribution of reactive oxygen species (ROS)-induced lipid peroxidation and NO to the mechanism of gastric mucosal integrity. Therefore, the aim of our present study was to determine the action of pentoxyfilline (PTX), an inhibitor of tumor necrosis factor alpha (TNFalpha) with or without NOS inhibition by L-NNA administration in rats with water immersion and restraint stress (WRS)-induced gastric lesions. Experiments were carried out on 100 male Wistar rats. The gastric blood flow (GBF) was measured using laser Doppler flowmeter. The area of gastric lesions was determined by planimetry and the levels of proinflammatory cytokines (IL-1beta and TNFalpha) were measured by ELISA. Colorimetric assays were employed to determine gastric mucosal levels of lipid peroxidation products, such as malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE) and antioxidant enzymes including superoxide dismutase (SOD) activity, as well as tissue concentration of reduced glutathione (GSH). Administration of PTX significantly attenuated the gastric lesions, induced by 3.5 h of WRS and this was accompanied by the rise in the GBF and a significant decrease in plasma proinflammatory cytokines (IL-1beta and TNFalpha) levels, as well as the reduction of lipid peroxidation. Exposure of rats to WRS suppressed the SOD and GSH activities and these effects were reversed by PTX. The protective and hyperemic effects of PTX, as well as an increase in mucosal SOD activity and GSH concentration were counteracted by pretreatment with L-NNA, but restored by the pretreatment with L-arginine, a NOS substrate. We conclude that PTX exerts beneficial, gastroprotective effect against WRS-induced gastric lesions due to enhancement in gastric microcirculation, possibly mediated by the enhanced NOS activity as well as local action of NO and by the attenuation of oxidative metabolism and generation proinflammatory cytokines.  相似文献   

8.
Isolated spermatocytes and spermatids from hamsters contained a large amount of glutathione (GSH) (approximately 40 and 30 nmol GSH/mg protein, respectively), but showed a spontaneous decrease of GSH content during prolonged incubation (t1/2 approximately 35 h). Incubation of the germ cells in the presence of the glutathione biosynthesis inhibitor buthionine sulphoximine (BSO) provided evidence that the cells can perform glutathione synthesis. This synthesis, however, was not sufficient to maintain the GSH content of the isolated cells, or to restore the cellular GSH pool after depletion caused by exposure of the cells to the glutathione S-transferase substrate, diethyl maleate (DEM). Cultured Sertoli cells, containing approximately 10 nmol GSH/mg protein, had a more active BSO-sensitive GSH synthesis system. The Sertoli cells, but also tubule fragments containing Sertoli cells and germ cells, were able to restore their GSH pool after DEM-induced depletion. DEM treatment of the tubule fragments resulted in a 90% decrease of the GSH content of the spermatocytes and spermatids present within the fragments. The GSH levels of the tubule fragments and the enclosed germ cells were restored during a subsequent incubation in the absence of DEM. As indicated above, such a recovery was not observed for isolated spermatocytes and spermatids. The results illustrate the importance of Sertoli cell-germ cell interaction, and point to a role of Sertoli cells in glutathione synthesis by the germ cells.  相似文献   

9.
Recent results from our laboratory and others have suggested a possible physiological functional role(s) for leukotrienes in gastric mucosa. In the present study 3H-LTC4 binds to washed rabbit gastric mucosal membranes at 4 degrees C with a Kd of 5 nM and a Bmax of 31.3 pmol/mg protein. Leukotrienes D4, E4, B4, oxidized glutathione (GSSG), cysteine, and mercaptoethanol were unable to displace 3H-LTC4 at 1 microM concentrations, while GSH inhibited binding with a Ki of 47 nM. Differential centrifugation of the membrane preparation to remove mitochondria resulted in Ki values for LTC4 and GSH of 14 and 23 nM, respectively. The similar binding affinities and competitive receptor binding kinetics for GSH and LTC4, the low affinity for other leukotrienes, and a Ki of 7 microM for hematin, a substrate for glutathione S-transferase, suggest that 3H-LTC4 binds to a GSH site which does not discriminate between LTC4 and GSH. Membranes fractionated to remove mitochondria were assayed for glutathione peroxidase, gamma-glutamyltranspeptidase, and glutathione S-transferase as possible binding sites for LTC4. We were unable to detect enzyme activity for any of the three enzymes. The binding of LTC4 in gastric mucosa differs from other tissues with respect to the high affinity for GSH, and thus becomes an appropriate tissue in which to investigate the relationships between LTC4 and GSH.  相似文献   

10.
Diethylmaleate (DEM) decreases glutathione (GSH) levels in various organs by enzymatic conjugation with reduced GSH catalyzed by GSH transferase. We have examined levels of GSH, glutathione reductase (GR), and glucose-6-phosphate dehydrogenase (G6PD) in lungs of 200-250-g rats after intraperitoneal injection of 0.5 or 1 g DEM/kg body wt. The GSH levels are severely depressed at 2 and 4 h but have essentially recovered by 12 and 24 h after either dose of DEM. The GR and G6PD activities in the 1 g/kg group are depressed at 4 h to a lesser extent than the GSH levels and also return to normal by 12 and 24 h. These enzymes are not affected in the 0.5 g/kg group. To determine whether these transient decreases in GSH and related enzymes affected O2 tolerance, we exposed rats injected with DEM to greater than 98% O2 and found that halftime (t1/2) for survival was decreased in rats receiving both 0.5 and 1 g DEM/kg body wt when compared with untreated or saline-injected controls (t1/2 control, 74 h; 0.5 g DEM, 59 h; 1 g DEM, 53 h). No deaths occurred in air controls at 1 mg/kg DEM for up to 5 days. DEM, in itself, caused no morphological alteration of the lung. Thus a decrease in lung GSH and related enzymes, occurring by 4 h and reversed by 12 h, has a significant effect on the subsequent progression of lung pathology and indicates that early biochemical events occurring in lungs exposed to hyperoxia may be very important in determining the degree of longer-term damage to rat lungs.  相似文献   

11.
Lysosomal membrane stability has been studied in the gastric mucosa in response to mechanical damage caused by lysosomal fractionation and release of lysosomal enzymes from mucous cells into the gastric cavity of alive animals during induction of acetic ulcer or erosive damage of the gastric mucosa resulting from intraperitoneal introduction of histamine and serotonin. It has been found that all types of ulcerogenesis in the gastric mucosa led to the decrease in lysosomal membrane stability to mechanical stress in the course of lysosomal fractionation. In addition there was a substantial release of lysosomal enzymes into the gastric cavity in different types of ulcerogenesis. The decrease in lysosomal membrane stability combined with a subsequent development of ulcers and erosions in the gastric mucosa seems indicative of the fact that lysosomal enzymes take part in the initial formation of ulcers in the gastric mucosa.  相似文献   

12.
This study investigated the involvement of neutrophil infiltration, disturbances in nitric oxide (NO) generation and oxidative stress in indomethacin-induced gastric ulcer, and the possible gastroprotective potentials of leptin, known for its angiogenic effect. Male Wistar albino rats (180–220 g) were allocated into a normal control group, ulcer control group (received a single dose of indomethacin 40 mg/kg p.o.) and an ulcer group pretreated with leptin (10 μg/kg i.p. 30 min before ulcer induction). The animals were killed 6 h after indomethacin administration and their gastric juice, serum and mucosal tissue were used for gastric injury evaluation. Indomethacin produced multiple lesions in glandular mucosa, evidenced by marked increase in gastric ulcer index (GUI) accompanied by significant increases in gastric juice acidity, tissue myeloperoxidase (MPO) activity, serum NO and tissue conjugated diene (CD), and marked decreases in tissue NO and glutathione (GSH) as well as glutathione reductase (GR) and superoxide dismutase (SOD) activities, while gastric juice mucin and tissue glutathione peroxidase (GPx) were not affected. Leptin exerted significant gastroprotection as evidenced by significantly decreased GUI and attenuated neutrophil infiltration. Leptin significantly increased mucin and tissue NO, restored GR and SOD activities and up-regulated GPx activity. It failed to affect acidity, serum NO, GSH and CD. These results suggest that leptin confers significant gastroprotection against indomethacin-induced injury through interfering with neutrophil infiltration, NO production and oxidative stress.  相似文献   

13.
Chloroacetonitrile (CAN) is detected in drinking-water supplies as a by-product of the chlorination process. Gastroesophageal tissues are potential target sites of acute and chronic toxicity by haloacetonitriles (HAN). To examine the mechanism of CAN toxicity, we studied its effect on glutathione (GSH) homeostasis and its impact on oxidative DNA damage in gastric mucosal cells of rats. Following a single oral dose (38 or 76 mg/Kg) of CAN, animals were sacrificed at various times (0-24 h), and mucosa from pyloric stomach were collected. The effects of CAN treatment on gastric GSH contents and the integrity of genomic gastric DNA were assessed. Oxidative damage to gastric DNA was evaluated by measuring the levels of 8-Hydroxydeoxyguanosine (8-OHdG) in hydrolyzed DNA by HPLC-EC. The results indicate that CAN induced a significant, dose- and time-dependent, decrease in GSH levels in pyloric stomach mucosa at 2 and 4 hours after treatment (56 and 39% of control, respectively). DNA damage was observed electrophoretically at 6 and 12 hours following CAN administration. CAN (38 mg/Kg) induced significant elevation in levels of 8-OHdG in gastric DNA. Maximum levels of 8-OHdG in gastric DNA were observed at 6 hours after CAN treatment [9.59+/-0.60 (8-OHdG/10(5)dG) 146% of control]. When a high dose of CAN (76 mg/Kg) was used, a peak level of 8-OHdG [11.59+/-1.30 (8-OHdG/10(5)dG) 177% of control] was observed at earlier times (2 h) following treatment. When CAN was incubated with gastric mucosal cells, a concentration-dependent cyanide liberation and significant decrease in cellular ATP levels were detected. These data indicate that a mechanism for CAN-induced toxicity may be partially mediated by depletion of glutathione, release of cyanide, interruption of the energy metabolism, and induction of oxidative stress that leads to oxidative damage to gastric DNA.  相似文献   

14.
AIM: The present study was aimed to evaluate the effect of methanolic extract of Terminalia arjuna (TA) on diclofenac sodium induced gastric ulcer in experimental rats. METHODS: Animals were induced for gastric ulcer with diclofenac sodium (DIC) (80mg/kg bodyweight in water, orally) and treated orally with TA in various doses ranging from 100mg/kg bodyweight to 500mg/kg bodyweight. The effective dose was 400mg/kg bodyweight, since this dose elicited a maximum reduction in lesion index. The gastroprotective effect of TA was assessed from volume of gastric juice, pH, free and total acidity, pepsin concentration, acid output in gastric juice, the levels of non-protein sulfhydryls (NP-SH), lipid peroxide (LPO), reduced glutathione (GSH), and activities of enzymic antioxidants--super oxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST) and myeloperoxidase (MPO) in gastric mucosa. The levels of DNA, protein bound carbohydrate complexes--hexose, hexoseamine, sialic acid, fucose in gastric mucosa and gastric juice and the levels of RNA in gastric mucosa were assessed. The stomach tissues were used for adherent mucus content and also for the histological examination. RESULTS: A significant reduction in lesion index was observed in ulcer induced animals treated with TA (DIC+TA) compared to ulcerated rats (DIC). A significant increase was observed in pH, NP-SH, GSH, enzymic antioxidants, protein bound carbohydrate complexes, adherent mucus content, nucleic acids with a significant decrease in volume of gastric juice, free and total acidity, pepsin concentration, acid output, LPO levels and MPO activities in DIC+TA rats compared to DIC rats. Histological studies confirmed the gastroprotective activity of TA. CONCLUSION: From the data presented in this study it could be concluded that T. arjuna acts as an gastroprotective agent probably due to its free radical scavenging activity and cytoprotective nature.  相似文献   

15.
Tashima K  Fujita A  Takeuchi K 《Life sciences》2000,67(14):1707-1718
We examined the influence of diabetes on ischemia/reperfusion-induced gastric damage in rats, in relation to the antioxidative system. Animals were injected with streptozotocin (STZ: 70 mg/kg, i.p.) and used after 5 weeks of diabetes with blood glucose levels of >350 mg/dl. Gastric mucosal blood flow (GMBF) was measured before, during and after 20 min of ischemia (1.5 ml bleeding per 100 g body weight from the carotid artery) followed by a 15-min reperfusion in the presence of acid (100 mM HCI). At the end of each experiment, gastric damage was observed macroscopically. GMBF was reduced by ischemia in all groups of rats, followed by a gradual return after reperfusion. Ischemia/reperfusion produced hemorrhagic lesions in normal rat stomachs in the presence of 100 mM HCl. These lesions were significantly aggravated when the animals were pretreated with diethyldithiocarbamate, an inhibitor of superoxide dismutase (SOD). Ischemia/reperfusion-induced damage was also markedly exacerbated in STZ-diabetic rats, but this aggravation was significantly suppressed by pretreatment with exogenous SOD or glutathione (GSH). Diabetic rat stomachs showed significantly less SOD activity as well as GSH content than normal rat stomachs. In addition, the deleterious influence of diabetes on the gastric ulcerogenic response to ischemia/reperfusion was significantly mitigated by decreasing the blood glucose levels by daily insulin treatment. These results suggest that the gastric mucosa of diabetic rats is more vulnerable to ischemia/reperfusion-induced injury, and the mechanism may be partly accounted for by impairment of the antioxidative system associated with a reduced SOD activity and GSH content.  相似文献   

16.
Thyroid hormones exert a critical developmental and regulatory role on the morphology and biochemistry of gastrointestinal mucosal cells. However, the relationship between thyroid function and stress gastric lesion formation remains undetermined. This study was designed to test the hypothesis that thyroid states may affect the acute development of gastric lesions induced by cold-restraint stress. Normal (euthyroid), hyperthyroid (200 micrograms of T4 i.p. x 7 days) and hypothyroid (thyroidectomized) rats were used. Gastric lesion incidence and severity was significantly (p less than 0.05) increased in hypothyroid rats, whereas in contrast hyperthyroid rats developed significantly less gastric lesions. As anticipated, plasma levels of thyroxin (T4) were significantly (p less than 0.01) elevated in hyperthyroid rats, and undetectable in hypothyroid rats. Acute pretreatment with i.p. cimetidine (100 mg/Kg), but not T4 (200 micrograms/Kg) 1 h prior to stress completely prevented gastric lesions formation in hypothyroid rats. Finally, binding of 3H-dihydroalprenolol to beta-adrenergic receptors on brain membranes prepared from frontal cortex was reduced by 20% in hypothyroid rats after 3 h of stress. These and other data contained herein suggest that thyroid hormones contribute to modulate the responsiveness of the gastric mucosa to stress. The increased rate of ulcerogenesis observed in hypothyroid rats appears to be mediated by gastric acid secretion. The central mechanism of this response may involve decreased brain nonadrenergic receptor function.  相似文献   

17.
Cultured hepatocytes were exposed to two chemicals, dinitrofluorobenzene (DNFB) and diethyl maleate (DEM), that abruptly deplete cellular stores of glutathione. Upon the loss of GSH, lipid peroxidation was evidenced by an accumulation of malondialdehyde in the cultures followed by the death of the hepatocytes. Pretreatment of the hepatocytes with a ferric iron chelator, deferoxamine, or the addition of an antioxidant, N,N'-diphenyl-p-phenylenediamine (DPPD), to the culture medium prevented both the lipid peroxidation and the cell death produced by either DNFB or DEM. However, neither deferoxamine nor DPPD prevented the depletion of GSH caused by either agent. Inhibition of glutathione reductase by 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) or inhibition of catalase by aminotriazole sensitized the hepatocytes to the cytotoxicity of DNFB. In a similar manner, pretreatment with BCNU potentiated the cell killing by DEM. DPPD and deferoxamine protected hepatocytes pretreated with BCNU and then exposed to DNFB or DEM. These data indicate that an abrupt depletion of GSH leads to lipid peroxidation and cell death in cultured hepatocytes. It is proposed that GSH depletion sensitizes the hepatocyte to its constitutive flux of partially reduced oxygen species. Such an oxidative stress is normally detoxified by GSH-dependent mechanisms. However, with GSH depletion these activated oxygen species are toxic as a result of the iron-dependent formation of a potent oxidizing species.  相似文献   

18.
Essential oil from Citrus aurantium and the monoterpene limonene are widely used flavoring agents that are found in some common food items. This specie is also used medicinally throughout the world to treat gastritis and gastric disorders. Therefore, biological assays were performed in vivo on essential oil of C. aurantium (OEC) and its majority compound limonene (LIM) to evaluate their effect on gastric mucosa. The OEC (250 mg/kg, p.o.) and LIM (245 mg/kg, p.o.) provided effective (99%) gastroprotection against lesions induced by absolute ethanol and NSAID (non-steroidal anti-inflammatory drug) in rats. OEC and LIM do not interfere with gastric H+ secretion, serum gastrin or glutathione (GSH) level in gastric mucosa. But the gastroprotective action of OEC and LIM occurs due to an increase in the gastric mucus production induced by conserving the basal PGE2 levels after challenge by agents harmful to the gastric mucosa. Given that LIM and OEC are excellent flavoring agents and also present gastroprotective actions, they can be regarded as a promising target for the development of a new drug for the prevention of gastric damage.  相似文献   

19.
We investigated the role of montelukast (ML), a cysteinyl leukotriene-1 receptor antagonist, on the water avoidance stress (WAS)-induced degeneration of the rat gastric, ileal and colonic mucosa. One group of Wistar albino rats were exposed to chronic WAS (WAS group) 2h daily for 5 days. Another group was administered ML (10mg/kg; i.p.; WAS+ML group) following every WAS exposure for 5 days. Control rats were injected with the vehicle solution only. The stomach, ileum and colon were dissected and investigated for histopathological changes with a light microscope as well as for topographical changes with a scanning electron microscope. The levels of malondialdehyde (MDA, a biomarker of oxidative damage) and glutathione (GSH, a biomarker of protective oxidative injury) were also determined in all dissected tissues. In the WAS group, the stomach epithelium showed ulceration in some areas, dilatations of the gastric glands, degeneration of gastric glandular cells, and prominent congestion of the capillaries. In a similar fashion, degenerated epithelium and severe vascular congestions were observed in the ileum and colon. In all the tissues dense inflammatory cell infiltration and mast cell degranulation in mucosa were observed. The levels of MDA were significantly increased whereas those of GSH were significantly decreased in all test tissues in the WAS group compared to the control group. The morphology of gastric, ileal and colonic mucosa in WAS+ML group showed a significant amelioration showing a reduction in inflammatory cell infiltration and mast cell degranulation. Increased MDA and decreased GSH levels in the WAS group were also ameliorated with ML treatment. Based on the results, ML supplement seems attenuated inflammatory effects of WAS induction in gastrointestinal mucosa.  相似文献   

20.
It has been proposed that neutrophil and oxygen dependent microvascular injuries may be important prime events in gastrointestinal (GI) toxicity of nonsteroidal antiinflammatory drugs (NSAIDs). l-arginine (l-ARG) is an essential amino acid which participates in many important biochemical reactions associated to the normal physiology of the organism. In these experimentations, we studied the role of l-ARG, aminoacid precursor of NO synthesis, on ibuprofen (IB) induced gastric lesions, and also on the inflammatory and oxidative mechanisms related to mucosal damage. Oral administration of IB (100 mg kg-1), produced severe damage on gastric mucosa, which was more important after 6 h test-period, and was accompanied by a significant increment in myeloperoxidase (MPO) activity, as index of neutrophil activation, as well as lipid peroxidation (LP) levels and xanthine oxidase (XO) activity. However, no changes were observed in total mucosal glutathione (tGSH), nor glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) activity. Simultaneous treatment with equimolar doses of l-ARG (oral and i.p.), considerably reduced the number and intensity of lesions, and at the same time (6 h) the maximum protection was also observed. In addition, l-ARG inhibited the IB-induced LP and XO enhancement, but did not produce changes in leukocyte infiltration, tGSH, GSH-Px and SOD activity. These findings suggest that (1) l-ARG protective effect on gastric mucosa against IB-induced mucosal lesions could be explained by a local effect and also might be due to the systemic action of the aminoacid; (2) the active oxygen species, derived both from XO and activated neutrophils, could play a role in the pathogenesis of gastric injury induced by IB, (3) l-ARG exhibit a protective effect against IB-induced mucosal damage, probably through the inhibition of oxidative stress derived via xanthine-XO, but it does not block the oxygen free radical production through polymorphe nuclear leukocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号