首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Role of 5-HT3 receptors in cholinergic hypofunctional models of cognitive impairment in the elevated plus maze model and a passive avoidance model is studied. Cognitive impairment was caused by scopolamine (1 mg/kg, ip) in mice and 5-HT3 ligands mCPBG (1 and 5 mg/kg, ip) and ondansetron (0.5 and 5 mg/kg, ip) were administered before the pre-learning phase to study the effects on acquisition, while post-learning administration was used to determine the effects on consolidation. Ondansetron improved acquisition and retention in cholinergic hypofunctional models while mCPBG potentiated selected impaired cognitive indices. The results indicate the role of 5-HT3 receptors in cognition and that an ideal evaluation of 5-HT3 ligands in cognition should distinguish true cognitive effects from locomotor, motivational and emotional effects.  相似文献   

2.
Many studies have shown that the steamed root of Rehmannia glutinosa (SRG), which is widely used in the treatment of various neurodegenerative diseases in the context of Korean traditional medicine, is effective for improving cognitive and memory impairments. The purpose of this study was to examine whether SRG extracts improved memory defects caused by administering scopolamine (SCO) into the brains of rats. The effects of SRG on the acetylcholinergic system and proinflammatory cytokines in the hippocampus were also investigated. Male rats were administered daily doses of SRG (50, 100, and 200 mg/kg, i.p.) for 14 days, 1 h before scopolamine injection (2 mg/kg, i.p.). After inducing cognitive impairment via scopolamine administration, we conducted a passive avoidance test (PAT) and the Morris water maze (MWM) test as behavioral assessments. Changes in cholinergic system reactivity were also examined by measuring the immunoreactive neurons of choline acetyltransferase (ChAT) and the reactivity of acetylcholinesterase (AchE) in the hippocampus. Daily administration of SRG improved memory impairment according to the PAT, and reduced the escape latency for finding the platform in the MWM. The administration of SRG consistently significantly alleviated memory-associated decreases in cholinergic immunoreactivity and decreased interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha) mRNA expression in the hippocampus. The results demonstrated that SRG had a significant neuroprotective effect against the neuronal impairment and memory dysfunction caused by scopolamine in rats. These results suggest that SRG may be useful for improving cognitive functioning by stimulating cholinergic enzyme activities and alleviating inflammatory responses.  相似文献   

3.
R C Mohs  K L Davis 《Life sciences》1985,37(2):193-197
In a previous study (1), 8 gm. of oral choline given in a single dose were found to partially reverse the amnestic and subjective effects of 0.43 mg of scopolamine. The present study determined whether similar effects could be produced by 14 gm of choline given in 4 divided doses over 24 hrs and whether choline's effects in either study were related to plasma choline concentration. Ten normal subjects were given memory tests on three separate days, once after receiving 14 gm choline and 0.35 mg scopolamine (Ch-Sc), once following placebo and scopolamine (Pl-Sc), and once following placebo and placebo (Pl-Pl). Scopolamine markedly impaired memory performance but there was no difference between the Ch-Sc and Pl-Sc conditions. Plasma choline levels were significantly elevated in the Ch-Sc condition of both the single dose and divided dose studies. There was no difference in levels between studies nor were differences in memory performance correlated with elevations in plasma choline. These results indicate that any enhancement of cholinergic activity due to increased dietary choline is transient and of small magnitude.  相似文献   

4.
S Atweh  J R Simon  M J Kuhar 《Life sciences》1975,17(10):1535-1544
Previous reports indicate that alterations of activity of cholinergic neurons in vivo are followed by parallel changes in sodium-dependent high affinity choline uptake in vitro. These results are consistent with the proposal that this portion of choline uptake is regulatory in the synthesis of ACh. These results also suggest the possibility of utilizing sodium-dependent high affinity choline uptake as a measure of the relative state of cholinergic activity in vivo. In this study, we administer a number of drugs reported to alter turnover and release of ACh (both are measures of cholinergic activity in vivo, and subsequently examine sodium-dependent high affinity choline uptake in vitro. Administration of pentobarbital, chloral hydrate, morphine, physostigmine, Δ9 THC, hemicholinium-3 and oxotremorine, drugs which decrease ACh turnover and release, caused a reduction in choline uptake. Conversely, administration of pentylenetetrazol, atropine, scopolamine, and haloperidol, drugs which increase ACh turnover and release, caused an increase in choline uptake in vitro. These findings support the proposal that sodium-dependent high affinity choline uptake can be used as a relative measure of the activity of cholinergic neurons in vivo.  相似文献   

5.
The sodium-dependent high affinity choline uptake into synaptosomes from rat brain has been studied after in vivo treatments which would alter the activity of cholinergic neurons. We utilized a number of treatments to reduce the activity of cholinergc neurons in the brain. Administration of pentobarbital (65 mg/kg), chloral hydrate (40 mg/kg) and γbutyrelactone (750 mg/kg) caused a 50-80% reduction in sodium-dependent high affinity choline uptake in several brain regions (30 min). This depression was not found 24 h after injection. Interruption of the cholinergic septal-hippocampal or habenuleinterpeduncular tracts by lesions (10 min-1 h) also caused a similar, large reduction in sodium-dependent high affinity choline uptake in the hippocampus and the interpeduncular nucleus respectively. We reversed the inactivity after pentobarbital administration by direct electrical stimulation of the cholinergic septal-hippocampal tract. Stimulation (40 Hz) for 10-15 min completely reversed the depression in sodium-dependent high affinity choline uptake. Stimulation at lower frequencies or for shorter times caused a partial reversal. Administration of pentylenetetrazol (75 mg/kg), a convulsant, was utilized to increase the activity of central cholinergic neurons. After drug administration, we found a large (60%) increase in sodium-de-pendent high affinity choline uptake. This increase was not found in the hippocampus when cholinergic afferents were interrupted by septal lesion prior to drug administration. We also examined the uptake after administration of cholinergic drugs. Oxotremorine (0.75 mg/kg), a muscarinic agonist which reduces acetylcholine release and turnover, caused a reduction in uptake. On the other hand, administration of scopolamine (5 mg/kg), a cholinergic antagonist which increases acetylcholine turnover, caused an increase in sodium-dependent high affinity choline uptake. Addition of any drug utilized, drectly to uptake samples, did not alter uptake. We examined the conversion of [3H]choline to [3H]acetylcholine in hippocampal synaptosomes after septal lesion, pentylenetetrazol administration and in untreated controls. In all cases, 60-70% of the total sodium-dependent tritium content was present as [3H]acetylcholine. Evidence was presented that homoexchange is not or is less involved in choline uptake than in GABA uptake. A kinetic analysis of sodium-dependent high affinity choline uptake was performed after all treatments. We found changes in Vmax, after all treatments, which were consistently in the same direction as the alterations in activity. The proposal is made that the sodium-dependent high affinity choline uptake is coupled to cholinergic activity in such a way as to regulate the entry of choline for the maintenance of acetylcholine synthesis. The findings also lead us to propose that sodium-dependent high affinity choline uptake in vitro be utilized as a rapid, relative measure of the activity of cholinergic nerve terminals in vivo.  相似文献   

6.
Cholinergic neurons elaborate a hemicholinium-3 (HC-3) sensitive choline transporter (CHT) that mediates presynaptic, high-affinity choline uptake (HACU) in support of acetylcholine (ACh) synthesis and release. Homozygous deletion of CHT (-/-) is lethal shortly after birth (Ferguson et al. 2004), consistent with CHT as an essential component of cholinergic signaling, but precluding functional analyses of CHT contributions in adult animals. In contrast, CHT+/- mice are viable, fertile and display normal levels of synaptosomal HACU, yet demonstrate reduced CHT protein and increased sensitivity to HC-3, suggestive of underlying cholinergic hypofunction. We find that CHT+/- mice are equivalent to CHT+/+ siblings on measures of motor co-ordination (rotarod), general activity (open field), anxiety (elevated plus maze, light/dark paradigms) and spatial learning and memory (Morris water maze). However, CHT+/- mice display impaired performance as a result of physical challenge in the treadmill paradigm, as well as reduced sensitivity to challenge with the muscarinic receptor antagonist scopolamine in the open field paradigm. These behavioral alterations are accompanied by significantly reduced brain ACh levels, elevated choline levels and brain region-specific decreased expression of M1 and M2 muscarinic acetylcholine receptors. Our studies suggest that CHT hemizygosity results in adequate baseline ACh stores, sufficient to sustain many phenotypes, but normal sensitivities to physical and/or pharmacological challenge require full cholinergic signaling capacity.  相似文献   

7.
In primates, treatment with scopolamine impairs performance of a spatial delayed response task in a way which mimics deficits seen spontaneously in aged primates and demented patients. Despite their efficacy in reversing scopolamine induced disruption, the effects of cholinergic agonists on cognition in aged primates and dements are unimpressive, suggesting that other neurotransmitter systems are also involved in this type of deficit. We have induced a scopolamine-like impairment of spatial delayed response performance in rhesus monkeys using phencyclidine (0.1-0.2 mg/kg i.m.), lorazepam (0.4-0.6 mg/kg s.c.) or tetrahydrocannabinol (1-4 mg/kg p.o.), but not amphetamine (0.1-0.4 mg/kg i.m.), yohimbine (0.1-1.0 mg/kg i.m.) or morphine (2-4 mg/kg i.m.). Our findings suggest that disruption of specific neurotransmitter systems other than acetylcholine may contribute importantly to cognitive decline in aging and dementia.  相似文献   

8.
An antiserum to pure glutamate decarboxylase (GAD) when incubated with rat cortical synaptosomes in the presence of complement caused release of 33-53% of lactate dehydrogenase (LDH) and 22-41% of total GAD. In addition most of the gamma-aminobutyrate (GABA) present was released. Anti-GAD antiserum alone, or complement alone, were without action. The antiserum plus complement had no effect on noradrenaline or choline uptake, and did not release choline acetylase (ChAT). Anti-ChAT serum plus complement released 30-37% of ChAT and 10-13% of LDH. It prevented choline uptake. This serum did not produce GAD release or prevent GABA, choline or noradrenaline uptake. When cortical synaptosomes were exposed to both antisera plus complement, their actions were strictly additive. The data indicate specific lysis of GABAergic and cholinergic synaptosomal sub-populations.  相似文献   

9.
F Anglade  G Chapouthier  D Galey 《Life sciences》1999,64(17):1553-1561
This experiment was designed to assess the role of the septo-hippocampal cholinergic (ACh) system in the deleterious effects produced by systemic benzodiazepine injection on learning processes in rats. Retention of a step through passive avoidance task was analysed after systemic injection of increasing doses of either scopolamine or diazepam applied alone 30 min before the acquisition phase. Results indicated a dose related impairment of retention by each drug: in addition, sub-threshold doses of scopolamine and diazepam applied in combination (diazepam: 2mg/kg plus scopolamine: 0.3mg/kg) produced a decrease of retention latencies, thus showing an additive effect of the combined treatment. Secondly, a sub-threshold dose of scopolamine (15microg/0.5microl) was also administered into the medial septal area, together with an i.p. injection of 2mg/kg of diazepam. This combined treatment produced a severe impairment of retention, in parallel with a large reduction in emotionality (number of faeces). The data are consistent with the hypothesis that peripheral administration of behaviorally effective doses of diazepam on passive avoidance learning might act partially via a septal ACh-GABA/benzodiazepine mechanism. It is also suggested that this mechanism subserves both anxiety and the memorisation of contextual stimuli associated with passive avoidance acquisition, through the modification of the septo-hippocampal activity.  相似文献   

10.
The choline acetyltransferase (ChAT) activator, which enhances cholinergic transmission via an augmentation of the enzymatic production of acetylcholine (ACh), is an important factor in the treatment of Alzheimer's disease (AD). Methanolic extracts from Pueraria thunbergiana exhibited an activation effect (46%) on ChAT in vitro. Via the sequential isolation of Pueraria thunbergiana, the active component was ultimately identified as daidzein (4',7-dihydroxy-isoflavone). In order to investigate the effects of daidzein from Pueraria thunbergiana on scopolamine-induced impairments of learning and memory, we conducted a series of in vivo tests. Administration of daidzein (4.5 mg/kg body weight) to mice was shown significantly to reverse scopolamine-induced amnesia, according to the results of a Y-maze test. Injections of scopolamine into mice resulted in impaired performance on Y-maze tests (a 37% decreases in alternation behavior). By way of contrast, mice treated with daidzein prior to the scopolamine injections were noticeably protected from this performance impairment (an approximately 12%-21% decrease in alternation behavior). These results indicate that daidzein might play a role in acetylcholine biosynthesis as a ChAT activator, and that it also ameliorates scopolamine-induced amnesia.  相似文献   

11.
灵芝对小鼠空间分辨学习与记忆的影响   总被引:4,自引:0,他引:4  
本文用Y-型迷宫法测试小鼠空间分辨行为。实验结果表明,每日ig灵芝2.58/kg共7d,有明显促进学习的作用。每日ig灵芝2.5g/kg共7d或ig灵芝5g/kg共7d都能显著地拮坑东莨菪碱所致学习障碍的作用。此外,学习训练后立即ig灵芝2.5g/kg或ig灵芝5g/kg也有明显地改善东莨菪碱损害记忆巩固的作用。  相似文献   

12.
The role of honeybee central brain structures, suspected to be cholinergic, has been studied in learning and memory. The nicotinic antagonist mecamylamine and the muscarinic antagonist scopolamine were locally injected into the calyces and the alpha-lobes of mushroom bodies, and their effects on memory acquisition and retrieval were investigated using one-trial olfactory conditioning of the proboscis extension reflex. A strong impairment of the olfactory learning was noticed following mecamylamine injection into the mushroom body calyces. Mecamylamine and scopolamine disturbed retrieval processes when injected into the alpha-lobes of mushroom bodies but remain without effect on these processes when injected into the mushroom body calyces. These results emphasise the role of the cholinergic networks of the mushroom bodies in the formation and recall of memory in the honeybee. They suggest that the role of the brain structures in these processes is sequential. Mushroom body calyces involved in the associative process of olfactory learning could be relayed by the alpha-lobes for information retrieval.  相似文献   

13.
Konar A  Shah N  Singh R  Saxena N  Kaul SC  Wadhwa R  Thakur MK 《PloS one》2011,6(11):e27265

Background

Scopolamine is a well-known cholinergic antagonist that causes amnesia in human and animal models. Scopolamine-induced amnesia in rodent models has been widely used to understand the molecular, biochemical, behavioral changes, and to delineate therapeutic targets of memory impairment. Although this has been linked to the decrease in central cholinergic neuronal activity following the blockade of muscarinic receptors, the underlying molecular and cellular mechanism(s) particularly the effect on neuroplasticity remains elusive. In the present study, we have investigated (i) the effects of scopolamine on the molecules involved in neuronal and glial plasticity both in vivo and in vitro and (ii) their recovery by alcoholic extract of Ashwagandha leaves (i-Extract).

Methodology/Principal Findings

As a drug model, scopolamine hydrobromide was administered intraperitoneally to mice and its effect on the brain function was determined by molecular analyses. The results showed that the scopolamine caused downregulation of the expression of BDNF and GFAP in dose and time dependent manner, and these effects were markedly attenuated in response to i-Extract treatment. Similar to our observations in animal model system, we found that the scopolamine induced cytotoxicity in IMR32 neuronal and C6 glioma cells. It was associated with downregulation of neuronal cell markers NF-H, MAP2, PSD-95, GAP-43 and glial cell marker GFAP and with upregulation of DNA damage- γH2AX and oxidative stress- ROS markers. Furthermore, these molecules showed recovery when cells were treated with i-Extract or its purified component, withanone.

Conclusion

Our study suggested that besides cholinergic blockade, scopolamine-induced memory loss may be associated with oxidative stress and Ashwagandha i-Extract, and withanone may serve as potential preventive and therapeutic agents for neurodegenerative disorders and hence warrant further molecular analyses.  相似文献   

14.
V79 Chinese hamster cells were found to produce significant amounts of acetylcholine. Asynchronously growing V79 cells were treated with five different antagonists to cholinergic receptors: atropine and scopolamine, which are inhibitors of muscarinic receptors, and mecamylamine, d-tubocurarine and alpha-bungarotoxin, which are inhibitors of nicotinic receptors. All compounds caused a slight but significant increase of the frequency of binuclear interphase cells and also of the frequency of cells in late telophase and early G1 that had not completed cleavage. In addition, hemicholinium-3, a specific choline uptake antagonist, inhibited cleavage. Taken together, it seems reasonable to hypothesize that acetylcholine and its receptors take part in the regulation of cleavage in these cells. As binuclear cells are prone to aberrant spindle functions in following mitoses, inhibition of cleavage may constitute a risk for generation of cells with highly aberrant chromosome numbers.  相似文献   

15.
An antiserum to tryptophan hydroxylase purified from whole rat brain when incubated with rat striatal synaptosomes in the presence of complement caused release of 18% of LDH, 20% loss of potassium and 60% loss of tryptophan hydroxylase. Uptake of 5-HT was reduced by 60%. Anti-tryptophan hydroxylase alone, or complement alone were without action. The antiserum plus complement had no effect on DA uptake and did not release TH or GAD. These results suggest selective lysis of serotonergic nerve terminals had occurred. The antiserum plus complement reduced choline uptake by 45%. However, this did not seem due to lysis of cholinergic terminals, as ChAT was not released.  相似文献   

16.
We employed radioligand binding autoradiography to determine the distributions of pre- and postsynaptic cholinergic radioligand binding sites in the brains of two species of bat, one species of shrew, and the rat. High affinity choline uptake sites were measured with [3H]hemicholinium, and presynaptic cholinergic vesicles were identified with [3H]vesamicol. Muscarinic cholinergic receptors were determined with [3H]scopolamine. The distribution patterns of the three cholinergic markers were similar in all species examined, and identified known major cholinergic pathways on the basis of enrichments in both pre- and postsynaptic markers. In addition, there was excellent agreement, both within and across species, in the regional distributions of the two presynaptic cholinergic markers. Our results indicate that pharmacological identifiers of cholinergic pathways and synapses, including the cholinergic vesicle transport site, and the organizations of central nervous system cholinergic pathways are phylogenetically conserved among eutherian mammals.Special issue dedicated to Dr. Bernard W. Agranoff.  相似文献   

17.
The effect of α-asarone on impairment of cognitive performance caused by amnesic drug scopolamine was investigated. Treatment with α-asarone attenuated scopolamine-induced cognitive deficits as evaluated by passive avoidance and Y-maze test. Administration of α-asarone for 15 d improved memory and cognitive function as indicated by an increase in transfer latency time and spontaneous alternation in passive avoidance and the Y-maze test respectively. To understand the action of α-asarone, the levels of acetylcholinesterase (AChE), malondialdehyde (MDA), and superoxide dismutase (SOD) in the hippocampus (Hippo) and cerebral cortex (CC) of scopolamine-induced amnesic mice were evaluated. The mice treated with Scopolamine showed increased activity of AChE, MDA and SOD levels in both the Hippo and the CC area. Treatment with α-asarone attenuated the increased activity of AChE and normalized the MDA and SOD levels in the Hippo and the CC area in the scopolamine treated amnesic mice. These results suggest that α-asarone has a beneficial effect in cognitive impairment induced by dysfunction of cholinergic system in brain through inhibition of AChE activity and by influencing the antioxidant defense mechanism.  相似文献   

18.
The cholinergic projections from basal forebrain nuclei to the retrosplenial cortex (RSC) have previously been studied using a variety of histological approaches. Studies using acetylcholinesterase (AChE) histochemistry and choline acetyltransferase (ChAT) immunocytochemistry have demonstrated that this projection travels via the cingulum on route to the RSC. Preliminary studies from our laboratory, however, have shown that the fornix may also be involved in this projection. The present study uses the combination of pathway lesions, and the analysis of cholinergic neurochemical markers in the RSC to determine the role of the fornix in the cholinergic projection to the RSC. High affinity choline uptake (HACU) and ChAT activity were measured in the RSC of control rats, animals with cingulate lesions, and animals with fornix plus cingulate lesions. Fornix plus cingulate lesions resulted in significant deceases in HACU and ChAT activity in comparison to cingulate lesions alone. Muscarinic receptor binding was also evaluated in combination with the various lesions, and a significant increase in retrosplenial receptor binding was noted following fornix lesions. Together, these results support the concept of a fornix-mediated cholinergic pathway to the RSC.  相似文献   

19.
A delayed matching-to-position (DMP) T-maze task was used to examine the effects of estrogen replacement on spatial learning and memory, as well as the ability of estrogen replacement to reduce performance deficits produced by acute systemic and intrahippocampal muscarinic cholinergic inhibition. Two experiments were performed. In Experiment 1, ovariectomized animals were trained to criterion on the DMP task and then tested with increased intertrial delays and following systemic scopolamine administration. The animals then received either continuous estrogen replacement or sham surgery and were retested beginning 10 days later. In Experiment 2, ovariectomized animals received guide cannulae implanted bilaterally into the hippocampus. Half of these animals also began receiving continuous estrogen replacement. Two months later, the animals were trained on the DMP task and then tested with increased intertrial delays and following systemic as well as intrahippocampal scopolamine administration. Animals received the same test battery 8 months later and were then immediately trained on a reversal task. The results indicate that estrogen-treated animals acquired the DMP task at a significantly faster rate than the ovariectomized, non-estrogen-treated controls. In addition, estrogen replacement significantly reduced deficits in DMP performance produced by intrahippocampal, but not systemic, scopolamine administration. This occurred when animals were tested after 3.5 months, as well as after 12 months, of continuous estrogen replacement. No evidence for an effect of estrogen replacement on spatial working memory or reversal learning was detected. These findings demonstrate that estrogen replacement can enhance acquisition of a spatial memory task and reduce performance deficits associated with hippocampal cholinergic impairment.  相似文献   

20.
Effects of oleamide on choline acetyltransferase and cognitive activities   总被引:2,自引:0,他引:2  
We screened 50 Korean traditional natural plants to measure the activation effect on choline acetyltransferase and attenuation of scopolamine-induced amnesia. The methanolic extracts from Zizyphus jujuba among the tested 50 plants, showed the highest activatory effect (34.1%) on choline acetyltransferase in vitro. By sequential fractionation of Zizyphus jujuba, the active component was finally identified as cis-9-octadecenoamide (oleamide). After isolation, oleamide showed a 65% activation effect. Administration of oleamide (0.32%) to mice significantly reversed the scopolamine-induced memory and/or cognitive impairment in the passive avoidance test and Y-maze test. Injection of scopolamine to mice impaired performance on the passive avoidance test (31% decrease in step-through latency), and on the Y-maze test (16% decrease in alternation behavior). In contrast, mice treated with oleamide before scopolamine injection were protected from these changes (12-25% decrease in step-through latency; 1-10% decrease in alternation behavior). These results suggest that oleamide should be a useful chemo-preventive agent against Alzheimer's disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号