首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Substance P (SP), a naturally occuring undecapeptide with hypotensive, vasodilatory and smooth muscle stimulating properties, was infused intravenously or intrarenally into anesthetized dogs. Infusions of SP intravenously suppressed renin secretion rate (RSR) from 204±45 to 52±18 ng/min (p < 0.02) at an infusion rate of 0.5 ng/kg/min, and to 50±22 ng/min (p < 0.05) at 5 ng/kg/min. When the concentration of SP was further increased to 50 ng/kg/min, RSR increased to a level above the control value (728±81, p < 0.01). Intrarenal infusion of SP produced similar changes in renin release. At infusion rates of 0.5 ng/kg/min and 5 ng/kg/min, RSR was suppressed from 145±18 to 56±18 ng/min (p < 0.05) and to 26±8 ng/min (p < 0.01) respectively. At 50 ng/kg/min, RSR increased to 251±59 (p > 0.1). Both intravenous and intrarenal administration of the peptide significantly lowered arterial blood pressure at the highest two doses. Intrarenal infusion of SP resulted in a significant dose-related increase in urine volume, sodium and potassium excretion, and renal blood flow. In contrast, intravenous infusions did not alter these parameters. Thus SP suppresses renin release in the presence and in the absence of diuresis, natriuresis, and vasodilation.  相似文献   

2.
A deficiency in renal prostaglandin synthesis has been proposed as the cause of the syndrome of hyporeninemic hypoaldosteronism. To determine if renin release could be stimulated by pharmacologic infusions of PGA1, we infused PGA1 0.075 to 0.60 μg/kg/min to nine patients with the syndrome. Total renal PGE production as measured by urinary PGE excretion was normal (650 ± 169 vs 400 ± 55 ng/24hr in normal subjects). Renin (PRA) was markedly depressed in all patients despite stimulation with upright posture and furosemide (1.0 ± 0.4 vs 9.3 ± 0.7 ng/ml/hr, p<0.001). But in two patients PGA1 induced an increase in renin similar to that of normal subjects. PRA increased to a lesser degree in two other patients and plasma aldosterone slightly increased. Five showed no response. Infusions of nitroprusside in doses and duration that mimicked the hypotensive effects of PGA1 failed to increase PRA or aldosterone. The data suggest that total renal PGE production is normal in patients with the syndrome of hyporeninemic hypoaldosteronism. Although orthostasis, furosemide and nitroprusside do not increase renin, prostaglandin A1 infusion appears to be a potent stimulus to renin release in some of the patients.  相似文献   

3.
Infusion of prostaglandin E1 (PGE1) into the renal artery of anesthetized dogs (1.03 μg/min) caused increases in urine flow rate (V), renal plasma flow (RPF) and renin secretion rate without any change in mean arterial blood pressure (MABP), whereas infusion of prostaglandin F2α (PGF), (1.03 μg/min) caused no consistent change in V, RPF, or renin secretion rate. Infusion of prostaglandin E2 (PGE2) (1.03 μg/min) into the renal artery of “non-filtering” kidneys caused renin secretion rate to rise from 567.7 ± 152.0 U/min(M ± SEM) during control periods to 1373.6 ± 358.5 U/min after 60 minutes of infusion of PGE2 (P < 0.01), without significant change in MABP (P > 0.1). The data suggest that PGE1 and PGE2 play a role in the control of renin secretion. The data further suggest that PGE may control renin secretion through a direct effect on renin-secreting granular cells.  相似文献   

4.
Ventral medullary extracellular fluid pH and PCO2 during hypoxemia   总被引:1,自引:0,他引:1  
We designed experiments to study changes in ventral medullary extracellular fluid (ECF) PCO2 and pH during hypoxemia. Measurements were made in chloralose-urethan-anesthetized spontaneously breathing cats (n = 12) with peripherial chemodenervation. Steady-state measurements were made during normoxemia [arterial PO2 (PaO2) = 106 Torr], hypoxemia (PaO2 = 46 Torr), and recovery (PaO2 = 105 Torr), with relatively constant arterial PCO2 (approximately 44 Torr). Mean values of ventilation were 945, 683, and 1,037 ml/min during normoxemia, hypoxemia, and recovery from hypoxemia, respectively. Ventilatory depression occurred in each cat during hypoxemia. Mean values of medullary ECF PCO2 were 57.7 +/- 7.2 (SD), 59.4 +/- 9.7, and 57.4 +/- 7.2 Torr during normoxemia, hypoxemia, and recovery to normoxemia, respectively; respective values for ECF [H+] were 60.9 +/- 8.0, 64.4 +/- 11.6, and 62.9 +/- 9.2 neq/l. Mean values of calculated ECF [HCO3-] were 22.8 +/- 3.0, 21.7 +/- 3.3, and 21.4 +/- 3.1 meq/l during normoxemia, hypoxemia, and recovery, respectively. Changes in medullary ECF PCO2 and [H+] were not statistically significant. Therefore hypoxemia caused ventilatory depression independent of changes in ECF acid-base variables. Furthermore, on return to normoxemia, ventilation rose considerably, still independent of changes in ECF PCO2, [H+], and [HCO3-].  相似文献   

5.
Experiments were done on eight young lambs to investigate the effects of hypoxemia on the body temperature, metabolic and cardiovascular responses to intravenous administration of a small dose of bacterial pyrogen (0.3 micrograms lipopolysaccharide extracted from Salmonella Abortus Equi; SAE). Each lamb was anaesthetized with halothane and prepared for sleep staging and measurements of cardiac output, arterial and mixed-venous haemoglobin oxygen saturations, body-core and ear-skin temperatures. Three experiments were done on each lamb, the first being done no sooner than three days after surgery. The first experiment consisted of establishing the thermal neutral environment during normoxemia (ie, environmental temperature at which total body oxygen consumption was minimal while body temperature was maintained) for each lamb. The second and third experiments were done at the lamb's thermoneutral environment as determined on day 1. One experiment was done during normoxemia (ie, control condition, SaO2 approximately 90%) and one experiment was done during hypoxemia (ie, experimental condition, SaO2 approximately 50%). Measurements were made during a control period and during one-minute experimental periods at 10 minute intervals for 120 minutes following administration of 0.3 micrograms of bacterial pyrogen in sterile saline. Administration of SAE produced a short-lived fever of about 0.8 degrees C in the normoxemic lambs, whereas no change in body-core temperature was observed in the hypoxemic lambs. During normoxemia, the increase in body-core temperature was preceded by peripheral vasoconstriction, the onset of shivering, and a surge in total body oxygen consumption. The increase in total body oxygen consumption was met primarily by an increase in total body oxygen extraction during the development of fever. Cardiac index, heart rate, and systemic oxygen transport increased during the peak body-core temperature response. Systemic arterial blood pressure did not change significantly during the febrile response; however, pulmonic arterial blood pressure increased. During hypoxemia, peripheral vasoconstriction and shivering occurred following administration of SAE, but there was no change in total body oxygen consumption or body-core temperature. Thus, our data provide evidence that hypoxemia alters the febrile response of young lambs to bacterial pyrogen. The precise mechanism remains to be determined.  相似文献   

6.
In order to determine the level of hypoxemia which is sufficient to impair maximal performance, seven well-trained male cyclists [maximum oxygen consumption (VO2max)51·min–1 or 60 ml·kg–1·min–1] performed a 5-min performance cycle test to exhaustion at maximal intensity as controlled by the subject, under three experimental conditions: normoxemia [percentage of arterial oxyhemoglobin saturation (%S a O2)>94%], and artificially induced mild (%S aO2=90±1%) and moderate (%S aO2=87±1%) hypoxemia. Performance, evaluated as the total work output (Worktot) performed in the 5-min cycle test, progressively decreased with decreasing %S aO2 [mean (SE) Worktot=107.40 (4.5) kJ, 104.07 (5.6) kJ, and 102.52 (4.7) kJ, under normoxemia, mild, and moderate hypoxemia, respectively]. However, only performance in the moderate hypoxemia condition was significantly different than in normoxemia (P=0.02). Mean oxygen consumption and heart rate were similar in the three conditions (P=0.18 andP=0.95, respectively). End-tidal partial pressure of CO2 was significantly lower (P=0.005) during moderate hypoxemia compared with normoxemia, and ventilatory equivalent of CO2 was significantly higher (P=0.005) in both hypoxemic conditions when compared with normoxemia. It is concluded that maximal performance capacity is significantly impaired in highly trained cyclists working under an %S aO2 level of 87% but not under a milder desaturation level of 90%.  相似文献   

7.
Newborn animals of a number of species display a brisk increase in ventilation followed by a gradual drop toward or below baseline within minutes of exposure to acute hypoxemia. Heart rate and cardiac output (a determinant of systemic oxygen transport along with the arterial oxygen content) appear to follow a similar pattern, but whether or not the cardiovascular response is influenced by the respiratory response is unknown. We therefore carried out experiments in which the level of ventilation was controlled during normoxemia and hypoxemia to test the hypothesis that the level of ventilation influences the cardiovascular response to acute hypoxemia. Six lambs ranging in age from 17 to 22 days were anesthetized, tracheostomized, and instrumented for measurement of cardiovascular variables. A recovery period of at least 3 days was allowed before the study when each lamb was artificially ventilated with a mixture of 70% nitrous oxide and 30% oxygen in nitrogen. A control respiratory frequency (f) of 30 breaths per min was set and a control tidal volume (VT) was chosen to achieve normocapnia. Cardiovascular measurements were made during normoxemia and hypoxemia (FIO2 0.10) 5 min after f or VT was changed to simulate a decrease, no change, or an increase in ventilation. During normoxemia, the level of ventilation had little effect on the measured cardiovascular variables. At control levels of ventilation, hypoxemia caused an increase in cardiac output that was due solely to an increase in stroke volume as heart rate decreased; blood pressure was unchanged. Increasing ventilation during hypoxemia did not augment cardiac output or alter blood pressure as compared with that observed at control levels of ventilation. Decreasing ventilation during hypoxemia, however, decreased cardiac output due to a profound bradycardia; blood pressure increased significantly. Our data provide evidence that the level of ventilation significantly influences the cardiovascular response to hypoxemia in young lambs.  相似文献   

8.
The effect of micropuncture of the renal papilla through an intact ureter on urinary concetrating ability of rats was examined. Micropuncture of the renal papilla caused a fall in urine osmolality in the punctured kidney from 1718 ± 106 to 1035 ± 79 mosmol/kg·H2O. In order to investigate the role of renal prostaglandins in this process, PGE2 excretion was measured and found to increase from 63.4 ± 14.0 to 205.5 ± 57.1 pg/min. Urine osmolality and PGE2 excretion from the contralateral kidney were not significantly altered. In animals given meclofenamate (2 mg/kg·hr), renal PGE2 excretion was reduced to 22.3 ± 5.1 pg/min prior to micropuncture and it remained low at 8.9 ± 1.8pg/min after papillary micropuncture. Meclofenamate also blocked the fall in urine osmolality caused by micropuncture of the renal papilla, with urine osmolality averaging 1940 ± 122 before and 1782 ± 96 mosmol/kg·H2O after the micropuncture. These results indicated that papillary micropuncture through an intact ureter increased renal PGE2 excretion and that a rise in renal production of PGE2 or some other prostanoid is associated with a fall in urine concentrating ability.  相似文献   

9.
The detailed elimination kinetics of theophylline were studied in 27 rabbits. Each received a 10 mg/kg intravenous bolus of aminophylline. The theophylline half-life (T12) was 3.8 ± 0.63 hr. The apparent volume of distribution (VD) and total body clearance (TBC) for theophylline were 439 ± 60 ml/kg and 81.0 ± 17.3 ml/kg·hr respectively. Theophylline protein binding was determined in 10 animals. The mean bound fraction was 74.3 ± 3.9% (range, 68.3–78.0%); the fraction bound was concentration indifferent over a serum concentration range of 5–20 μgm/ml.  相似文献   

10.
It is generally accepted that hypertension and other vascular pathologies increase in diabetes mellitus (DM) patients as a result of the renin–angiotensin–aldosterone (RAA) system. In this study, changes in the renin‐angiotensin‐aldosterone (RAA) system level was determined in Streptozotocin (STZ)‐injected rats. A total of 46 female Wistar albino rats (180–220 g body weight) was utilized in these experiments. STZ was given intraperitoneally to induce diabetes in rats. Streptozotocin (60 mg kg−1 body weight) was dissolved in 0·1 m citrate–‐phosphate buffer (pH 4–5). The non‐diabetic rats were injected with sterilized buffer alone to act as a control group. Blood glucose levels were 398±8·2 mg dl−1, 488±11·75 mg dl−1 and 658±29·6 mg dl−1 at days 3, 12 and 30 respectively. The level of plasma renin activity (PRA) was measured as 7·69±1·07 ng ml−1 h−1; 1·82±0·22 ng ml−1 h−1 and 0·67±0·12 ng ml−1 h−1 at days 3, 12 and 30, respectively. These values showed that the PRA levels are decreased with increased time period. Serum angiotensin converting enzyme (ACE, E.C. 3.4.15.1) levels were increased at days 12 and 30 (p<0·05 and p<0·005), whereas serum aldosterone levels were increased at days 3 and 12 (p<0·05). The level of urea and creatinine increased at days 12 and 30 (p<0·05 and p<0·005, respectively) when compared to the control group. The data from these experiments indicate that the PRA level decreased whereas ACE activity level increased in diabetic rats compared with the control. Aldosterone levels increased at the first stage of the experiment, but then decreased by the end of the experiment as a result of changes in renin and ACE levels. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

11.
We studied the effect of a converting enzyme inhibitor (CEI), Captopril SQ 14,225 50 mg p.o. in eight supine normal subjects under a high sodium (150 meq/d) and low sodium (25 mEq/d) diet. On high sodium, plasma renin (PRA) and aldosterone were basal and Saralasin did not lower mean blood pressure. However, CEI induced an 11.4±3.2 mm fall in blood pressure (p<0.02) and either indomethacin 50 mg or ibuprofen 800 mg (PI), when given simultaneously on another day, abolished the blood pressure response (2.5±0.9 mm Hg, p>0.5). In contrast, on a low salt diet where renin was increased, CEI induced a drop in blood pressure which was not significantly altered by PI (12.8±1.1 vs. 10.0±3.1 mm Hg, p>0.5). CEI increased plasma renin on both diets (1.7±0.5 to 3.5±0.8 and 2.8±0.6 to 12.5±3.1 ng/ml/hr respectively both p<0.05). Aldosterone did not change (high Na+) or fell (low Na+). Inhibition of prostaglandin synthesis did not significantly block the renin rise from CEI suggesting that the direct angiotensin II negative feedback is relatively independent of acute prostaglandin release. Our studies suggest that CEI has a dual hypotensive action. In a low renin state, the hypotensive action appears to be mediated through vascular prostaglandins.  相似文献   

12.
Three patients with the hepatorenal syndrome were treated with prostaglandin E1 administered through a selective renal arterial catheter. Prostaglandin E1 was given in progressively increasing doses (2 to 100 ng/kg/min) over a 60-minute period. Control plasma prostaglandin E levels were elevated in all three patients, 0.98, 0.91, and 0.83 ng/ml, respectively. At the end of the infusion, plasma prostaglandin E levels had risen to 10.4, 2.63, and 10.3 ng/ml in the three patients respectively. Plasma renin activity increased during the course of the infusion in two of the patients. The plasma aldosterone concentration did not change during the prostaglandin E1 infusion. Intrarenal prostaglandin E1 failed to increase urine volume or urinary sodium concentration in three patients with the hepatorenal syndrome.  相似文献   

13.
Measurements of bimodal oxygen uptake have been made in a freshwater air-breathing fish,Notopterus chitala at 29.0±1(S.D.)°C. xhe mean oxygen uptake from continuously flowing water without any access to air, was found to be 3.58±0.37 (S.E.) ml O2 · h?1 and 56.84+4.29 (S.E.) ml O2 · kg?1 · h?1 for a fish weighing 66.92 + 11.27 (S.E.) g body weight. In still water with access to air, the mean oxygen uptake through the gills were recorded to be 2.49 ± 0.31 (S.E.) ml O2 · h?1 and 38.78 ± 1.92 (S.E.) ml O2 · kg?1 · h?1 and through the accessory respiratory organs (swim-bladder) 6.04±0.87 (S.E.) ml O2 · h?1 and 92.32±2.91 (S.E.) ml O2 · kg?1 · h?1 for a fish averaging 66.92±11.27 (S.E.) g. Out of the total oxygen uptake (131.10 ml O2 · kg?1 · h?1), about 70% was obtained through the aerial route and the remainder 30% through the gills.  相似文献   

14.
The present study describes an improved method for measuring angiotensin III in arterial blood. This was accomplished by SE-sephadex column to separate angiotensin II from angiotensin III prior to radioimmunoassay. The arterial concentration of angiotensin III measured before and after 24 to 48 hours sodium depletion by acute cannulation of parotid gland was 12.4 ± 1.7 fmol/ml (SEM, n=7) and 49.8 ± 10.3 fmol/ml (SEM, n=7) respectively. The arterial concentration of Val4-angiotensin III obtained from continuous infusion of Val4-angiotensin III at rates of 24 and 48 nmol/h in sodium deficient sheep were 245 ± 32.5 fmol/ml (n=6) and 330 ± 11.4 fmol/ ml (n=7) respectively. The clearance rate of exogenous Val4-angiotensin III in sodium deficient sheep after correction for endogenous level was calculated to be 140 ± 13.6 L/h (SEM, n=13). This was in the same order as Ile5-angiotensin II and Ile4-angiotensin III reported earlier in sodium replete sheep. Prolonged intravenous infusion of Val4-angiotensin III at a rate of 48 nmol/h in sodium- deficient sheep suppressed plasma renin concentration to the same extent as equimolar infusions of angiotensin II. This suggests that angiotensin III may inhibit renin secretion by a similar mechanism to angiotensin II.  相似文献   

15.
Aldosterone response to angiotensin II during hypoxemia   总被引:1,自引:0,他引:1  
Exercise in humans causes increases in plasma renin activity (PRA) and plasma aldosterone concentrations (PAC) except when performed at high altitude or while the subjects breathe hypoxic gas. Under those conditions, PRA increases with exercise but PAC does not. We speculated that the PAC suppression during hypoxemic exercise was due to hypoxemia-induced release of a circulating inhibitor of angiotensin II-mediated aldosterone secretion. To test this hypothesis, we measured the PAC response to graded infusions of angiotensin II during hypoxemia and normoxemia. Eight normal volunteers were given increasing doses of angiotensin II (first 2 ng X kg-1 X min-1 and then 4, 8, and finally 12 ng X kg-1 X min-1, each for 20-min periods) on 2 separate days, once while breathing room air and the other day while breathing hypoxic gas adjusted to maintain the subjects' hemoglobin saturation at 90%. The PAC response to different doses of angiotensin II did not significantly differ during hypoxemia from normoxemia. We conclude that our model of hypoxemia does not cause release of an inhibitor of angiotensin II-mediated aldosterone release.  相似文献   

16.
The adult irradiated rat testis was used as a model system to confirm the existence of a spermatogonial chalone. Rats were given 330 rad whole body 60Co irradiation, a dose which selectively destroys most of the spermatogonial population except for the radioresistant As stem cells. 11 days after irradiation, when spermatogonial numbers were minimal, the rats were injected with a testicular or liver extract prepared from normal adult rats, or with saline. Each group received a total of four injections given at 4 hr intervals. 2 hr before death, the animals were injected with [3H]TdR. Testicular DNA was isolated and the incorporation of [3H]TdR was determined. The mean ± s.e. ct/min per μg DNA in rats given testicular extract (9·38 ± 0·94) was no different than in those receiving liver extract (10·43 ± 2·01) or saline (7·23 ± 0·69). Autoradiographic studies indicated that variability in counts within or between groups could be attributed to variations in the number of pre-leptotene spermatocytes which incorporated [3H]TdR for the meiotic divisions. Quantitatively, there were no differences between groups in terms of the numbers of A spermatogonia, their labelling indices, or mitotic activity. Therefore, the presence of a spermatogonial chalone could not be demonstrated using crude extracts from normal testes in this irradiated model.  相似文献   

17.
Blood was collected at intervals of 29 to 31 min for 5 hr from six Angus bulls (15 mo of age) unaccustomed to capture, restraint and jugular venipuncture (stress) to evaluate temporal changes in certain hormones. Concentrations of testosterone and luteinizing hormone (LH) but not prolactin were decreased significantly after the first hour. Testosterone in plasma decreased (P < .01) about 11-fold between 0 hr and 5 hr (9.9 ± 1.7 to .85 ± .16 ng/ml) as described by equation loge testosterone = loge 2.4649 ? .5266 hr (r = .83; P < .01). Concentrations of LH in plasma remained low after the first hour and those of prolactin were high at all times and varied significantly only among bulls (27 ± 6 to 84 ± 14 ng/ml). Testosterone but not LH was measured with equal repeatability among duplicate measurements either in whole blood or plasma but its average concentration in whole blood was 66% that of plasma. This study demonstrated that sequential collection of blood from bulls unaccustomed to capture and restraint cannot be used to evaluate normal temporal variations in concentrations of testosterone.  相似文献   

18.
Twelve American Saddlebred mares ranging in weight from 365 to 450 kg were given intramuscular injections of 2.5, 5.0 and 7.5 mg of Prostaglandin (PGF) on day 6 of diestrus a mean length of control estrus and diestrus were 6.5 ± .6, 16.9 ± 1.0 days, respectively. The 2.5, 5.0 and 7.5 mg PGF doses significantly (P < .01) shortened the length of the treatment diestrus to 10.8 ± 1.8, 9.9 ± .7 and 9.9 ± .7, respectively. The 2.5 mg dose was 90% effective in shortening the duration of diestrus while doses of 5.0 and 7.5 mg were 100% effective. No effects were noted on the mean length of estrus or diestrus following treatment. Peripheral plasma progesterone concentrations were measured by radioimmunoassay to determine the luteolytic effect of PGF. As compared to the non-treatment estrous cycles, all three treatments caused a significant (P < .01) decline in peripheral plasma progesterone concentrations 24 and 48 hr after treatment. The 2.5 mg PGF dose caused a drop in progesterone from 7.7 ± .4 on day 6 to 2.6 ± 1.0 and 2.1 ± .9 ng/ml 24 and 48 hr later, respectively. Similarly, 5.0 mg lowered the progesterone level from 7.7 ± .3 to 1.6 ± .6 and 1.5 ± .5 ng/ml, and the 7.5 mg dose lowered the progesterone level 7.5 ± .3 to 1.2 ± .2 and 1.3 ± .3 PGF. Abdominal cramps were noted in some mares after treatment. The incidence and severity of these reactions increased with the dose of PGF.  相似文献   

19.
The effect of both prenatally and postnatally induced acute hypoxia on the blood volume was studied in 16 newborn lambs. Hypoxia was induced by 8% O2 inhalation for 10–20 minutes prenatally in 7 term pregnant ewes immediately before caesarean section delivery of the lambs (Group 1), and postnatally in nine 2–4 day old lambs born spontaneously (Group 11). The umbilical cords of Group 1 lambs were clamped early (E.C.) within 10 seconds after birth. Group 11 lambs had their cords severed within one minute of birth by the ewes. Blood volume (BV) was measured by the double label, radioiodinated human serum albumin-125 (RIHSA-125) plasma tag and radiochromium-51 (Cr51) red cell tag dilution technique. The red cell volume (RCV), which reflects the size of placental transfusion best, is significantly higher in Group 1 (42.1 ± 1.6 ml/kg) than in normal E.C. lambs (29.8 ± 2.0 ml/kg). The RCV in Group 1 was smaller than that in late clamped (L.C.) lambs, in whom an almost complete placental transfusion (RCV = 50.4 ± 2.3 ml/kg) had occurred; and close to those of spontaneously born lambs (S.B.) who received a partial placental transfusion (RCV = 36.7 ± 2.1 ml/kg). This finding in Group 1 suggests that with prenatal hypoxia, a partial placental transfusion had occurred in utero. In Group 11 lambs in whom hypoxia was postnatally induced, the BV, RCV, and plasma volume (109.7 ± 5.2, 44.1 ± 1.7 and 65.1 ± 4.2 ml/kg) were slightly, but not significantly, increased from control values of 101.6 ± 4.9, 40.8 ± 1.7 and 60.8 ± 4.3 mg/kg), respectively. It is suggested that postnatally induced hypoxia does not significantly increase the blood volume of newborn lambs due to the absence of placental reservoir of blood. Prenatally induced hypoxia appeared to bring about a higher blood volume than expected in E.C. lambs due to a transfer of placental blood to the fetus in utero. Blood volume redistribution in the feto-placental unit in utero is an unique adaptational response to prenatal hypoxia.  相似文献   

20.
The effects of infusion of a large amount of aldosterone into the renal artery of isolated perfused hog kidney on the release of renin, prostaglandins (PG) and kinin and the excretion of urinary kallikrein were investigated. Infusion of aldosterone at a rate of 100 ng/min (100 to 800 ng/ml of perfusate) resulted in significant releases of renin, PG (PGE2, 6-0-PGF), and kinin and increase in urinary kallikrein. Infusion of aldosterone and an inhibitor of kallikrein, aprotinin, decreased the releases of renin, PG and kinin and infusion of aldosterone with indomethacin decreased the release of PG but increased that of kinin and urinary kallikrein without significant change in renin releases. These findings suggest that the release of renin by aldosterone may result from synergic effects of renal PG and the kallkrein-kinin system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号