首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study examined the mechanisms by which 3,4-methylenedioxymethamphetamine (MDMA) produces long-term neurotoxicity of striatal dopamine neurones in mice and the protective action of the dopamine uptake inhibitor GBR 12909. MDMA (30 mg/kg, i.p.), given three times at 3-h intervals, produced a rapid increase in striatal dopamine release measured by in vivo microdialysis (maximum increase to 380 +/- 64% of baseline). This increase was enhanced to 576 +/- 109% of baseline by GBR 12909 (10 mg/kg, i.p.) administered 30 min before each dose of MDMA, supporting the contention that MDMA enters the terminal by diffusion and not via the dopamine uptake site. This, in addition to the fact that perfusion of the probe with a low Ca(2+) medium inhibited the MDMA-induced increase in extracellular dopamine, indicates that the neurotransmitter may be released by a Ca(2+) -dependent mechanism not related to the dopamine transporter. MDMA (30 mg/kg x 3) increased the formation of 2,3-dihydroxybenzoic acid (2,3-DHBA) from salicylic acid perfused through a probe implanted in the striatum, indicating that MDMA increased free radical formation. GBR 12909 pre-treatment attenuated the MDMA-induced increase in 2,3-DHBA formation by approximately 50%, but had no significant intrinsic radical trapping activity. MDMA administration increased lipid peroxidation in striatal synaptosomes, an effect reduced by approximately 60% by GBR 12909 pre-treatment. GBR 12909 did not modify the MDMA-induced changes in body temperature. These data suggest that MDMA-induced toxicity of dopamine neurones in mice results from free radical formation which in turn induces an oxidative stress process. The data also indicate that the free radical formation is probably not associated with the MDMA-induced dopamine release and that MDMA does not induce dopamine release via an action at the dopamine transporter.  相似文献   

2.
We studied the binding of [18F]GBR 13119 (1-[[(4-[18F]fluorophenyl) (phenyl)methoxy]ethyl]-4-(3-phenylpropyl)piperazine) to rat brain with autoradiography after intravenous injection. The rank order of binding was dorsal striatum greater than nucleus accumbens = olfactory tubercle greater than substantia nigra = ventral tegmental area greater than other areas. Binding was blocked by prior injection of dopamine uptake blockers but not by injection of dopamine receptor antagonists or drugs that bind to the dialkylpiperazine site. Unilateral 6-hydroxy-dopamine lesions of dopamine neurons caused a marked decrease in striatal and nigral binding on the side of the lesion. We conclude that intravenous injection of [18F]GBR 13119 provides a useful marker of presynaptic dopamine uptake sites.  相似文献   

3.
S B Ross 《Life sciences》1979,24(2):159-167
The accumulation of 3H-dopamine in cell-free homogenate of mouse forebrain was inhibited by amfonelic acid, mazindol, nomifensine, methylphenidate and (+)-amphetamine. The potency of (+)-amphetamine was strongly (20 times) enhanced by reserpine, whereas that of the other compounds was very slightly influenced. All five compounds produced pronounced hypermotility in mice but only (+)-amphetamine was active in reserpinized mice. The other four compounds antagonized the hyperactivity produced by (+)-amphetamine in the reserpinized mice. The results obtained are in accordance with the view that (+)-amphetamine causes hyperactivity by releasing dopamine, whereas the other compounds act by inhibiting the re-uptake of dopamine.  相似文献   

4.
M R Kilbourn 《Life sciences》1988,42(14):1347-1353
Regional rat brain uptake of [18F]GBR 13119, a high specific activity, positron-emitter labeled derivative of the potent dopamine uptake antagonist GBR 12935, is reported. Striatum to cerebellum ratios of 3 are obtained at 90 minutes post injection. Specific binding in striatum can be blocked by pretreatment with dopamine uptake system antagonists (mazindol, nomifensine) but not with receptor antagonists (spiperone, flupenthixol). [18F]GBR 13119 is proposed as a new positron-emitting radioligand for in vivo PET studies of the pre-synaptic dopamine uptake system.  相似文献   

5.
A new series of diphenyl piperazine derivatives containing the phenyl substituted aminopropanol moiety, which were modified at sites between the diphenyl and piperazine moieties, was prepared and evaluated for dopamine transporter binding affinity with [(3)H]GBR12935 in rat striatal membranes. These synthesized compounds showed apparent dopamine transporter binding affinities (IC(50)<30 nM) and some of them were approximately equivalent in activity to GBR12909 known as a potent dopamine uptake inhibitor, showing the activities with IC(50) values of nanomolar range. Among them, 1-[4,4-bis(4-fluorophenyl)butyl]-4-[2-hydroxy-3-(phenylamino)propyl]piperazine 2 was evaluated for extracellular dopamine levels in rat striatum using in vivo brain microdialysis. The intraperitoneal administration of 2 (0.01, 0.03, or 0.1 mmol/kg) induced dose-dependent increases of dopamine levels in rat striatal dialysates. The maximum increases in dopamine levels induced by 2 were greater than those by GBR12909. The pharmacological data of these novel diphenyl piperazine derivatives show that the compounds have potent dopamine uptake inhibitory activities in the central nervous system.  相似文献   

6.
The effect of ibogaine hydrochloride on locomotor stimulation induced by d-amphetamine sulfate was tested in male C57BL/6By mice and in female Sprague-Dawley rats. In mice, locomotor stimulation induced by d-amphetamine at 1 or 5 mg/kg s.c. was reduced by prior administration of one or two injections of ibogaine (40 mg/kg), given 2 or 18 hours earlier. This reduction in locomotor activity persisted for two days. Locomotor stimulation induced by a higher dose (10 mg/kg) of d-amphetamine was not reduced by such prior administration of ibogaine. A lower dose of ibogaine (20 mg/kg) did not reduce the subsequent locomotor activity induced by d-amphetamine. Ibogaine decreased striatal dopamine levels, while d-amphetamine increased them. Ibogaine treatment (2 x 40 mg/kg, 18 hours apart) induced a decrease by 30% in the level of striatal dopamine and its metabolites measured in tissue extracts 3 hours after the second ibogaine injection. One hour after d-amphetamine (5 mg/kg) administration, the level of striatal dopamine increased by 26%. Although the level of striatal dopamine was initially lower in the ibogaine-pretreated mice, d-amphetamine (5 mg/kg) administration induced an increase in striatal dopamine and its metabolites. The effect of ibogaine seems to be species specific, since in rats pretreated with ibogaine 18 hours before d-amphetamine, locomotor stimulation induced by d-amphetamine was further increased. In addition, the in vitro electrical-evoked release of [3H]dopamine from striatal tissue was either unchanged or inhibited in the presence of d-amphetamine, and after ibogaine pretreatment in vivo, the release of tritium in the presence of d-amphetamine was inhibited or stimulated in mice and rats, respectively.  相似文献   

7.
The genetic factors involved in the regulation of physical activity are not well understood. The dopamine system has been implicated in the control of voluntary locomotion and wheel running (WR) in mice and is thus a likely candidate as a genetic/biological system important to the regulation of physical activity. This study evaluated the effects of four different dopaminergic acting drugs on WR in differentially active inbred strains of mice. High active C57L/J (n=7, 3 controls, 4 experimental) and low active C3H/HeJ (n=8, 3 controls, 5 experimental) were analyzed for baseline wheel-running indices of distance (km/day), duration (mins/day), and speed (m/min) for 21 days. Experimental mice received increasing doses over four days of each of the following drugs: SKF 81297 (D1 agonist), SCH 23390 (D1 antagonist), GBR 12783 (DAT inhibitor), and AMPT (tyrosine hydroxylase inhibitor). Each drug dose response treatment was separated by three days of recovery (no drug injections). WR indices were monitored during drug treatments and during drug wash-out phases. SKF 81297 significantly reduced (p=0.0004) WR in the C57L/J mice, but did not affect WR in the C3H/HeJ mice. GBR 12783 significantly increased (p=0.0005) WR in C3H/HeJ mice, but did not affect WR in C57L/J mice. Only duration (not overall WR) was significantly reduced in C57L/J mice in response to SCH 23390 (p=0.003) and AMPT (p=0.043). SCH 23390 (p=0.44) and AMPT (p=0.98) did not significantly affect WR in C3H/HeJ mice. These results suggest that genetic differences in dopamine signaling may play a role in the WR response to dopaminergic-acting drugs in inbred strains of mice. The high activity in the C57L/J strain appears most responsive to D1-like receptor acting drugs, while in the C3H/HeJ strain, dopamine re-uptake appears to have an influence on activity level.  相似文献   

8.
The specific binding of [3H]1-[2-(diphenyl-methoxy)ethyl]-4-(3-phenyl-2-propenyl)piperazine ([3H]GBR 12783) to the dopamine (DA) neuronal carrier present in membranes prepared from rat striatum was not affected when Cl- was replaced by either Br- or NO3-. In media containing Cl-, Br-, or NO3-, d-amphetamine and DA competed with the radioligand in a monophasic manner with Hill coefficients of close to 1 (0.94-1.12). Replacement of Cl- by Br- impaired the ability of some substrates (d-amphetamine, DA, p-hydroxyamphetamine, and m-tyramine) to compete with [3H]GBR 12783. The potency of Br- to decrease the affinity of substrates for the specific binding site was significantly correlated (t = 7.07, p less than 0.001) with their affinity for this binding site. These results suggest that the various substrates tested could bind to recognition sites in which Cl- is differently involved; as a consequence, substrates could bind to the neuronal carrier by means of partly different links. In experiments dealing with the specific uptake of [3H]DA, F-, NO3-, isethionate-, or acetate- was unable to substitute for Cl-, whereas Br- was quite a total substitute. Replacement of Cl- by equimolar concentrations of either NO3- or isethionate- resulted in inhibition curves of DA specific uptake with Hill coefficients of close to 1 (0.77 and 1.04 respectively); this indicates that both NO3- and isethionate- are devoid of inhibitory effects on neuronal uptake and are quite ineffective substitutes for Cl-.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Binding characteristics of the selective dopamine uptake inhibitor [3H]GBR 12935 have been described for the striatum but not for the frontal cortex. We have developed assay conditions for quantifying [3H]GBR 12935 binding in the frontal cortex. In both the rat and human frontal cortex, the assay required four times more tissue (8 mg/ml) than in the striatum (2 mg/ml). [3H]GBR 12935 binding in the frontal is complex, as it involves multiple binding sites. The high-affinity binding site is sodium dependent and is inhibited by sodium. In human but not in rat frontal cortex, addition of K+ reversed the sodium inhibition. The pharmacological profile of the high-affinity [3H]GBR 12935 binding site is consistent with that of the dopamine transporter, because drugs with the most selective dopamine reuptake blocking activities are the most potent displacers of [3H]GBR 12935 binding. There is a positive correlation between the rat and human inhibitory constants, a finding indicating that there are similar pharmacological profiles across at least these two species. Rats with a 6-hydroxydopamine lesion had a 47% decrease in number of [3H]GBR 12935 binding sites, a result indicating that at least a portion of these sites had been on presynaptic dopamine terminals.  相似文献   

10.
Binding of 1-[2-(diphenylmethoxy)ethyl]-4-(3-phenylpropyl)piperazine ([3H]GBR 12935) was studied in membrane preparations of several human brain regions. In putamen, the substituted piperazine derivates cis- and trans-flupenthixol displaced 90% of the total [3H]GBR 12935 binding. Computer-assisted analysis of the competition curves revealed a high-affinity site (30%; KiH = 54 nM) and a low-affinity site (60%; KiL = 4.5 microM). The dopamine uptake blockers mazindol and nomifensine only displaced 30% of the total [3H]GBR 12935 binding in a monophasic way. Binding of [3H]GBR 12935 to the dopamine uptake sites, i.e., that displaced by dopamine uptake blockers, corresponded to part of the binding having low affinity for flupenthixol and was only detected in putamen, nucleus caudatus, nucleus accumbens, and substantia nigra. Even after masking the high-affinity binding site for flupenthixol by including 1 microM cis-flupenthixol in the binding assays, no dopamine uptake sites could be detected in globus pallidus, amygdala, thalamus, hippocampus, and cerebral cortex. Binding of [3H]GBR 12935 to dopamine uptake sites was lost in the nucleus caudatus ipsilateral to ventral midbrain infarctions, confirming their location on nigrostriatal nerve endings. Gross unilateral lesions of the striato- and pallidonigral pathways did not affect the number of dopamine uptake sites in the ipsilateral substantia nigra, suggesting that they may reside on the soma or dendrites of nigral neurons.  相似文献   

11.
Dopamine regulates the psychomotor stimulant activities of amphetamine-like substances in the brain. The effects of dopamine are mediated through five known dopamine receptor subtypes in mammals. The functional relevance of D5 dopamine receptors in the central nervous system is not well understood. To determine the functional relevance of D5 dopamine receptors, we created D5 dopamine receptor-deficient mice and then used these mice to assess the roles of D5 dopamine receptors in the behavioral response to methamphetamine. Interestingly, D5 dopamine receptor-deficient mice displayed increased ambulation in response to methamphetamine. Furthermore, dopamine transporter threonine phosphorylation levels, which regulate amphetamine-induced dopamine release, were elevated in D5 dopamine receptor-deficient mice. The increase in methamphetamine-induced locomotor activity was eliminated by pretreatment with the dopamine transporter blocker GBR12909. Taken together, these results suggest that dopamine transporter activity and threonine phosphorylation levels are regulated by D5 dopamine receptors.  相似文献   

12.
Dopamine is a catecholamine neurotransmitter necessary for motor functions. Its deficiency has been observed in several neurological disorders, but replacement of endogenous dopamine via oral or parenteral delivery is limited by poor absorption, rapid metabolism and the inability of dopamine to cross the blood-brain barrier. The intranasal administration of dopamine, however, has resulted in improved central nervous system (CNS) bioavailability compared to that obtained following intravenous delivery. Portions of the nasal mucosa are innervated by olfactory neurons expressing dopamine transporter (DAT) which is responsible for the uptake of dopamine within the central nervous system. The objective of these studies was to study the role of DAT in dopamine transport across the bovine olfactory and nasal respiratory mucosa. Western blotting studies demonstrated the expression of DAT and immunohistochemistry revealed its epithelial and submucosal localization within the nasal mucosa. Bidirectional transport studies over a 0.1-1 mM dopamine concentration range were carried out in the mucosal-submucosal and submucosal-mucosal directions to quantify DAT activity, and additional transport studies investigating the ability of GBR 12909, a DAT inhibitor, to decrease dopamine transport were conducted. Dopamine transport in the mucosal-submucosal direction was saturable and was decreased in the presence of GBR 12909. These studies demonstrate the activity of DAT in the nasal mucosa and provide evidence that DAT-mediated dopamine uptake plays a role in the absorption and distribution of dopamine following intranasal administration.  相似文献   

13.
J J Bonnet  J Costentin 《Life sciences》1989,44(23):1759-1765
The development of the specific uptake of dopamine in the rat striatum during the early postnatal period is compared with the ontogenetic changes of the specific binding of (3H)GBR 12783 to the site of uptake inhibition. During maturation, the increase in the specific binding of (3H)GBR 12783 parallels the increase in the specific uptake of dopamine. (3H)GBR 12783 specific binding sites increase in number from day 1 postpartum until 40 days, when they reach the adult level. In 40 day-old rats, the weight of the striatum represents 80% of adult values. The affinity of (3H)GBR 12783 for the inhibition site is similar in membrane preparations obtained from 6 day-old pups and adults; this results in a same ability of the inhibitor to block the specific uptake of dopamine into synaptosomes obtained from pups or adult rats. These data support the hypothesis of the existence of a single molecular entity including both the inhibition site and the carrier itself.  相似文献   

14.
Differences of behavior in rats have been noted when using d-amphetamine or β-phenylethylamine (PEA). Both these drugs can disaggregate polyribosomes. It would appear that amphetamine affects both behavior and polyribosomal disaggregation through the release and activity of dopamine, while PEA acts through serotonin and to a lesser degree through norepinephrine and dopamine.  相似文献   

15.
The in vivo regional distribution of [18F]GBR 13119 (1-[(4-[18F]fluorophenyl(phenyl)methoxy)ethyl]-4-(3-phenylpropyl) piperazine), a specific dopamine reuptake inhibitor, was examined in brains of C57BL/6 mice after MPTP treatment. At 2 weeks post MPTP the in vivo specific binding of [18F]GBR 13119 in striatum was decreased 63% relative to age and sex-matched controls. Animals studied at 6 and 8 weeks after MPTP treatment showed a gradual recovery of specific [18F]GBR 13119 binding in the striatum. No significant changes were observed in binding of radiotracer to cerebellum or cortex after MPTP treatment, nor were age-related changes observed in control mice. In vivo radiotracer studies thus appear useful for following gradual changes in the dopamine uptake system of mouse brain after neurotoxin treatment.  相似文献   

16.
P-chlorophenylalanine, an inhibitor of serotonin synthesis, was found to completely prevent the inhibitory effect of morphine and methadone on the stereotypy caused by d-amphetamine and methyl-phenidate in rats. d-Fenfluramine and m-chlorophenylpiperazine, two drugs supposed to increase serotonin transmission, and halo-peridol, an antagonist of dopamine at central receptors, blocked the stereotyped movements induced by repeated treatment with morphine and methadone. The results suggest that a) brain serotonin mediates the effect of morphine and methadone on amphetamine and methylphenidate stereotypy b) serotonin and dopamine are involved in the stereotyped movements caused by long-term treatment with these narcotics in the rat.  相似文献   

17.
d-Amphetamine, methylphenidate and cocaine, which are postulated to release or block the reuptake of released dopamine at nerve terminals in the brain, produced only slight reductions in the serum concentrations of prolactin in normal male rats or in rats in which the prolactin concentrations were elevated by pretreatment with α-methyltyrosine. These results suggest that indirect dopaminergic drugs, such as d-amphetamine, do not facilitate the release of dopamine from the terminals of tuberoinfundibular neurons in the same way as they do at the terminals of other dopaminergic neurons in the brain.  相似文献   

18.
A number of processes are important in the development of substance dependence including initial sensitivity to the acute pharmacological effects of drugs/alcohol. The objectives of the present study were (1) to identify quantitative trait loci (QTLs) associated with the initial sensitivity to the effects of morphine in the A/J, C57BL/6J and AXB/BXA recombinant inbred strains of mice; (2) to identify potential commonalities in the chromosomal regions associated with morphine, cocaine and ethanol sensitivity using multiple‐trait genetic analysis and (3) to determine whether there were interstrain differences in dopamine uptake and transporter binding. Initial sensitivity to morphine was determined by measuring locomotor activity in a computerized open‐field apparatus following acute morphine administration (0, 10, 20 and 40 mg/kg). Significant differences in morphine‐induced activation were observed across the panel of AXB/BXA mice. Genetic analysis found significant QTLs on chromosomes 5, 7, 11, 12, 15 and 17 close to loci previously mapped for cocaine‐related behaviours and to parameters of dopaminergic functioning (uptake and receptor binding). Comparisons of the A/J vs. C57BL/6J progenitors found no strain differences for total dopamine uptake (Vmax or Km) in freshly prepared striatal synaptosomes from naive animals, and no differences in the IC50 for the inhibition of dopamine uptake by cocaine. In addition, there were no differences in dopamine transporter density (Bmax or Kd) measured using 3H‐GBR 12935 binding in synaptosomal membranes or via quantitative autoradiography. Multiple‐trait analysis was conducted to examine the genetic interrelationships among morphine‐, cocaine‐ and ethanol‐induced activation in the AXB/BXA. Analysis yielded suggestive QTLs for the joint trait on chromosomes 5, 8, 13 and 15, as well as significant regions on chromosomes 11 (Pmv46, 11 cM, LOD = 7.39) and 12 (D12Mit110, 19 cM, LOD = 4.43) that may be common to all three drugs of abuse.  相似文献   

19.
The activity of the dopamine transporter is an important mechanism for the maintenance of normal dopaminergic homeostasis by rapidly removing dopamine from the synaptic cleft. In kidney-derived COS-7, COS-1 and HEK-293 but not in other mammalian cell lines (CHO, Y1, Ltk-), we have characterized a putative functional dopamine transporter displaying a high affinity (Km approximately 250 nM) and a low capacity (approximately 0.1 pmol/10(5) cells/min) for [3H]dopamine uptake. Uptake displayed a pharmacological profile clearly indicative of the neuronal dopamine transporter. Estimated Ki values of numerous substrates and inhibitors for the COS-dopamine transporter and the cloned human neuronal transporter (human dopamine transporter) correlate well with the exception of a few notable compounds, including the endogenous neurotransmitter dopamine, the dopamine transporter inhibitor GBR 12,909 and the dopaminergic agonist apomorphine. As with native neuronal and cloned dopamine transporters, the uptake velocity was sodium-sensitive and reduced by phorbol ester pre-treatment. Two mRNA species of 3.8 and 4.0 kb in COS-7 cells were revealed by Northern blot analysis similar in size to that seen in native neuronal tissue. A reverse-transcribed PCR analysis confirmed the existence of a processed dopamine transporter. However, no immunoreactive proteins of expected dopamine transporter molecular size or [3H]WIN 35,428 binding activity were detected. A partial cDNA of 1.3 kb, isolated from a COS-1 cDNA library and encoding transmembrane domains 1-6, displayed a deduced amino acid sequence homology of approximately 96% to the human dopamine transporter. Taken together, the data suggest the existence of a non-neuronal endogenous high affinity dopamine uptake system sharing strong functional and molecular homology to that of the cloned neuronal dopamine transporter.  相似文献   

20.
We present the original synthesis of two halogenated analogues of the diphenyl piperazine GBR, bromo-GBR and iodo-GBR, as new dopamine uptake carrier ligands. The derivatives were purified by HPLC and chemically characterized. Bromo-GBR and iodo-GBR are potent inhibitors of [3H]GBR 12935 binding to rat striatal membrane, with Ki values of 116 and 113 nM, respectively. We prepared iodo-GBR labeled with iodide-125 from the brominated derivative and concluded that [123I]iodo-GBR could be a potential tool to explore the in vivo dopamine uptake carrier.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号