首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dihydroteleocidin B, a derivative of teleocidin B, when painted on mouse skin, caused marked induction of ornithine decarboxylase within 4 hrs. This induction of ornithine decarboxylase was inhibited by painting the skin with 13-cis-retinoic acid one hour before dihydroteleocidin B. Dihydroteleocidin B induced cell adhesion of human promyelocytic leukemia cells (HL-60) to the surface of culture flasks, and inhibited terminal differentiation of Friend erythroleukemia cells induced by dimethyl sulfoxide. Its effective dose for these actions was comparable to that of the potent tumor promoter, 12-O-tetradecanoyl-phorbol-13-acetate. Teleocidin B seems to be a new type of promoter of carcinogenesis.  相似文献   

2.
3.
Human, rat and mouse epidermal growth factors (EGF) bind to the same receptor on human placenta, but the binding characteristics differ. The apparent affinity constant (KA) for human EGF is higher (15 X 10(9) l/mol) than KA for rat EGF (10 X 10(9) l/mol). Mouse EGF binds with the lowest KA (5 X 10(9) l/mol). The pH optimum differs so that human and rat EGF bind with a pH optimum of 8.0, whereas mouse EGF binds with an optimum of pH 7.4. Half maximal dissociation is 130, 50 and 25 min for human, rat and mouse EGF, respectively. The structures of human, rat and mouse EGF differ somewhat. At least 11 of the first 24 residues differ. The N-terminal sequence of rat EGF is: Ala/Ser-Gly-X-Pro-Pro-Ser-Tyr-Asp-Gly-Tyr-X-Lys-Asp-Gly-Gly-Val-X-Met-Ty r-Val -Glu.  相似文献   

4.
Tumor necrosis factor (TNF) is a cytokine which induces cytotoxicity in some but not all tumor cells. Initial studies of five tumor cell lines demonstrated that TNF was able to rapidly (within 30 min) modulate tyrosine protein kinase activity of epidermal growth factor (EGF) receptors on tumor cell lines which were sensitive to the cytotoxic effects of TNF but not alter EGF receptor kinase activity in TNF-resistant tumor cells. Two tumor cell lines (ME-180 cervical carcinoma and T24 bladder carcinoma) which have been shown to express similar TNF-binding characteristics but differ in their sensitivity to the cytotoxic actions of TNF were chosen for further characterization. Treatment of TNF-sensitive ME-180 cells with 1 nM TNF resulted in a 3-fold stimulation of EGF receptor tyrosine protein kinase activity within 10 min which correlated with increased phosphorylation of EGF receptor protein itself. In addition, dose-response studies indicate that similar concentrations of TNF modulate both ME-180 cell growth and EGF receptor kinase activity. Treatment of TNF-resistant T24 cells showed that TNF had no significant effect on their growth, EGF receptor tyrosine protein kinase activity, or phosphorylation of EGF receptor protein although EGF receptor kinase activity was stimulated by EGF. Quantitation of receptors expressed on the surface of ME-180 and T24 cells demonstrated a 3-fold difference between the number of EGF-binding sites on T24 (100,000) versus ME-180 cells (300,000), suggesting the relative abundance of EGF receptor does not solely account for differential effects of TNF on EGF receptor activation in these two cell lines. Phosphoamino acid analysis of EGF receptor from 32P-equilibrated ME-180 cells demonstrated that TNF-induced phosphorylation of amino acids which was quantitatively similar to that of EGF but distinct from the effects of phorbol ester. However, unlike EGF, TNF was unable to stimulate EGF receptor kinase activity in ME-180 cell lysates. The kinetics of EGF receptor activation and the metabolic consequence of activation of EGF receptor activity by TNF appear to be distinct from those induced by EGF. These results suggest that TNF-induced modulation of EGF receptor occurs through a unique mechanism and may play a role in the cytotoxic actions of TNF.  相似文献   

5.
6.
We have reported previously that insulin causes a complete but reversible desensitization to insulin action in rat hepatoma HTC cells in tissue culture, and that this insulin resistance is mediated by postbinding mechanisms rather than receptor down-regulation (Heaton, J. H., and Gelehrter, T. D. (1981) J. Biol. Chem. 256, 12257-12262). We report here that insulin causes a similar desensitization to the induction of tyrosine aminotransferase by the insulin-like growth factors IGF-I and IGF-II isolated from human plasma, and by multiplication-stimulating activity, the rat homologue of IGF-II. The results of both competition-binding studies and affinity cross-linking experiments indicate that insulin-like growth factors (IGFs) bind primarily to IGF receptors rather than to insulin receptors. The low concentrations at which these factors induce transaminase is consistent with their acting primarily via IGF receptors. This is confirmed by experiments utilizing anti-insulin receptor antibody which both inhibits 125I-insulin binding and shifts the concentration dependence of insulin induction of tyrosine aminotransferase to the right. This same immunoglobulin does not inhibit 125I-multiplication-stimulating activity binding and only minimally inhibits 125I-IGF-I binding. Anti-insulin receptor antibody also does not significantly shift the concentration dependence for the IGFs, suggesting that IGFs induce transaminase by acting via IGF receptors. Although insulin down regulates insulin receptors, it does not decrease IGF-I or IGF-II binding. We conclude that insulin causes desensitization of HTC cells to IGFs by affecting a postbinding step in IGF action, which may be common to the actions of both insulin and insulin-like growth factors.  相似文献   

7.
Structures of naturally occurring analogs of the B-loop fragment of human epidermal growth factor-like (hEGF-like) polypeptides were examined by molecular dynamics simulation in order to predict their secondary structures, to find structural similarity and to detect any weakly polar aromatic-aromatic (pi-pi) or amide-aromatic (N-pi) interactions which stabilize the structures. NPT molecular dynamics simulations (1 ns) were performed by the GRO-MACS package with SPC/E water using a weak temperature and pressure coupling method. During the sampling time, the structures of all peptides showed a characteristic secondary structure with a turn and bend at residues 4-7, and a beta-sheet, beta-bridge and random coil at the N- and C-terminal regions. Though the peptide chains were flexible, the stabilization effect of the N-pi interactions was indicated in some cases by the angles and distances between the centroids of aromatic planes of the side-chains and the H-atom of peptide bonds and the planes of the aromatic side-chains, respectively. Pi-pi interactions occurred less frequently because of the flexibility of the short peptide chain.  相似文献   

8.
Rat mammary carcinoma (RMC) cells derived from serially transplantable mammary tumors are independent of epidermal growth factor (EGF) for long-term growth in serum-free medium. This phenotype is in contrast to that of normal mammary epithelial cells or cells derived from nontransplantable tumors that express an absolute requirement for EGF for growth in culture. The results of the experiments reported here indicate that EGF-independent RMC cells secrete a growth factor with potent EGF-like mitogenic activity. Conditioned media obtained from these cells can substitute for EGF for the growth of the EGF-dependent cell line MCF-10. This growth factor is neither EGF nor transforming growth factor alpha and does not compete with 125I-EGF for binding to EGF receptors. Phosphotyrosine Western blot analysis of lysates obtained from EGF-independent RMC cells revealed the presence of a 190 kilodalton (kDa) protein that was distinct from the EGF receptor. Similarly, growth of MCF-10 cells to confluence in serum-free medium supplemented with conditioned medium growth factor in place of EGF resulted in the disappearance of the EGF receptor band and appearance of the 190 kDa band in phosphotyrosine Western blots. The 190 kDa tyrosine-phosphorylated protein detected in cells stimulated by the conditioned medium factor is unlikely to be the c-erbB-2 protein, as indicated by negative results in immunoprecipitation experiments and in vitro kinase assays. In summary, EGF-independent RMC cells secrete a factor with potent EGF-like mitogenic activity. This suggests that an autocrine loop involving this growth factor mediates EGF independence in these cells.  相似文献   

9.
In a subline of Reuber H35 rat hepatoma cells that becomes quiescent under serum-deprived conditions, insulin acts as a growth factor. When added to serum-deprived H35 cells, physiologic concentrations of insulin stimulate DNA synthesis, demonstrating that insulin alone is capable of inducing a transition from G0/G1 into S phase. This response, which is induced by nanomolar concentrations of insulin, is mediated directly through the insulin receptor. Here we show that coincident with this growth response, insulin or serum induces dramatic increases in the steady-state levels of c-fos and c-myc mRNAs in serum-deprived H35 cells in a time course similar to that observed in the regenerating liver. Other growth factors, including epidermal growth factor, appear not to affect these cells either in terms of DNA synthesis or c-myc mRNA induction. The phorbol ester phorbol 12-myristate 13-acetate (PMA) also induces c-myc and c-fos mRNAs without inducing DNA synthesis. However, the mechanism of this induction appears to be different from the insulin-induced induction since pretreatment of cells with PMA blocks only the PMA-mediated, not the insulin-mediated, induction of c-myc and c-fos.  相似文献   

10.
Transforming growth factor beta (TGF-beta) increased the phosphorylation of the epidermal growth factor (EGF) receptor and inhibited the growth of A431 cells. Incubation with TGF-beta induced maximal EGF receptor phosphorylation to levels 1.5-fold higher than controls. Phosphorylation increased more prominently (4-5-fold) on tyrosine residues as determined by phosphoamino acid analysis and antiphosphotyrosine antibody immunoblotting. The kinase activity of EGF receptor was also elevated 2.5-fold when cells were cultured in the presence of TGF-beta. The antiproliferative effect of TGF-beta on A431 cells was accompanied by prolongation of G0-G1 phase and by morphological changes. TGF-beta augmented the growth inhibition of A431 cells which could be induced by EGF. In parallel, the specific EGF-induced increase in total phosphorylation of the EGF receptor was also augmented in the presence of TGF-beta. In cells cultured with TGF-beta, the phosphorylation of EGF receptor tyrosines induced by 20-min exposure to EGF was further increased 2-3-fold, suggesting additive effects upon receptor phosphorylation. EGF receptor activation by TGF-beta is characterized by kinetics quite distinct from that induced by EGF and therefore appears to take place through an independent mechanism. The TGF-beta-induced elevation in the phosphorylation of the EGF receptor may have a role in the augmented growth inhibition of A431 cells observed in the presence of EGF and TGF-beta.  相似文献   

11.
A growth factor has been isolated from HTC-SR rat hepatoma tissue culture cells which specifically stimulates DNA synthesis and cell proliferation of the HTC cells that produce it. The factor can be isolated from HTC cell conditioned medium or from an HTC cell extract. This autocrine factor has been purified 640-fold from a postmicrosomal supernatant by successive steps, involving ethanol precipitation, heating at 80 degrees C for 10 min, chromatography on a DEAE Bio-Gel A column, and chromatography on a heparin-sepharose affinity column. The major peak of activity eluted from the heparin column migrates as a single band on SDS-PAGE with an apparent Mr of 60,000. The factor is resistant to acid, heat, and neuraminidase but sensitive to trypsin, papain, and protease. The autocrine nature of the factor is indicated by the finding that several other types of cells do not respond with increased DNA synthesis. Mouse L-cells, BHK cells, Novikoff hepatoma cells, hepatocytes in primary culture, and an epithelial-like rat liver-derived cell line (Clone 9) were tested, and none of the cells could be stimulated. Small amounts of the factor could be extracted from the Clone 9 cells, however. This material had the same physical and purification properties as the factor extracted from HTC cells, but it did not stimulate DNA synthesis in Clone 9 cells, only in HTC cells. Addition of the factor resulted in an almost immediate stimulation of DNA synthesis in a proliferating HTC cell population. When the factor was added together with [3H]thymidine for 2 h, a significant stimulation of DNA synthesis was observed, provided the addition was made between 18 and 48 h after the cells had been plated. Autoradiographic studies indicated that the factor both accelerates DNA synthesis in cells already making DNA and increases the number of cells entering the S period. The stimulation of DNA synthesis was completely inhibited by 10 mM hydroxyurea, whether the factor was present for 2, 24, or 48 h in the culture. A significant increase in cell number due to addition of the factor was also observed. This accelerated proliferation was detectable only after the cells had been in culture for at least 48 h with the factor present.  相似文献   

12.
Herstatin is an autoinhibitor of the ErbB family consisting of subdomains I and II of the human epidermal growth factor receptor 2 (ErbB-2) extracellular domain and a novel C-terminal domain encoded by an intron. Herstatin binds to human epidermal growth factor receptor 2 and to the epidermal growth factor receptor (EGFR), blocking receptor oligomerization and tyrosine phosphorylation. In this study, we characterized several early steps in EGFR activation and investigated downstream signaling events induced by epidermal growth factor (EGF) and by transforming growth factor alpha (TGF-alpha) in NIH3T3 cell lines expressing EGFR with and without herstatin. Herstatin expression decreased EGF-induced EGFR tyrosine phosphorylation and delayed receptor down-regulation despite receptor occupancy by ligand with normal binding affinity. Akt stimulation by EGF and TGF-alpha, but not by fibroblast growth factor 2, was almost completely blocked in the presence of herstatin. Surprisingly, EGF and TGF-alpha induced full activation of MAPK in duration and intensity and stimulated association of the EGFR with Shc and Grb2. Although MAPK was fully stimulated, herstatin expression prevented TGF-alpha-induced DNA synthesis and EGF-induced proliferation. The herstatin-mediated uncoupling of MAPK from Akt activation was also observed in Chinese hamster ovary cells co-transfected with EGFR and herstatin. These findings show that herstatin expression alters EGF and TGF-alpha signaling profiles, culminating in inhibition of proliferation.  相似文献   

13.
1. Receptor binding for epidermal growth factor (EGF) in rat buccal mucosa was characterized. Binding of [125I]EGF to rat buccal mucosa was time, temperature, cell number and [125I]EGF concentration dependent. 2. The [125I]EGF binding was reversible and specific. Unlabeled EGF competed for binding to buccal mucosal cells with an IC50 of 1.25 nM, whereas insulin failed to compete. 3. Scatchard analysis of the binding data revealed a curvilinear plot with dissociation constants of 3.39 nM and 2.14 microM, and binding capacities of 1.23 x 10(4) and 3.38 x 10(5) receptors per cell for high and low affinity sites, respectively. 4. Crosslinking of [125I]EGF to buccal mucosa followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed one major protein with Mw 170,000 which shares similar molecular weight with other known EGF receptors from different tissues and species. 5. The study is the first report to provide biochemical parameters of the specific EGF receptors in rat buccal mucosa.  相似文献   

14.
An epidermal growth factor (EGF)-like transforming growth factor was identified in acid/ethanol extracts of 19-day-old rat embryos. This factor had an apparent molecular weight of 55,000 and possessed EGF-competing activity, stimulated DNA synthesis in quiescent Rat-1 fibroblasts, and induced progressive growth of untransformed cells in soft agar. The factor was trypsin sensitive and required intact disulfide bonds for colony stimulating activity. It was determined to be distinct from adult mouse submaxillary gland EGF based on its elution from BioGel P-60 column and its increased colony stimulating activity/unit of EGF-competing activity.  相似文献   

15.
The interactive actions of prostaglandin (PG) and epidermal growth factor (EGF) on proliferation of granulosa cells was investigated in prehierarchical small yellow follicles (SYF) of laying hens. The granulosa layers were dispersed into single cells by 12.5 microg/ml collagenase. After 16 h pre-incubation in 0.5% fetal calf serum-supplemented medium, the medium was replaced with serum-free medium. Immunocytochemical staining showed that granulosa cells expressed EGF and its receptor, and their expression was increased by PGE(1) (1-100 ng/ml) or forskolin (10(-7) to 10(-5)M) treatments. EGF receptor was also induced by its ligand EGF. The specific prostaglandin synthase inhibitors SC560 (for COX-1) and NS398 (for COX-2) suppressed EGF-stimulated increase of the granulosa cell number. Furthermore, the effect of EGF was confirmed by the immunocytochemical staining of the proliferating cell nuclear antigen in granulosa cells. Though EGF promoted the expression of both COX-1 and COX-2, the rescue experiment indicated that combined treatment of PGE(1) showed better rescuing effect on NS398 inhibition than SC560 at 10(-6)M, which implies COX-2 plays the predominant role in mediating EGF action. The above results indicate that reciprocal stimulation of intracellular PG and EGF production may enhance proliferation of granulosa cells, hence to facilitate development of chicken prehierarchical follicles.  相似文献   

16.
Summary It has been proposed that a component of the antitumor potential of the chemotherapeutic agent, cisplatin, resides in the host's ability to respond to cisplatintreated tumor cells. Here we report that tumor cells that are normally resistant to lysis mediated by naturally occurring cytotoxic cells showed an increased sensitivity to lysis mediated by murine spleen cells or human peripheral blood monocytes and lymphocytes when cisplatin was added at the beginning of the lytic assay. This was shown for the lysis of both murine and human tumor cells. The pretreatment of tumor cells, but not effector cells with cisplatin caused an increase in lysis in the presence of murine spleen cells or human peripheral blood leukocytes, indicating that the effect of cisplatin is to reduce resistance to lysis by these effector cells. The lysis of tumor cells by naturally occurring cytotoxic cells was blocked by antibodies specific for tumor necrosis factor. In addition, the ability of cisplatin to increase lysis was seen with cells that are sensitive to natural cytotoxic cells, but not with cells that are sensitive to natural killer cells. These results suggest that the effector cells that mediate the lysis of these tumor cells in the presence of cisplatin are likely to be natural cytotoxic cells. The ability of cisplatin to increase the lysis of tumor cells by naturally occurring cytotoxic cells indicates that these cells may be a host defense mechanism that contributes to the anticancer potential of cisplatin.  相似文献   

17.
Several reports have indicated that prolactin-secreting cells (PRL cells) are generated from growth hormone-secreting cells (GH cells). We have shown that treatment with a combination of epidermal growth factor (EGF), insulin, and estradiol-17beta (E (2)) induces the appearance of PRL cells in pituitary tumor GH3 cells. The aim of the present study was to clarify the involvement of mitosis in the cytogenesis of PRL cells in rat pituitary and GH3 cells. The effects of the treatment with EGF, insulin and E(2) on DNA-replication were studied by detecting the uptake of bromodeoxyuridine (BrdU) into the nucleus. In cultured rat pituitary cells, BrdU-labeled PRL cells were observed irrespective of the hormone treatment. In GH3 cells, BrdU-labeled GH cells and mammosomatotrophs (MS cells) were detected; BrdU-labeled PRL cells were not detected, however, when GH3 cells were treated with BrdU for 3 hr and then immediately examined for BrdU-labeling. BrdU-labeled PRL cells were found only when GH3 cells treated with BrdU were allowed to grow for another 3 days. This finding suggests that during the additional 3-day culture, BrdU-labeled PRL cells were generated from BrdU-labeled cells other than PRL cells. These results indicate that PRL cells are transdifferentiated from GH cells or MS cells in GH3 cells by a combined treatment with EGF, insulin and E(2), while PRL cells in rat pituitaries are able to proliferate in response to the hormone treatment. Thus, there may be two pathways for cytogenesis of PRL cells: the transdifferentiation of GH cells or MS cells, and a self-duplication of PRL cells.  相似文献   

18.
We have developed a novel Western blot procedure for the detection of epidermal growth factor (EGF) receptors within a complex mixture of membrane proteins. Purified cell membranes from either human placenta or cultured A431 cells were solubilized, resolved by electrophoresis, and electroblotted onto nitrocellulose paper. With 5-15% gradient gels, electroblotting was completed in 2 h and both the high- and low-molecular-weight proteins were transferred evenly onto the nitrocellulose, as indicated by the radiolabeled protein markers. Upon hybridization with 125I-EGF, the membrane receptor was identified as two adjoining bands on the nitrocellulose of 150 and 170 kDa. Binding of 125I-EGF to the immobilized membrane receptor was specific and was displaced by excess unlabeled EGF. The receptor signal on the autoradiogram was optimized when 1% hemoglobin and 0.05% Tween 20 were present during the hybridization. The ligand-binding activity of the immobilized receptor was not affected by sodium dodecyl sulfate detergent or ethylene glycol bis(beta-aminoethyl ether) N,N,N',N'-tetraacetic acid, but was drastically reduced by either heat denaturation or the addition of dithiothreitol to the membrane samples. Using this method, we were able to demonstrate that no noticeable difference was observed between the pre- and postphosphorylated EGF receptors in their ability to bind to 125I-EGF. Because it allows both identification and purification of a receptor from a mixture of proteins, this protocol should have general application in characterizing various receptor-ligand systems.  相似文献   

19.
Previous studies have shown that palytoxin, a non-(12-O-tetradecanoylphorbol-13-acetate)-type tumor promoter, is able to down-modulate the epidermal growth factor (EGF) receptor through a sodium-dependent pathway in Swiss 3T3 cells. A role for sodium is supported by the observation that the sodium proton exchanger monensin and the sodium-conducting ionophore gramicidin mimic palytoxin action by causing a decrease in both high and low affinity EGF binding. However, in addition to causing sodium influx, these agents can induce other cellular effects including changes in membrane polarization, intracellular pH, and macromolecular synthesis. To determine whether any of these factors might be responsible for palytoxin action in our system, we examined the role of each of them in palytoxin-induced inhibition of EGF binding. Although palytoxin depolarizes the membrane, the observation that potassium-induced depolarization of the membrane does not cause a decrease in EGF binding, in conjunction with the fact that monensin hyperpolarizes the membrane, indicates that depolarization of the membrane is not responsible for palytoxin-induced changes in the EGF receptor. An investigation of intra-cellular pH suggests that the palytoxin effects are not mediated by proton flux. In addition, nigericin-mediated changes in intracellular pH do not cause an inhibition of EGF binding. Finally, studies conducted in the presence of cycloheximide indicate that protein synthesis is not required for palytoxin action and that inhibition of EGF receptor biosynthesis does not account for palytoxin-induced loss of EGF-binding sites. These results suggest that sodium may act as a second messenger in the signal transduction mechanism by which palytoxin modulates the EGF receptor.  相似文献   

20.
Effect of epidermal growth factor on rat pleural mesothelial cell growth   总被引:2,自引:0,他引:2  
We recently reported that the growth of normal rat pleural mesothelial cells (RPMCs) is inhibited by conditioned media from either in vivo or in vitro transformed RPMCs. In this study we report that the growth of normal RPMCs is inhibited by epidermal growth factor (EGF). This was demonstrated by using three methods of investigation. Two types of studies were carried out with growing cells. First, cell counts indicated that the number of cells was reduced in EGF-treated cultures when compared with untreated cultures. Second, the percentage of S cells detected by flow cytometry following treatment with EGF was lower than without EGF. In other experiments, incorporation of tritiated thymidine in confluent cells was decreased by EGF treatment, either in the presence or absence of fetal calf serum; these effects were dose dependent and were observed from 2 ng/ml EGF. Lower EGF concentrations did not significantly modify thymidine incorporation when compared with untreated cells. Analysis of 125I EGF binding experiments by the Scatchard method indicated that RPMCs posses EGF receptors (about 10(5) per cell) with low ligand binding affinity (Kd = 1.7 +/- 0.4 nM). These results indicate that EGF might modulate the growth of RPMCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号