首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Studies on sucrose synthetase. Kinetic mechanism   总被引:2,自引:0,他引:2  
The kinetic properties of Helianthus tuberosus sucrose synthetase, which catalyzes the reaction UDP-glucose + fructose = UDP + sucrose, have been studied. A plot of the reciprocal initial velocity versus reciprocal substrate concentration gave a series of intersecting lines indicating a sequential mechanism. Product inhibition studies showed that UDP-glucose was competitive with UDP, whereas fructose was competitive with sucrose and uncompetitive with UDP. On the other hand, a dead-end inhibitor, salicine, was competitive with sucrose and uncompetitive with UDP. The results of initial velocity, product, and dead-end inhibition studies suggested that the addition of substrates to the enzyme follows an ordered mechanism.  相似文献   

2.
The inhibition of mitochondrial malate dehydrogenase (L-malate : NADH oxidoreductase, EC 1.1.1.37) by 2-thenoyltrifluoroacetone (TTFA) was investigated at pH 8.0 where both forward and backward reactions can be measured. The inhibition with respect to malate is non-competitive at finite NAD concentrations. Increasing the NAD concentrations lowers the slope of the double reciprocal plot so that at infinite NAD the inhibition is uncompetitive. The inhibition with respect to oxaloacetate is non-competitive. Increasing the NADH concentration lowers the slope and intercept of the double reciprocal plot so that at infinite NADH the inhibition is nil. The inhibition with respect to NADH is competitive, whatever the oxaloacetate concentrations are. The inhibition with respect to NAD, at all malate concentrations, is non-competitive. This pattern of inhibition is incompatible with any model assuming that NAD and NADH reacts with identical forms of the enzyme. On the other hand the reciprocating compulsory ordered mechanism, where the two subunits of the dimeric enzyme are working in concert, can account for all the experimental results. It is concluded that NAD and NADH bind to different forms of the enzyme separated by reversible steps. Only one form (see text), the one which binds NADH, can react to form the dead end complex (see text). The similarity between mechanism of inhibition by thenoyltrifluoroacetone and other hydrophobic inhibitors of malate dehydrogenase is discussed.  相似文献   

3.
A soluble β-fructofuranosidase was isolated from sugar cane leaf-sheaths. The enzyme attacks sucrose with an activation energy of 5700 cal/mol above 30° and 17 000 cal/mol below 30°. The enzyme was inhibited by the reaction products. Glucose is a simple non-competitive inhibitor, but fructose is a competitive inhibitor. Kinetic studies using double reciprocal plots and replots of 1/Ki, slope vs inhibitor concentration showed that fructose binds to two interacting sites of the enzyme. Per cent residual activity plotted against inhibitor concentration, and Hill plots confirmed the regulatory properties of the invertase. n was found to be close to 2, the number of binding sites established with the double reciprocal method. The tissue and cellular levels of sucrose, fructose and glucose were measured. Fructose was found at inhibitory concentrations confirming that the activity of the enzyme is probably modulated by the hexose pool of the leaf-sheaths.  相似文献   

4.
ABSTRACT. The deterrent effect of alkaloids on feeding by the black blowfly Phormia regina Meigen (Diptera: Calliphoridae) was tested by determining tarsal thresholds for mixtures of sucrose and alkaloids. The following alkaloids were used: atropine sulphate, berberine sulphate, quinine mono-hydrochloride, caffeine, yohimbine sulphonic ester, pilocarpine hydrochloride, coniine hydrochloride and codeine. The same alkaloids were tested electrophysiologically on tarsal chemoreceptors (D hairs). Both behaviourally and electrophysiologically alkaloids reduced response to sucrose. Deterrence and peripheral inhibition could be blocked by increasing the concentration of sucrose. Application of kinetic analyses to the electrophysiological data ruled out competitive, non-competitive, and uncompetitive inhibition at receptor sites. There is no correlation of thresholds with available data on lipid solubility or octanol/water partition coefficients. The diverse pharmacological properties of alkaloids suggest that there is no uniform limiting mechanism for this multiform array of compounds.  相似文献   

5.
The kinetic properties of wheat germ sucrose phosphate synthetase, which catalyzes the reaction UDP-glucose + fructose 6-phosphate → UDP + sucrose 6-phosphate have been studied. A plot of the reciprocal initial velocity versus reciprocal substrate concentration gave a series of intersecting lines indicating a sequential mechanism. Product inhibition studies showed that UDP was competitive with UDP-glucose and noncompetitive with fructose 6-phosphate. A dead-end inhibitor, inorganic phosphate, was competitive with UDP-glucose and noncompetitive with fructose 6-phosphate. The results of initial velocity and product and dead-end inhibition studies suggested that the addition of substrates to the enzyme follows an ordered mechanism.  相似文献   

6.
Kinetic equations are derived for reversible inhibition of both active and facilitated transport systems for seven common experimental arrangements. It is shown that the unique features of transport kinetics may be exploited to give new kinds of information. It is also shown that the familiar rules of enzyme kinetics, though often applied to transport, can be seriously misleading. The analysis leads to the following general conclusions: (1) A competitive mechanism frequently gives rise to non-competitive kinetics, depending on the experimental design, but a non-competitive mechanism never produces competitive kinetics. (2) Inhibition studies on exchange diffusion at equilibrium in non-active systems or in the final steady state in active systems are the only unambiguous kinetic tests to distinguish competitive from non-competitive mechanisms. (3) Substrate analogs that are bound to the carrier and transported are readily distinguished by inhibition kinetics from those not transported, even though both may rapidly enter the cell by another route. (4) Even in non-active systems competitive inhibitors commonly have far different affinities for the substrate sites on the two membranes faces: where sufficient non-polarity allows their penetration into the cell, inhibition kinetics readily establish such sidedness in their action. (5) Inhibition kinetics of the mixed competitive and non-competitive type result from moderately asymmetrical binding of inhibitor at the substrate site. (6) Asymmetry is a necessary feature of active transport; hence studies of inhibition kinetics should provide important insights into its mechanism.  相似文献   

7.
A radiochemical assay was utilized to study the inhibitory effects of clomiphene and tamoxifen on the cholesterol side-chain cleavage enzyme activity in a mitochondrial preparation of granulosa cells isolated from mature ovarian follicles of laying hens. At saturating substrate concentrations, both clomiphene and tamoxifen were able to suppress enzyme activity in a dose-related manner (IC50 1.8 X 10(-5) M). Double reciprocal plots of kinetic data show that the inhibition is mixed, exhibiting competitive kinetics at low concentrations, whereas at high concentrations, the inhibition is of a non-competitive nature. The competitive inhibition constants as determined from Dixon plots are 2 X 10(-5) M for clomiphene and 2.3 X 10(-5) M for tamoxifen. It is concluded that, in granulosa cells, clomiphene and tamoxifen directly inhibit the mitochondrial cholesterol side-chain cleavage activity. This inhibition may represent an important aspect of the mode of action of clomiphene and tamoxifen.  相似文献   

8.
In the presence of saturating concentrations of free d-glucose, total glucose uptake was enhanced beyond the theoretical V for free glucose uptake when disaccharides were incubated with intestinal rings. This phenomenon was not seen when glucose 1-phosphate was the substrate.Analogs of d-glucose transport system, galactose and β-methyl glucoside, had an inhibitory effect on glucose uptake from sucrose and their uptake was in turn inhibited by the disaccharide. This inhibition was non-competitive.The effect of phlorizin on glucose uptake from sucrose was 2-fold, competitive at low concentrations and non-competitive at high concentrations.Sucrose did not induce counterflow of the preloaded β-methyl glucoside.These observations indicate that with a disaccharide as the substrate, there is a component of glucose transport which is in addition to the monoscaccharide-transport system and that this could arise as a consequence of the association of disaccharidases with the brush border membrane.  相似文献   

9.
Initial velocity steady-state substrate kinetics for the ATP phosphoribosyltransferase reaction in the biosynthetic direction were determined and are consistent with a sequential kinetic mechanism. To hold the fractions of magnesium-complexed substrates and products constant so as to avoid possible distortion of reciprocal velocity plots Mg2+ binding constants to the substrates ATP and phosphoribosylpyrophosphate and the product pyrophosphate were measured under assay conditions. Several conformational states of the phosphoribosyltransferase distinguishable by other criteria gave similar substrate kinetic behavior. Product inhibition studies were conducted to elucidate the binding order. Phosphoribosyl-ATP was competitive with respect to ATP and was non-competitive with respect to phosphoribosylpyrophosphate. Pyrophosphate was non-competitive with respect to both substrates. The data are consistent with the ordered Bi-Bi kinetic mechanism with ATP binding first to free enzyme and phosphoribosyl-ATP dissociating last from enzyme-product complexes.  相似文献   

10.
Evidence for a metalloprotein structure of plasma membrane 5'-nucleotidase   总被引:1,自引:0,他引:1  
J Harb  K Meflah  Y Duflos  S Bernard 《FEBS letters》1984,171(2):215-220
To point out the metalloprotein structure of bovine liver plasma membrane 5'-nucleotidase, we studied the inhibition mechanism of the purified enzyme by EDTA: this apparently non-competitive inhibition seems to be dependent on EDTA concentration, pH, temperature and incubation time. When the restoration of activity was assayed by addition of divalent cations or by gel filtration, the inhibition became progressively irreversible with time. Incubation of the enzyme with [14C]EDTA allowed us to observe, after gel filtration as well as after sucrose gradient ultracentrifugation, that the chelating agent is bound to 5'-nucleotidase.  相似文献   

11.
Wheat germ agglutinin, but not concanavalin A or soybean lectin, inhibited the basal-and stimulated-adenylate cyclase activity which was present in a plasma membrane preparation from the rat pancreas. The inhibition by wheat germ agglutinin was rapid and sustained. It was of the non-competitive type and never exceeded 20% for Gpp (NH) p- and NaF-stimulated adenylate cyclase activity. The inhibition of secretin-stimulated activity was also non-competitive but more pronounced (57% inhibition at a wheat germ agglutinin concentration of 20 microgram/ml). For the C-terminal octapeptide of cholecystokinin-pancreozymin (OC-PZ)-stimulated cyclase, the inhibition amounted to 68% and was of a mixed type (both competitive and non-competitive). This last observation might be explained by the competitive inhibition exerted by wheat germ agglutinin on the binding of peptides of the OC-PZ family to their membrane specific receptors. The various inhibitory effects of wheat germ agglutinin were completely suppressed by incubating the membranes in the presence of ovomucoid, a N-acetyl-D-glucosamine rich glycoprotein. The possible functional implication of these results is discussed.  相似文献   

12.
The inhibitory effect of leupeptin on [3H]dexamethasone binding to the glucocorticoid receptor from lactating goat mammary cytosol has been studied. Leupeptin (10 mM) caused a significant (about 35%) inhibition of [3H]dexamethasone binding to glucocorticoid receptor. Binding inhibition is further increased following filtration of unlabeled cytosolic receptor through a Bio-Gel A 0.5-m column. Binding inhibition was partially reversed by monothioglycerol at 10 mM concentration. A double reciprocal plot revealed that leupeptin appears to be a competitive inhibitor of [3H]dexamethasone binding to the glucocorticoid receptor. Low salt sucrose density gradient centrifugation revealed that the leupeptin-treated sample formed a slightly larger (approximately 9 S) receptor complex (leupeptin-free complex sediments at 8 S).  相似文献   

13.
Graphical analysis of inhibition kinetics for dextransucrase from Leuconostoc mesenteroides was done with typical inhibitors, competitive and noncompetitive. Based on the plots of Yonetani-Theorell and Semenza-Balthazar, mutual competition between the pairs of inhibitors of identical kinetic type was observed, while combination of competitive and noncompetitive inhibitors gave no significant mutual interactions. By the procedure of Nitta et al., binding sites for competitive and noncompetitive inhibitors were shown to be distant from each other. Moreover, two noncompetitive inhibitors competed with each other for a single binding site on the enzyme. Although biphasic reciprocal plots may suggest rather complicated binding of various inhibitors, the results obtained by the three graphical methods are fully explained when competitive and noncompetitive inhibitors for substrate sucrose bind to the so-called donor- and acceptor-sites of dextransucrase, respectively.  相似文献   

14.
The kinetic mechanism of specific inhibition by Zn2+ of ribonuclease T1 catalysis was studied by steady-state kinetic analysis of transphosphorylation of dinucleotides, GpCp(3'), GpUp(2') and GpUp(3'), and dinucleoside monophosphates, GpC and GpU. The inhibition was not simply competitive, non-competitive or uncompetitive, but the kinetic data were compatible with a mechanism of 'fully mixed inhibition' in which a fully non-competitive action was associated with a partially competitive action. Apparent equilibrium quotients involved in this model of inhibition were determined for the dinucleotide substrates, and we found that binding of either of Zn2+ and substrate was facilitated when the other was bound. The location of Zn2+ was suggested to be near His-40 and/or His-92 of the ribonuclease T1 molecule.  相似文献   

15.
A new simple graphical method is described for the determination of inhibition type and kinetic parameters of an enzyme reaction without any replot. The method consists of plotting experimental data as v/(vo--v) versus the reciprocal of the inhibitor concentration at different substrate concentrations, where v and vo represent the velocity in the presence and in the absence of the inhibitor respectively with a given concentration of the substrate. Partial inhibition gives straight lines that converge on the abscissa at a point away from the origin, whereas complete inhibition gives lines that go through the origin. The inhibition constants of enzymes and the reaction rate constant of the enzyme-substrate-inhibitor complex can be calculated from the abscissa and ordinate intercepts of the plot. The relationship between the slope of the plot and the substrate concentration shows characteristic features depending on the inhibition type: for partial competitive inhibition, the straight line converging on the abscissa at--Ks, the dissociation constant of the enzyme-substrate complex; for non-competitive inhibition, a constant slope independent of the substrate concentration; for uncompetitive inhibition, a hyperbola decreasing with the increase in the substrate concentration; for mixed-type inhibition, a hyperbola increasing with the increase in the substrate concentration. The properties of the replot are useful in confirmation of the inhibition mechanism.  相似文献   

16.
1. Anthranilate synthase and phosphoribosyltransferase from Aerobacter aerogenes purify simultaneously and sediment together on sucrose gradients, showing that they occur as an enzyme aggregate. Both activities of the intact aggregate are subject to inhibition by tryptophan. 2. By using appropriate auxotrophic mutants it was shown that an intact active enzyme aggregate is formed when the components come from separate mutant strains. An intact active aggregate can also be formed when one component is from Escherichia coli and the other from A. aerogenes. 3. Phosphoribosyltransferase of A. aerogenes is active when not in an aggregate with anthranilate synthase, but is not subject to tryptophan inhibition, indicating that the inhibitor site is on the anthranilate synthase component. 4. Anthranilate synthase can be active and sensitive to tryptophan inhibition when complexed with an inactive phosphoribosyltransferase. 5. Kinetic studies on the anthranilate synthase activity show that tryptophan is a competitive inhibitor with respect to chorismate and a non-competitive inhibitor with respect to either glutamine or NH(4) (+) ions. This is consistent with a sequential mechanism of the ordered type in which chorismate is the first reactant.  相似文献   

17.
Inhibition of sucrose phosphatase by sucrose   总被引:7,自引:2,他引:5       下载免费PDF全文
1. Partially purified sucrose phosphatase from immature stem tissue of sugarcane is inhibited by sucrose. The enzyme was also inhibited by maltose, melezitose and 6-kestose but not by eight other sugars, including glucose and fructose. 2. The relative effectiveness of sucrose, maltose and melezitose as inhibitors is different for sucrose phosphatase from different plants. 3. The inhibition of the sugar-cane enzyme by sucrose was shown to be partially competitive. The K(i) for sucrose is about 10mm. 4. Melezitose is also a partially competitive inhibitor of the enzyme but the inhibition by maltose is probably mixed. 5. The possibility that sucrose controls both the rate of accumulation of sucrose in stems of sugar-cane and sucrose synthesis in leaves by inhibiting sucrose phosphatase is discussed.  相似文献   

18.
Abstract

A systematic procedure for the kinetic study of irreversible inhibition when the enzyme is consumed in the reaction which it catalyses, has been developed and analysed. Whereas in most reactions the enzymes are regenerated after each catalytic event and serve as reusable transacting effectors, in the consumed enzymes each catalytic center participates only once and there is no enzyme turnover. A systematic kinetic analysis of irreversible inhibition of these enzyme reactions is presented. Based on the algebraic criteria proposed in this work, it should be possible to evaluate either the mechanism of inhibition (complexing or non-complexing), or the type of inhibition (competitive, non-competitive, uncompetitive, mixed non-competitive). In addition, all kinetic constants involved in each case could be calculated. An experimental application of this analysis is also presented, concerning peptide bond formation in vitro. Using the puromycin reaction, which is a model reaction for the study of peptide bond formation in vitro and which follows the same kinetic law as the enzymes under study, we have found that: (i) the antibiotic spiramycin inhibits the puromycin reaction as a competitive irreversible inhibitor in a one step mechanism with an association rate constant equal to 1.3 × 104M-1s-1 and, (ii) hydroxylamine inhibits the same reaction as an irreversible non-competitive inhibitor also in a one step mechanism with a rate constant equal to 1.6 × 10-3 M-1s-1.  相似文献   

19.
1. Initial rates of oxidative deamination of L-glutamate with NAD+ as coenzyme, and of reductive aminiation of 2-oxoglutarate with NADH as coenzyme, catalysed by bovine liver glutamate dehydrogenase were measured in 0.111 M-sodium phosphate buffer, pH 7, at 25 degrees C, in the absence and presence of product inhibitors. All 12 possible combinations of variable substrate and product inhibitor were used. 2. Strict competition was observed between NAD+ and NADH, and between glutamate and 2-oxoglutarate. All other inhibition patterns were clearly non-competitive, except for inhibition by NH4+ with NAD+ as variable substrate. Here the extrapolation did not permit a clear distinction between competitive and non-competitive inhibition. 3. Mutually non-competitive behaviour between glutamate and NH4+ indicates that these substrates can be bound at the active site simultaneously. 4. Primary Lineweaver-Burk plots and derived secondary plots of slopes and intercepts against inhibitor concentration were linear, with one exception: with 2-oxoglutarate as variable substrate, the replot of primary intercepts against inhibitory NAD+ concentration was curved. 5. Separate Ki values were evaluated for the effect of each product inhibitor on the individual terms in the reciprocal initial-rate equations. With this information it is possible to calculate rates for any combination of substrate concentrations within the experimental range with any concentration of a single product inhibitor. 6. The inhibition patterns are consistent with neither a simple compulsory-order mechanism nor a rapid-equilibrium random-order mechanism without modification. They can, however, be reconciled with either type of mechanism by postulating appropirate abortive complexes. Of the two compulsory sequences that have been proposed, one, that in which the order of binding is NADH, NH4+, 2-oxoglutarate, requires an implausible pattern of abortive complex-formation to account for the results. 7. On the basis of a rapid-equilibrium random-order mechanism, dissociation constants can be calculated from the Ki values. Where these can be compared with independent estimates from the kinetics of the uninhibited reaction or from direct measurements of substrate binding, the agreement is reasonable good. On balance, therefore, the results provide further support for the rapid-equilibrium random-order mechanism under these conditions.  相似文献   

20.
Initial velocity and product inhibition studies were carried out on UDP-glucose dehydrogenase (UDPglucose: NAD+ 6-oxidoreductase, EC 1.1.1.22) from beef liver to determine if the kinetics of the reaction are compatible with the established mechanism. An intersecting initial velocity pattern was observed with NAD+ as the variable substrate and UDPG as the changing fixed substrate. UDPglucuronic acid gave competitive inhibition of UDPG and non-competitive inhibition of NAD+. Inhibition by NADH gave complex patterns.Lineweaver-Burk plots of 1/upsilon versus 1/NAD+ at varied levels of NADH gave highly non-linear curves. At levels of NAD+ below 0.05 mM, non-competitive inhibition patterns were observed giving parabolic curves. Extrapolation to saturation with NAD+ showed NADH gave linear uncompetitive inhibition of UDPG if NAD+ was saturating. However, at levels of NAD+ above 0.10 mM, NADH became a competitive inhibitor of NAD+ (parabolic curves) and when NAD+ was saturating NADH gave no inhibition of UDPG. NADH was non-competitive versus UDPG when NAD+ was not saturating. These results are compatible with a mechanism in which UDPG binds first, followed by NAD+, which is reduced and released. A second mol of NAD+ is then bound, reduced, and released. The irreversible step in the reaction must occur after the release of the second mol of NADH but before the release of UDPglucuronic acid. This is apparently caused by the hydrolysis of a thiol ester between UDPglucoronic acid and the essential thiol group of the enzyme. Examination of rate equations indicated that this hydrolysis is the rate-limiting step in the overall reaction. The discontinuity in the velocities observed at high NAD+ concentrations is apparently caused by the binding of NAD+ in the active site after the release of the second mol of NADH, eliminating the NADH inhibition when NAD+ becomes saturating.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号