首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bromocriptine, at the optimal dose and time of 4 mg/kg, 90 min, increased the content of acetylcholine in the rat striatum by about 30% without affecting the acetylcholine content in other brain regions. Striatal choline acetyltransferase and acetylcholinesterase activities and sodium-dependent high affinity choline uptake were not affected by the in vivo administration or the in vitro incubation with even high amounts of the drug. The increase in striatal acetylcholine by bromocriptine was mediated through the dopaminergic system since pretreatment with pimozide or penfluridol, powerful dopamine receptor antagonists, completely prevented the effect while parachlorophenylaline and phenoxybenzene pretreatment were ineffective. The action of bromocriptine, differently from that of apomorphine, was also blocked upon inhibition of tyrosine hydroxylase by alphamethylparatyrosine, suggesting that intact catecholamine synthesis is necessary for the drug to act. The requirement of dopamine by bromocriptine was further indicated when no potentiation of the cholinergic response to bromocriptine occurred following induction of dopamine receptor supersensitivity by long-term 6-hydroxydopamine lesion of the nigroneostriatal pathway. On the other hand, evidence is presented to show that bromocriptine acts in synergism with dopamine as the latency period for the onset of bromocriptine's cholinergic action was significantly decreased when it was administered in combination with a subthreshold dose of L-dopa, the dopamine precursor. There also was no summation of bromocriptine's increase with apomorphine's increase in striatal acetylcholine content at supramaximal doses possibly indicating that the same population of intrastriatal cholinergic neurons is the common target of both drugs.It is proposed that bromocriptine exerts an inhibitory effect on the striatal cholinergic neurons through a stimulation of the dopaminergic system but, differently from apomorphine, it requires the presence of endogenous dopamine for its action.  相似文献   

2.
The microinfusion of low doses of apomorphine into the striatum of anesthetized rats depressed the electrical activity of the neurons of the substantia nigra pars compacta while the infusion of bromocriptine had an excitatory or inhibitory effect. These data suggest that:1) the action of the two dopamine agonists on the striato-nigral pathway is different; 2) the striatum might contain dopaminergic receptors located on cells projecting to the substantia nigra with different roles in the feedback regulation of the latter; 3) the inhibitory action of systemically injected apomorphine is not simply due to a stimulation of dopamine “autoreceptors” but also to an action mediated by fibers descending from the striatum to the substantia nigra.  相似文献   

3.
The dopaminergic antagonist, metoclopramide (MCP) causes an increase in plasma aldosterone (PA) by a processnot well delineated. To investigate the mechanism of action of metoclopramide (MCP), studies were performed in rats after pre-treatment with L-dihydroxy-phenylalanine (L-dopa) and after bilateral nephrectomy. Intra-arterial MCP (200 μg/kg) resulted in a significant elevation in PA and prolactin (PRL) at 5 min and plasma renin activity (PRA) at 10 min without altering serum potassium levels. Pre-administration of L-dopa (30 mg/kg) delayed and markedly blunted PA, PRL and PRA resonses to MCP. In 7 rats, studied 30 hours after bilateral nephrectomy, the PRA was measurable (2.5 ± 0.4 ng/ml h?1) but displayed no response to MCP. In contrast, the PA and PRL responses to MCP were not significantly affected. L-dopa induced suppression of PRA and PA was prevented by pre-administration of MCP. These results suggest that dopaminergic modulation of PA secretion occurs independently of the renin-angiotensin system.  相似文献   

4.
L Annunziato  K E Moore 《Life sciences》1977,21(12):1845-1849
Serum concentrations of prolactin were significantly increased in rats for up to 9 hours after a single i.p. injection of α-methyltyrosine (50 mg/kg); apomorphine caused a dose-dependent reduction of the elevated prolactin concentrations. Doses of apomorphine required to reduce serum prolactin concentrations.were lower in animals previously injected with α-methyltyrosine three times a day for 10 days than in animals which received a single injection of α-methyltyrosine. These results suggest that chronic disruption of the normal release of dopamine from tuberoinfundibular neurons leads to the development of increased sensitivity of dopamine receptors involved with the inhibition of prolactin release from the anterior pituitary.  相似文献   

5.
Bromocriptine injected to rats induces an increase of cAMP levels in the striatum in vivo. The time course of this increase is very similar to that of apomorphine. However bromocriptine does not stimulate striatal dopamine-sensitive adenylate cyclase but surprisingly antagonized the activation of this enzyme elicited by dopamine. Possible hypotheses on various sites of action of the drug are discussed.  相似文献   

6.
Male Wistar rats were intraperitoneally administered 300 mg/kg b.w. of α-methyl-p-tyrosine methyl ester(α-MT). These α-MT pretreated rats were anesthetized with urethane and then 5% glucose or dopamine (1 μg/kg b.w./min) was infused for 45 min. At 1 min before or 15 min after dopamine infusion, 10 or 50 mg/kg of 5-hydroxytryptophan (5-HTP) was injected intraperitoneally, and blood samples were taken from the jugular vein for prolactin determination. In rats treated with α-MT, the administration of 5-HTP increases the serum prolactin level in a dose-related manner. Dopamine infusion caused a marked decrease in serum prolactin level. The concomitant administration of dopamine and 5-HTP prevented the dopamine-induced decrease of serum prolactin in α-MT treated rats. These results indicate that the serotonergic stimulus enhanced prolactin release, not by inhibiting the dopaminergic activity, but by stimulating a prolactin-releasing factor or by activating other neurotransmitter systems.  相似文献   

7.
Patients with CRF exhibit hyperprolactinemia and resistance to the prolactin-suppressive effects of dopamine. In order to explore the pathogenetic mechanisms involved, an animal model of CRF was developed in the adult male rat bearing an indwelling right atrial catheter by performing a two stage 5/6 nephrectomy (NX). Following NX, serum creatinine levels rose to a value of 1.36 +/- 0.2 mg/dl at 8 weeks as compared to sham-operated controls (0.31 +/- 0.1, P less than 0.01). There was a parallel increase in plasma prolactin levels in NX animals with values significantly greater than in controls by 8 weeks (49 +/- 11 vs 17 +/- 2 ng/ml, P less than 0.02). At 8 weeks, the plasma prolactin responses to metoclopramide (500 micrograms/kg, iv) were similar in unanesthetized NX and sham-operated control animals. The prolactin-suppressive effects of an iv dopamine infusion (6 micrograms/kg/min X 30 min) was also similar in the two groups (46 +/- 8% vs 40 +/- 10% suppression). The responses of lactotrophs in vitro were compared in NX and control animals at 8 weeks. Basal prolactin release during 4 h was similar in the two groups as were the suppressive responses to dopamine and bromocriptine. The results indicate that the rat with CRF, like human develops hyperprolactinemia. In contrast to the human, however, responses to dopaminergic agonists and antagonists in vivo and in vitro are unimpaired, indicating that hyperprolactinemia in rats with CRF occurs on a non-dopaminergic basis.  相似文献   

8.
Metoclopramide, a potent antagonist to apomorphine, was used to the rats in vivo to determine its effect on the release of prolactin. A single i.p. injection of metoclopramide at 10 or 100 μg/100 g b.w. under urethane anesthesia increased serum prolactin levels by 1.6 or 7.2 fold, respectively, compared with basa levels. This prolactin increase was completely abolished by 2-bromo-α-ergocryptine (CB-154).These data suggest that metoclopramide stimulates prolactin secretion in rat and this secretion is abolished by dopaminergic stimulant.  相似文献   

9.
The ability of quipazine and metoclopramide to protect rats from CB-154-induced suppression of serum prolactin concentrations was studied. These drugs affect whole brain concentrations of dopamine and serotonin, and their major metabolites dihydroxyphenylacetic acid, homovanillic acid, and 5-hydroxyindoleacetic acid. Serum prolactin concentrations have been correlated with the concentrations of the neurotransmitters and their respective metabolites. Differences in the metabolite/precursor ratios have been used to compare turnover rates of the neurotransmitters dopamine and serotonin. Increased turnover of dopamine and decreased turnover of serotonin correlate with elevated prolactin concentrations for quipazine and metoclopramide administered together. The combination of quipazine and metoclopramide protects rats against CB-154-induced prolactin suppression better than either of the drugs given alone. This study suggests that a quipazine-metoclopramide regimen may have therapeutic potential for combating ergotlike fescue and other similar toxicities observed in cattle grazing on endophyte-infected pasture grasses.  相似文献   

10.
The objective of this study was to determine the effects of thyrotropin-releasing hormone (TRH) and bromocriptine on plasma levels of biologically active prolactin in ovariectomized, diethylstilbestrol (DES)-treated rats. Female Long-Evans and Holtzman rats were ovariectomized and each was given a subcutaneous implant of diethylstilbestrol (DES). One week later, groups of DES-treated rats were fitted with indwelling intra-atrial catheters, and 2 days later blood samples were withdrawn before and at 1, 2, 5, 10, and 20 min after intravenous administration of TRH (250, 500, or 1000 ng/rat). Blood samples were obtained from other groups at 4 weeks of DES treatment by orbital sinus puncture under ether anesthesia before and at 30, 60, and 120 min after bromocriptine administration (2.5 mg/rat sc). Plasma was assayed for prolactin by conventional radioimmunoassay (RIA) and by Nb2 lymphoma bioassay (BA). Holtzman rats released significantly more prolactin following TRH than did Long-Evans rats when the RIA was used to measure prolactin. However, when the BA was used to assay prolactin in the same samples, the Long-Evans rats released more prolactin than did the Holtzman rats. In addition, the ratio of the BA to RIA values was significantly increased in both strains following TRH, but the greatest increase was observed in the Long-Evans rats, in which the ratio was 4.5 at the peak of the TRH-induced rise in plasma prolactin. Gel filtration chromatography of plasma obtained at 5 min after TRH treatment in Long-Evans rats revealed large molecular forms of prolactin with BA to RIA ratios of 4-5. In addition, monomeric prolactin had a BA to RIA ratio of 2. Bromocriptine treatment reduced prolactin levels in both strains, but the effect was more rapid in Holtzman than in Long-Evans rats. In addition, bromocriptine treatment of Holtzman, but not Long-Evans, rats significantly reduced the BA to RIA ratio of plasma prolactin. The results indicate that TRH and bromocriptine affect the release of biologically active prolactin to a greater extent than prolactin detected by antibody in the RIA, and that Long-Evans and Holtzman rats respond to these secretagogues differently with regard to BA to RIA comparisons.  相似文献   

11.
Heightened dopaminergic activity has been shown to be implicated in some major neuropsychiatric disorders such as schizophrenia. Use of dopaminergic antagonists was limited by some serious side effects related to unspecific blocking of dopamine receptors. Thus a target specific dopamine receptor gene silencing method such as using small interfering RNA (siRNA) might be useful. In this study recombinant plasmids expressing siRNA against dopamine receptors (D1-D5DRs) were produced, and their efficiency in knocking down of receptors in were assessed in rat neuroblastoma cell line (B65), using Real-time PCR method. Furthermore, D2DR siRNA expressing plasmid was injected into the rat nucleus accumbens bilaterally to investigate whether it can prevent the hyperactivity induced by apomorphine. Locomotion was measured in 10 min intervals, 50 min before and 60 min after apomorphine injection (0.5 mg/kg, S.C). Our results indicated that the mRNA level of dopamine receptors were reduced between 25 and 75% in B65 cells treated with the plasmids in vitro. In behavioral tests, locomotion was lower at least in the second 10 min after apomorphine injection in rats treated with plasmid expressing D2DR siRNA compare to control group [F (4,24) = 2.77, (P < 0.05)]. The spontaneous activity of treated rats was normal. In conclusion, dopamine receptors can be downregulated by use of siRNA expressing plasmids in nucleus accumbens. Although our work may have some possible clinical applications; the potentially therapeutic application of siRNA in knocking down of dopamine receptors needs further studies.  相似文献   

12.
A H Cincotta  A H Meier 《Life sciences》1989,45(23):2247-2254
Administrations (injections and in feed) of bromocriptine, a dopamine agonist that inhibits prolactin secretion, reduced body fat stores and plasma total cholesterol and triglyceride concentrations in several rodent species (Syrian hamsters, Djungarian hamsters, Swiss Webster mice and obese Zucker rats). Body fat indices were reduced by at least 50% in the hamsters and mice within 10-15 days of treatment and by 29% in 8 weeks in the rats. Bromocriptine reduced total plasma cholesterol concentration by 17% in Syrian hamsters, 41% in mice and 30% in rats fasted before blood sampling. In nonfasted obese rats, bromocriptine dramatically reduced both cholesterol (from 440 to 130 mg/dl) and triglyceride (from 1570 to 540 mg/dl) levels compared with controls. These findings offer further evidence for a primary role of prolactin in lipid metabolism and indicate that bromocriptine may be useful for treating obesity and lipid-based cardiovascular disorders.  相似文献   

13.
Stabilization of casein mRNA by prolactin and glucocorticoids.   总被引:5,自引:0,他引:5  
Prolactin injected into pseudopregnant rabbits led to a parallel enhancement of casein synthesis and casein mRNA concentration. When this stimulation was followed by a withdrawal of prolactin obtained by injections of bromocriptine, the rate of casein synthesis progressively diminished. In the presence of endogenous prolactin after the initial stimulation, the decline of casein synthesis was delayed. Hydrocortisone acetate injected with bromocriptine after the initial stimulation by prolactin was able to maintain a high rate of casein synthesis. Measurements of casein mRNA concentration by hybridization with casein cDNA indicated that in all cases the amount of casein mRNA was correlated with the magnitude of casein synthesis. This suggests that the lactogenic hormones, prolactin and glucocorticoids, which were previously demonstrated to be responsible for the enhancement of casein mRNA concentration are involved in their stabilization.  相似文献   

14.
Footshock induced aggression (FIA) was induced in weight matched paired rats and three paradigms of aggressive behaviour was recorded, namely, the latency to fight (LF), total period of physical contact (TPP) and cumulative aggression scores (CAS). Dopamine (DA), administered centrally, and peripherally administered L-dopa (with benserazide, a peripheral decarboxylase inhibitor), a DA precursor, and the postsynaptic D2 receptor agonists, apomorphine, N-n-propyl-norapomorphine (PNA), bromocriptine, lisuride and pergolide, induced a dose-related facilitation of FIA characterized by decrease in LF and increase in TPP and CAS. However, the DA presynaptic receptor agonist, BHT-920, induced a biphasic effect with inhibition of FIA being induced by a lower dose and facilitation of the aggressive behaviour produced by a higher dose. The postsynaptic D2 receptor antagonists, haloperidol, spiperone and pimozide, induced a dose-related attenuation of FIA, an effect not seen with domperidone, a peripheral DA receptor antagonist. The results indicate that central dopaminergic postsynaptic D2 receptors have a modulatory facilitative effect on FIA, while the presynaptic DA autoreceptors mitigate aggressive behaviour. However, the presynaptic DA receptor agonist, BHT-920, appears to lose its receptor specificity on dose increment. Long term administration of haloperidol, followed by withdrawal, or desipramine, induced per se augmentation of FIA and potentiated the aggression-facilitative effects of L-dopa, apomorphine and PNA. Since both these treatments are known to induce supersensitivity of central postsynaptic dopamine D2 receptors, the effects are likely to be related to augmented function of dopamine neurones. The findings, in conjunction with a recent report from this laboratory indicating an increase in rat brain DA levels in FIA, support the contention that the central DA system has a facilitative effect on FIA.  相似文献   

15.
Morphine (200 micrograms/rat) was injected intraventricularly (i.v.t.) into normal and into long-term castrated (4 weeks) adult male rats. Animals were killed 10, 20, 40 and 60 min after treatment. In normal animals, the treatment with morphine resulted in a significant increase of serum prolactin concentrations at all time intervals considered. However, the i.v.t. injection of 200 micrograms morphine/rat into castrated rats did not exert any significant effect on prolactin release at any time interval considered. When morphine (200 micrograms/rat) was administered i.v.t. together with the specific opioid receptor blocker naloxone (7.5 or 15 micrograms/rat) the stimulatory effect of morphine on prolactin release was diminished at 10 min, and totally blocked at 20 min. Naloxone given alone did not influence serum prolactin concentrations. The results suggest that the presence of endogenous androgens is essential to permit the stimulatory effect of morphine on prolactin release.  相似文献   

16.
Experiments were designed to determine if the responsiveness of the anterior pituitary to the prolactin (Prl) inhibiting effects of dopamine were altered during the sexual maturation of the male rat. Initial experiments established that bolus injection of dopamine HCl into cannulated (left carotid) rats pretreated with alpha-methyl-p -tyrosine (MPT) resulted in an appropriate reduction of serum Prl and that the MPT treatment did not significantly alter testosterone or luteinizing hormone (LH). Immature (25-30 days), pubertal (50-55 days), and young adult (75-80 days) rats were studied. One hour after MPT administration a blood sample was collected, followed by administration via the cannula of 2.5, 10, 40 or 160 micrograms dopamine/100 g BW or the 5% glucose vehicle. Additional blood samples were collected 15, 30, 45 and 60 min after dopamine. MPT administration resulted in a significant increase in serum Prl compared to saline-treated controls at all ages; however, the absolute value of these increases varied significantly with age. Subsequent data were calculated in terms of the decrement in serum Prl versus Time O. In immature rats the 160-micrograms dose of dopamine resulted in a significant inhibition of Prl at 15 and 30 min when compared to glucose-treated controls. In pubertal animals, 40 micrograms dopamine was effective in inhibiting Prl at both 15 and 30 min. In young adult rats, 10 micrograms dopamine was effective at 15 and 30 min; 160 micrograms lowered Prl through 45 min. These data suggest that the responsiveness of the pituitary to the Prl inhibiting effects of dopamine increases during the sexual maturation of the male rat.  相似文献   

17.
Exposure of recently mated female mice to strange male urine revealed that exposure for 8 h was sufficient to produce pregnancy block providing exposure is for two 4-h periods coincident with prolactin surges. Exposure for 8 h between prolactin surges or one 4-h exposure coincident with either the nocturnal or the diurnal prolactin surge was without effect. When bromocriptine, a dopamine agonist, was given coincident with the nocturnal and diurnal prolactin surges, it was equally effective, but the opiate antagonist (naltrexone) administered in a similar manner was without effect. This result indicates that pheromonal action is through excitation of the tuberoinfundibular neurones rather than by inhibition of beta-endorphin neurones. Further evidence for dopamine involvement in pregnancy block is demonstrated by showing DOPA accumulation in the medio-basal hypothalamus following exposure to male urinary pheromones after dihydroxybenzylhydrazine (DHBH) administration, which blocks the enzyme DOPA-decarboxylase. Taken together, this series of experiments provides convincing evidence for the dopamine inhibition of prolactin release being the final pathway for pheromone action in the context of pregnancy block.  相似文献   

18.
Dopamine is known to be the prolactin-release inhibiting factor, but the effects of dopamine itself on regulation of prolactin messenger RNA have been little studied because of the instability of dopamine. We have compared the effects of dopamine and bromocriptine on the levels of prolactin mRNA and on the rates of synthesis, storage, and release of prolactin in primary cultured rat pituitary cells. The cells were incubated for 72 h with no secretagogue (control group) or in the presence of either dopamine (10 mumol/L) plus ascorbic acid (100 mumol/L) or bromocriptine (0.1 mumol/L). Prolactin mRNA was measured in cell extracts by means of slot blots, and newly synthesized prolactin was measured in similar incubations by the addition of [3H]leucine, followed by gel electrophoresis. The levels of total prolactin were measured by radioimmunoassay. Prolactin mRNA was reduced to 78 +/- 9% (mean +/- SEM) of control levels in bromocriptine-treated cells and to 59 +/- 7% in dopamine-treated cells, demonstrating that dopamine stabilized by ascorbic acid was able to reduce the levels of prolactin mRNA in rat pituitary cells in culture. Dopamine may act at sites in addition to the dopaminergic D2 receptor, since the level of prolactin mRNA was reduced more by a supramaximal dose of dopamine than by a supramaximal dose of bromocriptine. The results of the [3H]prolactin and prolactin measurements suggested that availability of mRNA was not a major factor in controlling the rate of prolactin synthesis.  相似文献   

19.
Suckling, starting at 19:00 h on Day 18 of pregnancy, induced a significant increase in serum prolactin concentration at 20:00 h on Day 19 of pregnancy, but no increase in mammary gland casein or lactose content. Mifepristone (2 mg/kg) injection at 08:00 h on Day 19 of pregnancy induced significant increases in casein, but not in lactose, 24 h after administration. Mifepristone alone did not induce prolactin secretion, indicating that lactogenesis was induced by placental lactogen in the absence of progesterone action. When mifepristone was injected into suckling rats, serum prolactin concentrations were higher than in the untreated suckling rats. Casein in these rats increased significantly 12 h after mifepristone administration and lactose at 24 h after. If the suckling mifepristone-treated rats were given two injections of bromocriptine (1.5 mg/kg) at 12:00 h on Days 18 and 19 of pregnancy, serum prolactin concentrations were not increased by suckling, but casein and lactose concentrations in the mammary gland showed values similar to those obtained in the mifepristone-treated non-suckling rats. Mifepristone can therefore potentiate suckling-induced prolactin release in pregnant rats, demonstrating a direct central inhibitory action of progesterone on prolactin secretion. This suckling-induced prolactin secretion, unable to induce casein or lactose synthesis in the presence of progesterone, enhanced significantly synthesis of these milk components in the absence of progesterone action (rats treated with mifepristone). Fatty acid synthase, which is stimulated by the suckling stimulus in lactating rats, was not modified by mifepristone or suckling in pregnant rats.  相似文献   

20.
To investigate the mechanism of the central action of dopamine and its antagonist, metoclopramide, on the regulation of aldosterone, studies were performed in 54 conscious rats with and without bilateral nephrectomy. In normal and sham-operated rats, intracerebroventricular injection of dopamine resulted in a significant suppression of plasma renin activity and plasma aldosterone at 30 min, and intracerebroventricular injection of metoclopramide resulted in a significant elevation of plasma renin activity and plasma aldosterone at 30 min without altering the plasma corticosterone and potassium levels. In bilaterally nephrectomized rats, the plasma renin activity was significantly reduced and it did not respond to dopamine or metoclopramide. In these rats, intracerebroventricular injection of metoclopramide exerted no effect on the plasma aldosterone, but intracerebroventricular injection of dopamine increased the plasma aldosterone slightly. However, this increase was not statistically significant. These findings suggest that the dopaminergic system in the brain is involved in the regulation of aldosterone secretion, mainly with changes in the peripheral renin-angiotensin axis in rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号