首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of chronic pentobarbital (PB) treatment on the binding characteristics of [3H]flunitrazepam (FLU) in rat brain were examined. Saline or sodium PB (500 g/10l/hr) was infused into the lateral cerebral ventricles of rats for 6 days using osmotic pumps. Immediately before withdrawal, there were no significant differences in [3H]FLU binding constants (KD and Bmax) between saline and PB groups. However, 24 hr withdrawal caused an increase in Bmax with no changes in KD. The enhancement of [3H]FLU binding by in vitro addition of chloride ions and PB was not affected after the PB infusion. The PB enhancement of [3H]FLU binding was inhibited by the convulsant, picrotoxicin. PB withdrawal did not cause significant differences in the binding constants of [3H]Ro 15-1788, a benzodiazepine (BZ) antagonist, between the saline and PB groups. Pretreatment of membranes with 0.02 mM of 3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesulfonate (CHAPS), a zwitterionic detergent, caused decreases in both KD and Bmax in FLU binding in PB-withdrawal membrane, but not in the saline-treated membrane. The enhancement of [3H]FLU binding by chloride ions and PB was not affected by the CHAPS treatment. These results suggest that the change in BZ receptors induced by PB withdrawal is functionally linked to the GABA-BZ-barbiturate receptor complex and that PB withdrawal induces some conformational changes in BZ receptors.  相似文献   

2.
Previously we have reported the presence of endogenous ligands that are involved in the regulation of the binding of muscimol to the GABA binding site of the GABAA receptors. Here, we report the presence of multiple forms of endogenous ligands in the brain which modulate the binding of flunitrazepam (FNZP) to the benzodiazepine (BZ) binding site of the GABAA receptor. Furthermore, one of the endogenous ligands for the BZ receptors, referred to as EBZ, has been identified as inosine based on the following observations: (1) standard inosine and the EBZ have identical NMR and UV spectra; (2) the elution profile of inosine and the EBZ from a HPLC column are indistinguishable, and (3) inosine and the EBZ show identical activity in inhibiting [3H]FNZP binding.  相似文献   

3.
Pinealectomy of rats resulted in significant depression of benzodiazepine receptors (assessed by [3H]flunitrazepam binding) in cerebral cortex 3–14 days after surgery without affecting their affinity significantly. A single s.c. injection of melatonin (800 μg/kg body wt) restored the depressed brain benzodiazepine receptor sites. Single melatonin injections (up to 1600 μg/kg) to intact rats did not affect brain benzodiazepine binding when injected at either morning or evening hours. Daily melatonin treatment to intact rats for 5 days augmented benzodiazepine receptor density in brain (morning injections) or its dissociation constant (evening injections). Melatonin added in vitro to rat cerebral cortex membranes only slightly depressed [3H]flunitrazepam binding at 100 μM concentrations. These results point out a link between pineal activity and benzodiazepine receptor function in rats. They also indicate that pharmacological doses of melatonin affect benzodiazepine binding sites in rat cerebral cortex.  相似文献   

4.
The adhesion of the myelogenous leukemia cell line, HL60, to fibronectin and its fragments, heparin binding fragment (40 kDa) and cell attachment fragment (120 kDa), was enhanced by culturing with benzyl-α-GalNAc (BZαGalNAc). Enhancement of cell adhesion to fibronectin was also observed on treatment of HL60 cells with 12-O-tetradecanoylphorbol 13-acetate (TPA). However, an additive effect of BZαGalNAc and TPA treatments was not observed. The expression of VLA4 and VLA5 did not change during treatment with BZαGalNAc or TPA. Cell adhesion to fibronectin before and after treatment with BZαGalNAc or TPA was inhibited by anti-VLA4 and anti-VLA5 monoclonal antibodies. Staining of the cells with Helix pomatia lectin demonstrated that culturing of the cells with BZαGalNAc blocked elongation of O-linked oligosaccharides on the cell surface and led to accumulation of GalNAc-O-Ser/Thr. Labeling of cell surface carbohydrates with [3H]-glucosamine followed by treatment with TPA revealed that O-glycosylated glycoproteins including CD43 were released from the cell surface during this treatment. These findings indicate that integrin-dependent cell adhesion, particularly VLA4- or VLA5-dependent cell adhesion, of HL60 cells is prevented with the extension of O-linked oligosaccharides and recovers with the disappearance of O-linked oligosaccharides from the cell surface.  相似文献   

5.
Abstract: Ethyl β-carboline-β-carboxylate (β-CCE) is a mixed-type inhibitor of [3H]flunitrazepam ([3H]FNM) binding to benzodiazepine receptors in noncerebellar regions of rat brain. These findings may represent the presence of either receptor multiplicity or negative cooperativity among benzodiazepine receptors. [3H]Propyl β-carboline-3-carboxylate ([3H]PrCC) has previously been shown to bind specifically to benzodiazepine receptors of rat cerebellum. In the present study we found no indication of the presence of true negative cooperativity among benzodiazepine receptors when [3H]PrCC was used as radioligand. However, we observed that [3H]PrCC labelled only 57% of [3H]FNM binding sites in rat hippocampus (Bmax values) and 71% in rat cerebral cortex, whereas the number of receptors labelled by both ligands was equal in the cerebellum. Hofstee analyses of the shallow inhibition curves seen in hippocampus and cerebral cortex when [3H]FNM binding was inhibited by β-CCE indicate that β-CCE and some other β-carboline-3-carboxylate derivatives interact preferentially with a subclass of receptors, and that the percentage of this subclass is equivalent to the number of receptors labelled by [3H]PrCC. We conclude that [3H]PrCC at low concentration (0.3–0.4 × 10-9 M) labels a subclass of benzodiazepine receptors, BZ1, while another class, BZ2 receptors, are not labelled by [3H]PrCC when filtration assays are used. By parallel determinations of the proportion between [3H]FNM and [3H]PrCC binding we calculated the percentage of BZ1 receptors in several regions of rat, guinea pig and calf brain and in mouse forebrain. The values ranged from approximately 50% in hippocampus to 90% in the guinea pig pons.  相似文献   

6.
The characteristics of [3H]flunitrazepam binding to brain specific benzodiazepine receptors were determined at varying temperatures. The rates at which [3H]flunitrazepam associated with and dissociated from benzodiazepine receptors increased with increasing temperatures. The dissociation constant (KD) also increased with increases in temperature. The (KD) determined by Scatchard analyses of saturation isotherms showed a similar change with changes in temperature. The maximal binding capacity (Bmax) did not change with changes in temperature. The inhibitory constants of several benzodiazepines to inhibit [3H]flunitrazepam binding to brain were also higher at 37°C than at 0°C, suggesting that the binding affinity of all benzodiazepines to brain benzodiazepine receptors is lower at 37°C than at 0°C. Van't Hoff analysis of [3H]flunitrazepam binding to brain at different temperatures reveals two linear components to this relationship.  相似文献   

7.
The novel pyrazoloquinoline, CGS, 9896, was a potent inhibitor of specific [3H]-flunitrazepam binding in several brain regions with subnanomolar KI values. The inhibition of [3H] propyl beta-carboline-3-carboxylate ([3H]-PCC) binding by CGS 9896 was enhanced by gamma-aminobutyric acid (GABA) but not by chloride ion. GABA enhancement of CGS 9896 inhibition of [3H]-PCC binding predicts this compound has benzodiazepine (BZD) agonist-type activity. Behavioral studies support this prediction. CGS 9896 was found to protect mice against bicuculline and metrazol induced seizures at doses that did not induce ataxia or sedation. CGS 9896 may represent a class of compounds with potential therapeutic value. The high affinity of this non-BZD compound suggests that CGS 9896 may also be of value as a high affinity ligand for the continued study of BZD receptors.  相似文献   

8.
《Life sciences》1995,57(5):PL63-PL69
Changes in benzodiazepine binding sites labeled by [3H]flunitrazepam (FNZ) in twenty discrete brain regions of rats made tolerant to and dependent upon pentobarbital were examined. Animals were rendered tolerant by intracerebroventricular (i.c.v) infusion with pentobarbital (300 μg/ 10 μ1/ hr for six days) through pre-implanted cannulae connected to osmotic mini-pumps. The pentobarbital dependence was assessed 24 hr after abrupt withdrawal from pentobarbital. In the tolerant rats, a significant increase in [3H]FNZ binding sites was found in layer IV of frontal cortex and the molecular layer of olfactory bulb. [3H]FNZ binding sites in the pentobarbital dependent rats were significantly increased in layers I-III and V-VI of frontal cortex, caudate-putamen, olfactory tubercle, globus pallidus and ventral pallidum, in addition to those observed in the tolerant group. There was, however, no significant difference in the hippocampus and several regions in the hindbrain in either pentobarbital-treated group. Taken together with characteristics of subtypes of benzodiazepine receptors and changes in GABA-benzodiazepine receptor complexes elucidated in our previous studies, these findings suggest that both types of benzodiazepine receptors are involved in the development of pentobarbital intoxication mediated by GABAA receptors.  相似文献   

9.
Functional and behavioral tolerance to chronic benzodiazepine (BZ) exposure has been associated with an uncoupling of the BZ and GABA binding sites. As in rats exposed to BZ for periods of a week or longer, recombinant GABA(A) receptors (GABARs) expressed in Sf9 cells lose the normally observed allosteric enhancement of [3H]flunitrazepam binding by GABA agonists, which is measured in homogenized membranes after a few hours exposure to pharmacological doses of agonist BZ. Treatment of Sf9 cells expressing recombinant GABAR with various drugs that inhibit protein kinase A (PKA), but not protein kinase C (PKC), resulted in an uncoupling of the BZ and GABA binding sites; whereas promotion of phosphorylation by PKA, but not PKC, favored coupling and recoupling. However, mutation of the only PKA phosphorylation site expressed from among the subunits proved that direct phosphorylation of the GABAR was not involved in either coupling after chronic BZ exposure or reversal of uncoupling after exposure to the competitive BZ antagonist, flumazenil. Osmotic-shock of cell membrane homogenates to lyse intracellular compartments reversed uncoupling, and uncoupling can be replicated in untreated cells by performing membrane binding assays in an acidic environment, suggesting that GABARs become internalized into an acidic intracellular environment where normal BZ binding occurs, but that potentiation by GABA is hindered. The internalization of receptors was shown by immunofluorescence after chronic exposure to either BZ or the PKA inhibitor H-89.  相似文献   

10.
To investigate the mechanism of penicillin-induced convulsions, we have studied the effects of penicillin G (PC-G) on GABA-gated chloride ion influx in brain microsac preparations of mice. In the presence of 10–4 M GABA, PC-G inhibited GABA-gated chloride ion influx in a dose-dependent manner. The dose-response curve for GABA in the presence of 10–3 M PC-G was shifted rightward and there was a decrease in maximum response. The inhibitory effects of PC-G were not reversed by RO 15-1788, an antagonist of benzodiazepine (BZ) receptors, but were reversed by washing the microsac membranes. Therefore, PC-G probably exerts its proconvulsant effect by inhibiting GABA-gated chloride ion influx. However, it appears not to act through the BZ receptor of the GABA/BZ receptor complex.  相似文献   

11.
The effects of 10 days of D-thyroxine (T4) treatment on central benzodiazepine (BZ) receptors in the brain and on peripheral-type BZ binding sites in the heart, kidney, and testis of rats were studied. The experimental hyperthyroidism resulted in an increase in the density of cortical central BZ receptors, without any alteration of the affinity of the receptors to [3H]flunitrazepam. The increase in cortical central BZ receptors was also accompanied by the up-regulation of peripheral BZ binding sites in the heart, kidney, and testis. The affinity of the peripheral BZ binding sites for the ligand [3H]PK 11195 was not affected by T4 treatment in any of these three organs. The increase in the density of brain cortical central BZ receptors was less prominent than the increase in the peripheral BZ binding sites. The modulatory effect of T4 treatment on central and peripheral BZ receptors might be attributed to the direct interaction of the thyroid hormone at these sites or might reflect a physiological compensatory adaptation mechanism to thyrotoxicosis associated with hypermetabolism, anxiety, and stress.  相似文献   

12.
GABAA receptor mediated inhibition plays an important role in modulating the input/output dynamics of cerebellum. A characteristic of cerebellar GABAA receptors is the presence in cerebellar granule cells of subunits such as α6 and δ which give insensitivity to classical benzodiazepines. In fact, cerebellar GABAA receptors have generally been considered a poor model for testing drugs which potentially are active at the benzodiazepine site. In this overview we show how rat cerebellar granule cells in culture may be a useful model for studying new benzodiazepine site agonists. This is based on the pharmacological separation of diazepam-sensitive α1 β2/3 γ2 receptors from those which are diazepam-insensitive and contain the α6 subunit. This is achieved by utilizing furosemide/Zn2+ which block α6 containing and incomplete receptors.  相似文献   

13.
As a tracer for in vivo studies on benzodiazepine receptors, 7-chloro-1,3-dihydro-5-(2-fluorophenyl)-1-[11C]methyl-2H-1, 4-benzodiazepin-2-one, [11C]fludiazepam, was synthesized by the methylation of norderivative with [11C]CH3I, and purified by high-performance liquid chromatography. Within 60 min [11C]fludiazepam was obtained for injection in high radiochemical yields and in high radiochemical purity with a specific activity of up to 230mCi/μmol.After i.v. injection of [11C]fludiazepam in rats the radioactivity was rapidly incorporated into many tissues and the blood clearance of the radioactivity was very rapid. The brain uptake was high and decreased gradually. The adrenal uptake was the highest and decreased with high loading doses. The effect of the loading dose on the uptake was also found in the heart and lungs. By autoradiography using [11C]fludiazepam, a higher accumulation was visualized in the cortex and thalamus than in other regions.  相似文献   

14.
We studied the transport of 14C-caffeine across the blood-brain barrier (BBB) by measuring brain 14C:3H ratios five seconds after rats received the caffeine, with 3H2O, by intracarotid injection. Caffeine was found to enter the brain by both simple diffusion and saturable, carrier-mediated transport. This latter observation suggested to us that caffeine's transport might involve macromolecules that are structurally similar to caffeine. Hence, we examined caffeine's ability to inhibit the BBB transports of 14C-adenosine and 14C-adenine. Caffeine caused a dose-dependent inhibition of 14C-adenine transport but no clear change in that of 14C-adenosine. At very high blood levels (Ki = 9.8 mM), caffeine may restrict the availability of circulating purines to the brain. This effect may be important neonatally, when carrier-mediated adenine transport apparently is maximal.  相似文献   

15.
Ethanol alters almost all membrane functions, but it behaves essentially like a benzodiazepine-type GABAergic agonist. The mechanism by which ethanol affects the GABA/benzodiazepine complex is not clear. We studied the possible changes in [3H]flunitrazepam binding induced by chronic ethanol treatment, using light microscopic autoradiography, to try to elucidate the controversy underlying this topic. This technique allows us to measure densities of benzodiazepine receptors in different anatomical brain areas—visual cortex and hippocampus—which seem to constitute the anatomical support for the behavioral and physiological responses affected by ethanol. Autoradiographic studies on the visual cortex and hippocampus from rats chronically treated with ethanol do not show statistically significant differences in the binding of, [3H]flunitrazepam with respect to control animals. Furthermore, we did not find either rostro-caudal or medio-lateral differences, in benzodiazepine receptor densities in each layer of the visual cortex.  相似文献   

16.
Avermectin B1a, an antihelminthic macrocyclic lactone, has been previously shown to reduce muscle membrane resistance by stimulating γ-aminobutyric acid-mediated chloride conductance. Since the benzodiazepine receptor is coupled to a receptor for γ-aminobutyric acid and related chloride ionophore, the effects of Avermectin B1a on [3H]diazepam binding to the benzodiazepine receptor were studied. In well-washed membrane fragments from rat cerebral cortex, Avermectin B1a markedly increased the binding of [3H]diazepam to benzodiazepine receptors. This effect was qualitatively similar to that observed with either γ-aminobutyric acid or chloride ion and was partially reversed by the γ-aminobutyric acid receptor antagonist, bicuculline. In contrast to the effects of γ-aminobutyric acid and chloride, the enhanced binding of [3H]benzodiazepine elicited by Avermectin B1a was not reversed by extensive washing of the membrane preparation. Avermectin B1a appears to irreversibly modify benzodiazepine receptors at a γ-aminobutyric acid-chloride recognition site and may be valuable in biochemical studies of the regulation of benzodiazepine receptor function.  相似文献   

17.
The CO2- and H2O-exchange rates between soybean canopies and the atmosphere were measured in three mobile chambers (4 m3). Each chamber stopped at 8 or 9 plots (3.1-m2 ground area) every 25 min. Diurnal and seasonal CO2-exchange rates (CER) of 13 soybean (Glycine max (L.) Merr.) cultivars are summarized here. The oldest two cultivars, released in 1927 and 1932, had the lowest CER values. The CER usually decreased in the afternoon (23.4 vs 27.8 mol CO2 m-2 s-1 at 1.6 mmol photons m-2 s-1), except shortly after rainfall. During a drought, these reductions occurred earlier in the day and were more pronounced. We present evidence for a nonstomatal component of the CO2 flux-reaction system causing CER reductions during a water stress. Daytime CER values were not correlated with temperature (24–34° C), but nighttime values were (15–25° C, r=0.85,* n=41).  相似文献   

18.
p27kip1 is a cyclin-dependent kinase inhibitor and a tumor suppressor. In some tumors, p27 suppresses tumor growth by inhibition of cell proliferation. However, this is not universally observed, implying additional mechanisms of tumor suppression by p27. p27-deficient mice are particularly susceptibility to genotoxin-induced tumors, suggesting a role for p27 in the DNA damage response. To test this hypothesis, we measured genotoxin-induced mutations and chromosome damage in p27-deficient mice. Both p27+/− and p27−/− mice displayed a higher N-ethyl-N-nitrosourea-induced mutation frequency in the colon than p27+/+ littermates. Furthermore, cells from irradiated p27-deficient mice exhibited a higher number of chromatid breaks and showed modestly increased micronucleus formation compared to cells from wild-type littermates. To determine if this mutator phenotype was related to the cell cycle-inhibitory function of p27, we measured cell cycle arrest in response to DNA damage. Both normal and tumor cells from p27-deficient mice showed impaired G2/M arrest following low doses of ionizing radiation. Thus, p27 may inhibit tumor development through two mechanisms. The first is by reducing the proliferation of cells that have already sustained an oncogenic lesion. The second is by transient inhibition of cell cycle progression following genotoxic insult, thereby minimizing chromosome damage and fixation of mutations.  相似文献   

19.
A series of substituted aryl amide derivatives of 6-naltrexamine, 3 designed to be metabolically stable were synthesized and used to characterize the structural requirements for their potency to binding and functional activity of human mu (μ), delta (δ) and kappa (κ) opioid and nociceptin (NOP) receptors. Binding assays showed that 410 had subnanomolar Ki values for μ and κ opioid receptors. Functional assays for stimulation of [35S]GTPγS binding showed that several compounds acted as partial or inverse agonists and antagonists of the μ and δ, κ opioid or NOP receptors. The compounds showed considerable stability in the presence of rat, mouse or human liver preparations and NADPH. The inhibitory activity on the functional activity of human cytochrome P450s was examined to determine any potential inhibition by 49. Only modest inhibition of CYP3A4, CYP2C9 and CYP2C19 was observed for a few of the analogs. As a representative example, radiolabeled 6 was examined in vivo and showed reasonable brain penetration. The inhibition of ethanol self-administration in rats trained to self-administer a 10% (w/v) ethanol solution, utilizing operant techniques showed 58 to have very potent efficacy (ED50 values 19–50 μg/kg).  相似文献   

20.
A metabolite of the anxiolytic, anticonvulsant, and soporific drug phenazepam, 3-oxyphenazepam (3-OPh), possesses strong anxiolytic action. In the present work, 3-OPh and its acetic, benzoic, nicotinic, hemisuccinic, hemiglutaric, and valproic esters were synthesized, and their interaction with benzodiazepine receptors of the rat central nervous system was investigated. The structure of the compounds is found to correlate with their affinity to benzodiazepine receptors (inhibition constants characterizing specific binding of3H-diazepam with the P fraction of synaptic membranes in the rat brain), as well as with their anxiolytic activities. The affinities of dicarbonic acid monoesters (hemisuccinate and, especially, hemiglutarate) and valproate were found to be lower than those of monocarbonic acid esters and 3-OPh itself. High pharmacological activity of 3-OPh hemisuccinate is hypothesized to be determined by its role as a 3-OPh precursor (the latter is a product of hemisuccinate hydrolysis).Neirofiziologiya/Neurophysiology, Vol. 26, No. 4, pp. 262–265, July–August, 1994.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号