首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We showed previously that propylthiouracil (PTU), a thyroid inhibitor, could alleviate several major signs of hereditary muscular dystrophy in chickens. The goals of the present investigation were to: (1) determine whether a nearly athyroid condition (achieved within two days after hatching by surgical thyroidectomy plus PTU) during an 11-day period beneficially affects the dystrophic condition when followed by triiodothyronine (T3) replacement to 33 days of age; (2) determine the beneficial effects on the expression of avian dystrophy when the thyroidectomized-PTU-treated chickens received a wide range of moderate to low T3 replacement doses beginning by two days after thyroidectomy; and (3) examine the thyroid hormone receptor system in dystrophic muscle for a possible abnormality. Thyroid deprivation increased muscle function (righting ability) and reduced plasma creatine kinase activity in dystrophic chickens. The major thyroid-related abnormality in dystrophic pectoralis muscles was an increased maximum binding capacity of solubilized nuclear T3 receptors.  相似文献   

2.
The sex-linked dwarf gene (dw) was introduced into companion muscular dystrophic (am) and nondystrophic (Am+) New Hampshire chicken lines to investigate influences of the dwarf gene on breast muscle weights, muscle fiber area, and the histological expression of muscular dystrophy. Dystrophic and nondystrophic chickens within dwarf or nondwarf genotypes were similar in body and carcass weights. Pectoralis and supracoracoideus muscle weights (as a percentage of adjusted carcass weight) were similar in nondystrophic dwarf and nondwarf males and females. In addition, pectoralis weight was similar in dystrophic dwarf males and dystrophic nondwarf males and females. However, pectoralis weight was significantly smaller in dystrophic dwarf females than in dystrophic nondwarf females, whereas supracoracoideus weight was significantly larger in dystrophic dwarf males than in dystrophic nondwarf males. Supracoracoideus weight was similar in dystrophic dwarf males and females and dystrophic nondwarf females. Pectoralis muscle fiber area was influenced by sex and by dwarf and dystrophy genotype. Muscle fiber area was larger in females than in males, smaller in dwarfs than in nondwarfs, and smaller in dystrophic than in nondystrophic muscles. Muscle fiber degeneration and adipose infiltration was more extensive in dystrophic than in nondystrophic females and males, and it was more advanced in dwarfs than in nondwarfs. Excessive acetylcholinesterase staining patterns were characteristic of dystrophic muscle in both dwarf and nondwarf genotypes. Nondystrophic and dystrophic dwarf male and female chickens are comparable substitutes for nondwarfs as biomedical models with respect to pectoralis histology, acetylcholinesterase staining pattern, and pectoralis muscle hypertrophy.  相似文献   

3.
We have previously demonstrated, based on comparison of homologous amino acid sequences and of two-dimensional CNBr peptide gel patterns, that the myosin heavy chain in pectoralis muscles of Storrs, Connecticut dystrophic chickens is different from that of their normal controls (Huszar, G., Vigue, L., De-Lucia, J. Elzinga, M., and Haines, J. (1985) J. Biol. Chem. 260, 7429-7434). Others have shown, however, that genomic banks and mRNA complements of the control and dystrophic birds are not different. In the present studies, we have examined the hypothesis that the "dystrophic" myosin heavy chain is not a novel gene product, but is a developmental isozyme which is expressed in pectoralis muscles of adult chickens due to the dystrophic process. Two-dimensional maps of myosin heavy chain CNBr peptides were prepared from breast muscles of 17-day in ovo (embryonic), 25-day posthatch (neonatal), and adult birds of the Storrs dystrophic and of two control strains. Also, myosin and actomyosin ATPase enzymatic activities of the various preparations were determined in the pH range of 5.5 to 9.0. Analysis of the peptide maps demonstrates that the embyronic, neonatal, and control adult myosin heavy chain isozymes are distinctly different gene products with only minute variations between the respective developmental isozymes in dystrophic and control muscles. However, the pectoralis myosin heavy chain of adult dystrophic birds, which is a homogeneous isozyme population by amino acid sequences and gel patterns, corresponds to that of the neonatal-type myosin heavy chain. The ATPase properties of the embryonic, neonatal, or adult pectoralis myosins and actomyosins were not different, whether the level of specific activity or the pattern of pH activation is considered. Since the mobility of neonatal chicks (primarily neonatal-type isozymes) is not restricted, the differences in myosin heavy chain structures are part of the syndrome, but not the cause of avian muscular dystrophy.  相似文献   

4.
Two new lines of chickens with near identical genotypes (greater than 90% isogeneity), one demonstrating avian dystrophy, were used for isolation of sarcopalsmic reticulum vesicles. Vesicles from line 433 (dystrophic) displayed reduced Ca2+-ATPase activity, phosphoenzyme formation and steady-state calcium transport capabilities in comparison with vesicles from line 03 (normal). Lipid analyses show that dystrophic vesicles have greater amounts of cholesterol and lesser amounts of phosphatidylcholine. The results support the use of isogenic chickens in further studies of avian dystrophy. However, the results also suggest that current sarcoplasmic reticulum vesicle purification procedures dependent on differential calcium accumulation may not fully achieve the intended purpose.  相似文献   

5.
The pathogenesis of the human muscular dystrophies is unknown, and several competing hypotheses have been proposed. The vascular hypothesis states that muscle fibre necrosis occurs in dystrophy as a result of transient muscle ischemia. Although abnormalities of the vascular system may be demonstrated in dystrophy, their role in pathogenesis remains obscure. The responses to serotonin (5-HT) and noradrenaline (NA) were examined in isolated ischiatic artery preparations from normal and genetically dystrophic chickens. The tension generated in response to 5-HT was greater in arteries from normal chickens than in arteries from dystrophic chickens, whereas responses to NA were similar. Analysis of the concentration-response relationships demonstrated that the dystrophic ischiatic artery was less sensitive to 5-HT than was the normal artery, although the sensitivity to NA was similar in both vessels. The results of this study are not consistent with the view that muscle fibre necrosis in avian dystrophy is a consequence of muscle anoxia. These data do demonstrate pharmacological differences between dystrophic avian arteries and arteries from normal chickens, but their presence may represent merely the expression of dystrophy in vascular smooth muscle.  相似文献   

6.
Hexokinase activity was found to be increased in both the more severely affected red (thigh) muscle of dystrophic chickens. The increase in activity was largely associated with the particulate fraction. These findings may indicate early events in the pathogenesis of avian muscular dystrophy.  相似文献   

7.
Human subjects and mice have been found to have a milder progression of muscular dystrophy when the disease is associated with genotypically determined dwarfism. In this paper we describe an experimental test for reducing growth hormone in dystrophic chickens that uses rabbit anti-chicken growth hormone anti-serum (anti-cGH). Antiserum was injected daily into dystrophic (line 413) male chickens from day 1 to day 8 after hatching. Dystrophic chickens injected with anti-cGH maintained a significantly higher score in the standardized test for righting ability (P less than 0.001-0.051) from 3 to 9 1/2 wk after hatching when compared with dystrophic controls. The observed prolongation of the functional ability of injected dystrophic animals suggests that growth hormone plays a role in potentiating the symptoms of dystrophy in chickens.  相似文献   

8.
Two lines of genetically involved and control chickens were compared with regard to the onset of muscle dystrophy during the early stages of growth ex ovo. Definite structural and functional involvement of pectoralis muscle developed within the first 4-5 weeks. In parallel experiments, microsomal membranes were obtained weekly from pectoralis muscle during the first 14 weeks ex ovo. The microsomes were studied with respect to ultrastructural features, protein composition, Ca2+ uptake and ATPase activity. Microsomal preparations obtained from all newborn chickens contain two types of vesicles: one type reveals an asymmetric distribution and 'high density' of particles on freeze-fracture faces which is characteristic of sarcoplasmic reticulum (SR) membrane; the other type reveals a symmetric distribution and 'low density' of particles. The yield of 'low density' microsomes from muscle of normal birds is very much reduced as the chicks grow from 1 to 4-5 weeks ex ovo. On the contrary, it remains high in chicks developing muscle dystrophy. Ca2+ uptake and coupled ATPase activity are found to be of nearly identical specific activity in control and genetically involved newborn chicks. The specific activity of the control birds, however, increases as the chicks grow from 1 to 4-5 weeks of age, while the specific activity of the dystrophic birds remains low. Such a difference appears to be related to the relative representation of sarcoplasmic reticulum and 'low density' vesicles in the microsomal preparations. It is concluded that failure to obtain a normal differentiation of muscle cell membranes is a basic defect noted in the early growth of genetically involved chickens. This defect appears along with the earliest signs of the dystrophic process.  相似文献   

9.
Mitochondria were isolated from the pectoralis and gastrocnemius muscles of chickens with a hereditary muscular dystrophy, and age-matched controls. In the pectoralis, for dystrophic birds aged 0.12, 0.25, 0.55, and 1.55 yr, the creatine phosphokinase activity of the intact mitochondria, expressed in terms of pellet protein, was 69%, 45%, 24%, and 13% as great, respectively, as that of the controls. The corresponding figures for the gastrocnemius were 79%, 46%, 51%, and 28%. The mitochondria from dystrophic muscles exhibited satisfactory respiratory control ratios, P:0 ratios, and state 3 respiratory rates. To check whether their apparent loss of creatine phosphokinase activity was due to the presence of increasing amounts of non-mitochondrial pellet protein, the state 3 respiratory rate was used as a mitochondrial marker; the rates per mg protein were similar in mitochondria from normal and dystrophic muscles of each age group.  相似文献   

10.
Y Mizuno 《Life sciences》1984,34(10):909-914
Changes in superoxide dismutase activities in early stages of chronological development were investigated in normal and dystrophic chickens. Both cupro-zinc and manganese superoxide dismutase activities were significantly elevated in the dystrophic chickens studied as early as one week after hatching compared to those in the control. In control chickens, both cupro-zinc and manganese superoxide dismutase activities declined as they grew older. In dystrophic chickens, manganese superoxide dismutase activity declined gradually as they grew older as in the control. However, cupro-zinc superoxide dismutase activity increased until four weeks of age. The latter activity was still twice as high as that of the control at four months of age. Increased activities in superoxide dismutases in early stages of the development suggest presence of increased turnover of active oxygen species from the early stage of the disease in this avian muscular dystrophy. And the distinct time course of cupro-zinc superoxide dismutase activity suggests involvement of active oxygen species in pathogenesis of this disorder.  相似文献   

11.
Two lines of genetically involved and control chickens were compared with regard to the onset of muscle dystrophy during the early stages of growth ex ovo. Definite structural and functional involvement of pectoralis muscle developed within the first 4–5 weeks. In parallel experiments, microsomal membranes were obtained weekly from pectoralis muscle during the first 14 weeks ex ovo. The microsomes were studied with respect to ultrastructural features, protein composition, Ca2+ uptake and ATPase activity. Microsomal preparations obtained from all newborn chickens contain two types of vesicles: one type reveals an asymmetric distribution and ‘high density’ of particles on freeze-fracture faces which is characteristic of sarcoplasmic reticulum (SR) membrane; the other type reveals a symmetric distribution and ‘low density’ of particles. The yield of ‘low density’ microsomes from muscle of normal birds is very much reduced as the chicks grow from 1 to 4–5 weeks ex ovo. On the contrary, it remains high in chicks developing muscle dystrophy. Ca2+ uptake and coupled ATPase activity are found to be of nearly identical specific activity in control and genetically involved newborn chicks. The specific activity of the control birds, however, increases as the chicks grow from 1 to 4–5 weeks of age, while the specific activity of the dystrophic birds remains low. Such a difference appears to be related to the relative representation of sarcoplasmic reticulum and ‘low density’ vesicles in the microsomal preparations. It is concluded that failure to obtain a normal differentiation of muscle cell membranes is a basic defect noted in the early growth of genetically involved chickens. This defect appears along with the earliest signs of the dystrophic process.  相似文献   

12.
Temperature and starvation were found to be factors which affected the PPP dehydrogenase activities in brook trout liver. Fish acclimated at 5 °C possessed greater levels of G6PD, H6PD, and 6PGD activity than those fish maintained at 10 or 15 °C. This phenomenon was probably associated with increased lipogenesis during cold acclimation.During starvation hepatic G6PD and 6PGD activities decreased, whereas H6PD activity increased slightly. Upon refeeding, the G6PD level gradually increased, but the “overshoot” in enzyme activity reported in mammalian studies was not observed.When both cold acclimation and starvation were studied simultaneously, regulation by temperature was initially the dominant control factor. After 6 wk at 5 °C, there was no difference in specific activities between starved and fed fish. However, fish maintained at 5 °C for longer than 2 mo did show the normal response to starvation and refeeding. Therefore, regulation of the PPP by temperature appears to be a transitory phenomenon and may be associated with temporary metabolic reorganization in the fish.  相似文献   

13.
Glucose 6-phosphate dehydrogenase (G6PD) and 6-phosphogluconate dehydrogenase (6PGD) were separated and partially purified from glucose-grown cells of Lactobacillus casei. The enzymes had similar pH optima, thermosensitivity and molecular weights. They had different net charges and their pI values were 5.38 and 4.52, respectively. Histidine, arginine, lysine and cysteine residues were essential for the activity of G6PD, and all the above amino acids with the exception of lysine were required for 6PGD activity. Mg2+ activated 6PGD up to 15 mM concentration, above which it was inhibitory. It had no effect on G6PD activity. G6PD was specific for NADP+, but 6PGD showed some activity with NAD+ as the cofactor, although it was essentially NADP(+)-preferring. Both the enzymes, were inhibited by NADPH. 6PGD was also inhibited by its product, ribulose 5-phosphate. ATP inhibited 6PGD only at subsaturating concentrations of NADP+. The inhibition was sigmoidal in the absence of Mg2+ and hyperbolic in its presence.  相似文献   

14.
Biosynthesis of steroid hormones in the cortex of the adrenal gland takes place in smooth endoplasmic reticulum and mitochondria and requires NADPH. Four enzymes produce NADPH: glucose-6-phosphate dehydrogenase (G6PD), the key regulatory enzyme of the pentose phosphate pathway, phosphogluconate dehydrogenase (PGD), the third enzyme of that pathway, malate dehydrogenase (MDH), and isocitrate dehydrogenase (ICDH). However, the contribution of each enzyme to NADPH production in the cortex of adrenal gland has not been established. Therefore, activity of G6PD, PGD, MDH, and ICDH was localized and quantified in rat adrenocortical tissue using metabolic mapping, image analysis, and electron microscopy. The four enzymes have similar localization patterns in adrenal gland with highest activities in the zona fasciculata of the cortex. G6PD activity was strongest, PGD, MDH, and ICDH activity was approximately 60%, 15%, and 7% of G6PD activity, respectively. The K(m) value of G6PD for glucose-6-phosphate was two times higher than the K(m) value of PGD for phosphogluconate. As a consequence, virtual flux rates through G6PD and PGD are largely similar. It is concluded that G6PD and PGD provide the major part of NADPH in adrenocortical cells. Their activity is localized in the cytoplasm associated with free ribosomes and membranes of the smooth endoplasmic reticulum, indicating that NADPH-demanding processes related to biosynthesis of steroid hormones take place at these sites. Complete inhibition of G6PD by androsterones suggests that there is feedback regulation of steroid hormone biosynthesis via G6PD.  相似文献   

15.
We recently observed that, around the time of hatching, chick skeletal muscles synthesize and secrete apolipoprotein A1 (apo-A1) at high rates and that reinitiation of synthesis of this serum protein to high levels occurs in mature chicken breast muscle following surgical denervation (Shackelford, J. E., and Lebherz, H. G. (1983) J. Biol. Chem. 258, 7175-7180; 14829-14833). In the present work we investigate the effect of avian muscular dystrophy on the synthesis of apo-A1 in chicken muscles. The relative rate of synthesis of apo-A1 and levels of apo-A1 RNA in mature dystrophic breast (fast-twitch) muscle were about 6-fold higher than normal, while synthesis of apo-A1 in breast muscles derived from 2-day-old dystrophic chicks was close to normal. These observations suggest that the elevated apo-A1 synthetic rate in mature dystrophic breast muscle results from a failure of the diseased tissue to "shut down" apo-A1 synthesis to the normal level during postembryonic maturation. Apo-A1 synthesis in the "slow-twitch" lateral adductor muscle of dystrophic chickens was found to be normal. Our work is discussed in terms of the apparent similarities between the effects of surgical denervation and muscular dystrophy on the protein synthetic programs expressed by chicken skeletal muscles.  相似文献   

16.
We have studied the protein composition of the pectoralis superficialis muscle of genetically dystrophic (New Hampshire line 413) and normal control (line 412) chickens by one- and two-dimensional gel electrophoresis. A protein, referred to hereafter as the 30 kDa abnormal protein, was specifically detected in the affected muscle. It was purified to homogeneity, and its molecular properties were studied. It is a monomer with a molecular mass of approximately 30 kDa and an isoelectric point of about pI 8.4. We have screened by Western blotting a variety of muscles from line 412 and line 413 chickens for the presence of the 30 kDa protein. While the pattern of total protein is very similar in all cases, the 30 kDa protein was not detected in the pectoralis superficialis muscle of line 412 chickens. However, the immunoreactive bands were detected in the sartorius muscle and the tensor fasciae latae muscle from dystrophic and normal chickens. Interestingly, the immunoreactive bands of normal skeletal muscles are smaller in molecular weight than those of dystrophic skeletal muscles. To determine the early time sequence of the appearance of the abnormal protein, we studied muscles from embryos and post-hatched chickens at various ages. The abnormal protein was detected in dystrophic muscles as early as 15 days ex ovo and occurred throughout development up to six months ex ovo. Although the implication of the dystrophy-associated appearance of the 30 kDa protein in the affected muscle is not clear at present, it would be of particular interest to elucidate the biochemical functions of the 30 kDa protein in the affected muscle (pectoralis superficialis muscle) of genetically dystrophic chicken.  相似文献   

17.
Oxidative damage has been hypothesized as the basis for some of the changes in enzymatic functions and physical properties of membranes in inherited muscular dystrophy. The contents of alpha- and gamma-tocopherol (vitamin E) and their oxidation products, the tocopheryl quinones, were measured at 1 to 4 weeks after hatching in the muscle and other tissues of chickens with inherited muscular dystrophy. Analyses at these early ages minimized the potential influence of pathological changes on the measured parameters. The affected muscle (pectoralis major) of dystrophic birds contained significantly higher levels of alpha-tocopheryl quinone and a decreased ratio of alpha- to gamma-tocopherol. Consistent changes in these parameters were not observed in other tissues. Although their basis remains unclear, these changes in the tocopherols are suggestive of oxidative stress in dystrophic muscle membranes. Lipid extracts of tissues of normal and dystrophic birds exhibited no significant differences in the content of conjugated dienes or lipofuscins, two other indices of oxidative stress. These data do not consistently support the hypothesis that oxidative stress plays a causal role in damage to dystrophic muscle, although it remains possible that free-radical damage is involved in the secondary alterations associated with muscular dystrophy.  相似文献   

18.
There are at least three forms of acid phosphatase in avian pectoralis muscle differing in molecular weight, subcellular location, and response to various substrates and inhibitors. These enzymes are separated by differential sedimentation into postmicrosomal supernatant, lysosomal, and microsomal activities with apparent molecular weights in Triton X-100 of 68,000, 198,000, and 365,000, respectively. All of the enzymes show acid pH optima (pH approximately 5), but the postmicrosomal supernatant form is distinctly different from the other two forms in its resistance to most common phosphatase inhibitors and in its reduced activity against several organic phosphates. Quantitation of these three forms of acid phosphatase in normal and dystrophic avian pectoralis muscle shows that the postmicrosomal supernatant form is significantly elevated in dystrophic muscle; at 33 days ex ovo, 84% of the increased acid phosphatase activity in dystrophic muscle can be attributed to the postmicrosomal supernatant form. The microsomal form is only slightly elevated; the level of the lysosomal form is not altered.  相似文献   

19.
Expression of an uncoupling protein gene homolog in chickens   总被引:2,自引:0,他引:2  
An avian uncoupling protein (UCP) gene homolog was recently sequenced from skeletal muscle and was proposed to have a role in thermogenesis in chickens, ducks and hummingbirds. Since mammalian UCP 2 and UCP 3 also appear to have functions associated with energy and substrate partitioning and body weight regulation, the purpose of this study was to further characterize chicken UCP under conditions of nutritional stress and/or leptin administration. Male 3-week-old chickens were starved for 24 or 48 h and then half of each group was refed for an additional 24 h. In a follow-up experiment, chickens were fed or starved for 48 h with or without leptin administration. Feed deprivation increased UCP mRNA expression in skeletal muscle by up to 260% (P<0.001), and in a time-dependent manner in pectoralis muscle. Refeeding for 24 h normalized muscle UCP mRNA levels. Leptin administration had no effect on muscle UCP. Chicken muscle UCP mRNA levels were highly correlated with plasma triglyceride and non-esterified fatty acid (NEFA) concentrations, and with circulating levels of insulin, insulin-like growth factor (IGF)-I and IGF-II. These results suggest that, as in mammals, avian UCP is up-regulated during feed deprivation and is highly correlated with increased fatty acid oxidation and flux into skeletal muscle.  相似文献   

20.
Indirect evidence suggests that oxidative stress may play a role in the pathogenesis of inherited muscular dystrophy, but the significance and precise extent of this contribution is poorly understood. Compared with normal muscle, significantly higher contents of glutathione, glutathione disulphide, protein-glutathione mixed disulphides and protein carbonyl groups, and significantly lower contents of free protein thiol groups, were found in pectoralis major muscle of genetically dystrophic chickens (the muscle affected by this disease) at 4 weeks of age. Other tissues did not show such marked disease-related differences. Interestingly, the protein pool in normal, but not dystrophic, pectoralis major muscle was relatively less oxidized in relation to the glutathione pool as compared with other tissues studied. The mechanisms by which this unique relationship between the thiol pools is maintained remain unknown. Although the physiological consequences of the increased content of protein carbonyl groups and the altered thiol pools in dystrophic muscle are not clear, the changes evident at such a young age are consistent with the occurrence of oxidative stress and may reflect significant damage to cellular proteins in this disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号