首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
The excessive growth of Ulva rigida C. Agardh, a green seaweed present in the Northern Adriatic Sea, is a problem for the inhabitants and the economy of the region. As information about hormonal control of growth in seaweeds is scarce, our aim was to investigate the presence of endogenous polyamines and their absorption by algal cells and to correlate the findings with terrestrial plants. Free polyamines (putrescine, spermidine, and spermine) were present endogenously in the algal thallus at concentrations ranging from 4 to 134 μM. Putrescine and spermidine were also present in the seawater in which the alga usually grows at concentrations between 0 and 0.9 μM. Uptake of labeled polyamines occurred, but it was inhibited by cations present in the seawater. Uptake was investigated also by incubation in distilled water. In this case, uptake displayed characteristics similar to those observed in higher plant systems. Uptake studies in seawater showed that polyamine accumulation in algal cells occurred and that it followed a concentration gradient and displayed linear kinetics. The mechanism proposed that of a passive uptake, as indicated also by the inability of metabolic inhibitors to block transport. There was evidence for polyamine binding to external cell sites, but polyamine uptake by protoplasts as well as polyamine translocation and secretion by the whole thallus was also demonstrated. Since cultured and actively growing thallus discs displayed a higher uptake ability than freshly collected ones, a role for polyamines in sustaining growth is discussed.  相似文献   

2.
The electron transport rate (ETR) versus gross photosynthesis (GPS) relationship varies as a function of species, temperature, irradiance, and inorganic carbon levels, but less is known about the effect of nitrogen supply on this relationship. The objective of this study was to evaluate the effect of nitrate concentration on the ETR versus GPS relationship in Ulva rigida C. Agardh from the Mediterranean Sea. Chlorophyll content and tissue absorptance increased 2‐fold as nitrate in the media increased from 0 to 50 μM. Whereas internal N content increases 3‐fold at 50 μM, internal C increased slightly. Oxygen evolution and ETR, evaluated as in vivo chl fluorescence using pulse amplitude modulated fluorometry, in general saturated at irradiances above 100 μmol photons·m?2·s?1. Both maximum ETR and GPS values increased as nitrate concentration increased. In general, the ETR versus GPS relationship showed a linear response to increasing nitrate with little variance of the data. This relationship, however, became more variable at high irradiances and high nitrate concentrations. The ETR/GPS ratio was close to the theoretical value of 4 at low nitrate concentrations, and the ratio decreased exponentially when nitrate concentration in the media increased. The variations of ETR/GPS under different inorganic nitrogen supply are discussed in terms of the effect of nitrate on the photosynthesis and respiration relationship.  相似文献   

3.
The effect of external glucose (51 mM) and acetate (13 mM) on growth and photosynthetic capacity of Ulva lactuca L. was tested in laboratory cultures over 41 days in the dark and in dim light (0.9 μmol photons·m?2·s?1) at 7–8° C. Glucose and acetate had a significant positive effect on growth rate, chlorophyll content, and quantum yield for discs grown in the dark and in dim light. The carbon gain from heterotrophic uptake was low and only allowed U. lactuca to maintain a specific uptake was low and only allowed U. lactuca to maintain a specific growth rate of 0.005 day?1 compared to 0.06–0.1 day?1 at higher light intensities. However, plants with added organic substrate maintained a normal chlorophyll content and were able to photosynthesize whereas control plants lost pigmentation and photosynthetic capability after 41 days in both dim light and darkness, probably because of disorganization of the photosynthetic apparatus. This suggest that the ecological significance of heterotrophic uptake is to allow U. lactuca to survive during prolonged low light conditions with an intact photosynthetic apparatus.  相似文献   

4.
The steady-state levels of nitrate, nitrite, and ammonium were estimated in the green alga Ulva rigida C. Agardh in darkness after addition of 0.5 mM KNO3 and irradiation with red (R) and blue (B) light pulses of different duration (5 and 30 min). The net uptake of nitrate was very rapid. Seventy-five percent of the nitrate added was consumed after 60 min in darkness. Although uptake was stable after R or B, efflux of nitrate occurred within 3 h in the dark control and when R or B were followed by far-red (FR) irradiation. The internal nitrate concentration after 3 h in darkness was similar after R and B light pulses; however, the intracellular ammonium was higher after R than after B. The intracellular nitrate and ammonium decreased when FR tight pulses were applied immediately after R or B. Thus, the involvement of phytochrome in the transport of nitrate and ammonium is proposed. Nitrate reductase activity, measured by the in situ method, was increased by both R and B light pulses. The effect was partially reversed by FR light. Nitrate reductase activity was higher after 5 min of R light than after 5 min of B. However, after 30-min light pulses, the relative increase in activity was reversed for R and B. We propose that phytochrome and a blue-light photoreceptor are involved in regulation of nitrogen metabolism. Nitrate uptake and reduction correlates with previously detected light-regulated accumulation of protein in Ulva rigida under the same experimental conditions.  相似文献   

5.
This study is the first report of an algal disease, developed in close association with an endophytic organism, documented for the southeastern Pacific. We describe a disease affecting wild populations of the red alga Iridaea laminarioides Bory in central Chile, characterized by gall development on the surface of sporophytic, cystocarpic, and immature thalli. These abnormal growths result in severe morphological alterations of the affected thalli. Diseased fronds display an aggregated spatial distribution and occur throughout the year, with a maximum in summer followed by a decline in winter. The presence of galls was not associated with broken or torn fronds. Although causality has not been unequivocally demonstrated, our field and laboratory observations indicate a strong association of the galls with infections by an endophytic cyanobacterium, probably belonging to the genus Pleurocapsa.  相似文献   

6.
Ammonium is assimilated in algae by the glutamine synthetase (GS)–glutamine:2‐oxoglutarate aminotransferase pathway. In addition to the assimilation of external ammonium taken up across the cell membrane, an alga may have to reassimilate ammonium derived from endogenous sources (i.e. nitrate reduction, photorespiration, and amino acid degradation). Methionine sulfoximine (MSX), an irreversible inhibitor of GS, completely inhibited GS activity in Ulva intestinalis L. after 12 h. However, assimilation of externally derived ammonium was completely inhibited after only 1–2 h in the presence of MSX and was followed by production of endogenous ammonium. However, endogenous ammonium production in U. intestinalis represented only a mean of 4% of total assimilation attributable to GS. The internally controlled rate of ammonium uptake (Vi) was almost completely inhibited in the presence of MSX, suggesting that Vi is a measure of the maximum rate of ammonium assimilation. After complete inhibition of ammonium assimilation in the presence of MSX, the initial or surge (Vs) rate of ammonium uptake in the presence of 400 μM ammonium chloride decreased by only 17%. However, the amount that the rate of ammonium uptake decreased by was very similar to the uninhibited rate of ammonium assimilation. In addition, the decrease in the rate of ammonium uptake in darkness (in the absence of MSX) in the presence of 400 μM ammonium chloride matched the decrease in the rate of ammonium assimilation. However, in the presence of 10 μM ammonium chloride, MSX completely inhibited ammonium assimilation but had no effect on the rate of uptake.  相似文献   

7.
8.
Thalli of Ulva reticulata Forskaal, Ulva rigida C. Ag., and Ulva pulchra Jaasund were incubated at different concentrations of dissolved CO2. Incubation at a high CO2 concentration resulted in decreased oxygen evolution rate and lower affinity for inorganic carbon at high pH conditions, i.e. the ability to use HCO3 as a carbon source was reduced. This effect was reversible, and plants regained this HCO3 uptake capacity when transferred to air concentrations of CO2. The phytosynthetic oxygen evolution rate of plants grown at high CO2 concentration was reduced by high O2 concentrations, whereas thalli and protoplasts from cultures grown at air concentration were not affected. This is interpreted as a deactivation of the carbon-concentrating mechanism during conditions of high CO2 resulting in high photorespiration when plants are exposed to high O2 concentrations. Protoplasts were not affected by high O2 to the same extent and were not able to utilize HCO3 from the medium. The algae were able to grow at very low CO2 concentrations, but growth was suppressed when an inhibitor of external carbonic anhydrase was present. Assay of carbonic anhydrase activities showed that external and internal CA activities were lower in plants grown at a high CO2 concentration compared to plants grown at a low concentration of CO2. Possible mechanisms for HCO3 utilization in these Ulva species are discussed.  相似文献   

9.
In situ and in vitro nitrate reductase (NR) activity assays designed for use in the field on Enteromorpha sp., Ulva sp., and Gelidium sp. are described. In optimizing each assay, a variety of compounds and assay conditions were tested for their ability to extract NR and preserve its activity. Enteromorpha sp. had similar levels of in vitro NR activity after exposure to the in situ assay buffer, demonstrating that neither NR induction nor activation likely occurs during the in situ assay. Storing freshly collected Enteromorpha sp. led to a reduction in NR activity over time. However, the use of liquid nitrogen to freeze algal tissue on site and subsequent storage at ?80° C preserved NR activity and allowed for later laboratory use of the optimized in vitro assay. Application of the in situ and in vitro assays to stands of Enteromorpha sp., Ulva sp., and Gelidium sp. in the field consistently found NR activity. In situ NR activity over 9 consecutive days in January demonstrated that Enteromorpha sp. responds to increases in nitrate availability. The influence of light on diel patterns of in vitro NR activity in the field was demonstrated for the first time as well. For the three species tested, these two assays provide a reliable tool for field investigation of the interaction between environmental signals (e.g. nutrient levels) and physiological signals (e.g. tissue metabolite levels) on nitrate reduction.  相似文献   

10.
Non-linear time courses of ammonium (NH4+) depletion from the medium and internal accumulation of soluble nitrogen (N) in macroalgae imply that the rate-limiting step for ammonium uptake changes over time. We tested this hypothesis by measuring the time course of N accumulation in N-limited Ulva rigida C. Agardh. Total uptake was measured as removal of NH4+ from medium. Rates for the component processes (transport of NH4+ across the membrane = Rv assimilation of tissure NH4+ into soluble N compounds = Ra, assimilation of tissue NH4+ into soluble N compounds = Ra and incorporation of soluble N compounds into macromolecules = R1) were determined by measuring the rate of labelling of the major tissue N pools after the addition of 15N-ammonium. The results indicate that nitrogen-specific rates (mass N taken up / mass N present / unit time) are ranked in the order of Rt < Ra < R1 Absolute uptake rates (μmol N. mg dry wt?1. h?1) showed a different relationship. Membrane transport appears to be inhibited when NH4+ accumulates in the tissue. Maximum uptake rates occur when assimilation of NH4+ into soluble N compounds begins. Assimilation of NH4+ into soluble N compounds was initially faster than incorporation of soluble N compounds into macromolecules. Implications of rate limitations caused by differences in maximal rates and maximal pool sizes are discussed.  相似文献   

11.
The chlorophyte Ulva is perceived as a simple and uniform algal form, with little functional differentiation within a thallus. We compared morphology, pigmentation, photosynthesis, growth, reproduction, and UV‐B sensitivity between different thallus regions of Ulva pertusa Kjellman. Thallus thickness and cell size were significantly greater, whereas cell number was less in the basal region than in other regions. Photosynthetic pigment contents were lowest in the basal region and increased toward the marginal region. Photosynthetic capacity and photosynthetic efficiency normalized to fresh weight, area, volume, and cell number showed a progressive increase from the basal to marginal parts; however, on a chl basis those values were equal regardless of thallus part. Values of light saturation point were not statistically different between regions. Growth rates increased from marginal to basal and to middle parts of the thallus, whereas sporulation was highest in marginal (100%) followed by middle (30%) and basal parts (0%). Daily observation over 9 days showed that 56% of the basal cells divided once and did not produce spores, whereas every marginal cell went through its first division and 89% of the primary daughter cells also divided, resulting in 100% sporulation. A 7‐day treatment with PAR and PAR + UV‐A caused a significant decrease in the effective quantum yield of all thallus regions, followed by a recovery toward the initial values, whereas PAR + UV‐A + UV‐B irradiation led to greater photoinhibition and less recovery. Marked differences in the UV‐B sensitivity were observed, with marginal parts being more sensitive and basal parts most resistant.  相似文献   

12.
In laboratory experiments discs cut from thalli of Ulva fenestrata Postels & Ruprecht grew in diameter and biomass (dry weight and ash-free dry weight) more when dead leaves of Zostera marina L. were present than when absent. A maximum increase in dry weight of 500% in 14 days occurred with Zostera present compared with only a 200% increase with no detritus. When NO?3 and PO3-4 were added the weight of an Ulva disc increased by over 800% when Zostera was present but by only 400% in controls. In general penicillin G (475 units/ml) caused a reduction in algal growth in cultures containing detritus. It is concluded that bacteria on the detritus may compete with algae for nutrients but by releasing unknown substances the bacteria promote the growth of Ulva.  相似文献   

13.
Marine foliaceous green macroalgae such as Ulva lose their typical morphology when cultured aseptically in defined synthetic media. However, after reinfection by certain marine bacteria (isolated from unialgal cultures of Ulva pertusa Kjellman), the organisms regain their typical foliaceous or tubular morphology. To investigate the morphogenesis (MG) induced in U. pertusa by bacteria, we isolated and identified bacteria with MG activity on U. pertusa and studied the distribution of such bacteria in seawater and on various marine macroalgae. We isolated 1555 bacterial strains from 18 species of marine macroalgae (six Chlorophyta, five Phaeophyta, and seven Rhodophyta), from seawater and from sediment collected at the beach at Omaezaki, Shizuoka Prefecture; Japan. Of these, 676 bacterial strains (43.5%) showed MG activity. They were classified into six bacterial groups, Flavobacterium, Vibrio, Pseudomonas, Deleya, Escherichia, and gram-positive cocci. These bacteria were ubiquitous among the samples and were not specific to U. pertusa. Several plant growth regulators had no MG activity. Filter-sterilized supernatants of culture media of MG-active bacteria strains did not induce MG. Cocultivation of Ulva with active bacterial strains is so far the only way to induce the MG effect, which suggests that for MG direct contact between Ulva and the bacterial strain is necessary.  相似文献   

14.
The accumulation of nitrogen in different cellular pools by the macroalgae Ulva fenestrata (Postels and Ruprecht) (Chlorophyta) and Gracilaria pacifica (Abbott) (Rhodophyta) was studied in a laboratory experiment. After 8 or 9 days of nitrogen enrichment, nitrate, ammonium, free amino acid (FAA), protein, chlorophyll (chl), phycoerythrin (PE), and insoluble nitrogen pools were extracted and analyzed, and their relative contribution to total nitrogen (TN) was assessed. In U. fenestrata, the nitrate and ammonium enrichments resulted in a significant increase of TN from 2.41% dry weight (dw) to 4.19% and 4.71% dw, respectively. All the extracted N pools increased significantly. In G. pacifica, TN increased more under ammonium enrichment than under nitrate enrichment. In both macroalgae, proteins and FAA were the most important N storage pools. Protein-N ranged from 700 to 2300 μmol N·g dw−1 (43%–66% of TN) and contributed the most to TN increase (41%–89%). The FAA pool was always larger in G. pacifica than in U. fenestrata. In both species, the FAA pool accounted for 4%–17% of TN (70–600 μmol N·g dw−1). In U. fenestrata, nitrate can represent a temporary storage pool: it accumulated up to 200 μmol N·g dw−1 (7% of TN) and contributed more than FAA to overall increase in cellular nitrogen. In contrast, G. pacifica had a small nitrate pool. The PE pool in G. pacifica increased with TN but was never more than 9% of total protein-N or 6% of TN, and it was less important than FAA as a storage pool. All TN was recovered in the extracted and insoluble N pools at the end of the experiment in U. fenestrata. In G. pacifica, the extracted and insoluble N pools accounted on average for 83%–90% of TN.  相似文献   

15.
Gross oxygen evolution was compared with the electron transport rate (ETR), estimated from chl a fluorescence parameters on the common tropical green macro alga Ulva fasciata Delile with confirmatory carbon saturation curves from U. reticulata Forskål. Theoretically, the relationship between estimated ETR and gross oxygen evolution should be 4:1, that is, four electrons are transported through PSII for each molecule of oxygen evolved. However, deviations of the 4:1 relationship have previously been reported. Measurements were conducted with two commercially available and portable pulse amplitude modulated (PAM) chl fluorometers. We sought experimental approaches that minimize discrepancies between the two different measuring techniques of photosynthetic rates, both for in situ and laboratory conditions. Using fresh algal tissue for each of the different irradiances gave the best fit of gross oxygen evolution and ETR even at irradiances above light saturation, where large discrepancies between oxygen evolution and ETR are common. With increasing dissolved inorganic carbon (DIC) concentrations, there was a curvilinear response of gross oxygen evolution in relation to ETR. We therefore suggest to establish DIC saturation curves in the laboratory, oxygen evolution is probably the most relevant choice. Photorespiration could not readily explain a curvilinear response of O2 evolution and proportionally higher ETR at high irradiances. ETRs measured with the rapid light curve function of the PAM were compared with steady‐state rates of gross and net oxygen evolution, and the ETR was found to decrease at higher irradiances whereas oxygen evolution was constant.  相似文献   

16.
The occurrence of three endophytic green algae within Chondrus crispus Stackh. is reported. Two of them are new to science and are described as Acrochaete heteroclada Correa and Nielsen sp. nov. and A. operculata Correa and Nielsen sp. nov. The algae were studied in unialgal culture and in association with the host following infection of C. crispus under laboratory conditions. The experimental infection showed A. heteroclada to be initially epiphytic, with endophytic filaments growing into the cortex of the host during late infection. A. operculata is entirely endophytic when associated with the host. Phaeophila dendroides (Crouan frat.) Batters behaves as an epiphyte at 15 and 24°C but penetrates the host tissues at 20°C. For all three species, a close physical association with the host is established only when zoospores settle and germinate on the surface of C. crispus.  相似文献   

17.
A field population of Ulva pseudocurvata Koeman et C. Hoek (hereafter termed Ulva) at Sylt Island (North Sea, Germany) exhibited biweekly peaks of gametophytic reproduction during the colder seasons and approximately weekly peaks during summer. The reproductive events lasted 1–5 d and were separated from each other by purely vegetative phases. Under constant conditions in the laboratory, a free‐running rhythm was observed with reproductive peaks occurring approximately every 7 d. When artificial moonlight was provided every 4 weeks, fewer reproductive events occurred, and the reproductive rhythm became synchronized to the environmental artificial moonlight rhythm. In the laboratory, apical disks were entirely converted into reproductive tissue after 8 d cultivation, while almost all basal disks stayed vegetative, which prevented the entire loss of the vegetative thallus during reproductive events. Seasonal size reduction of the thallus occurred from late autumn onward and was determined to be controlled by a genuine photoperiodic response, since size reduction could be induced from May onward by experimental short‐day (SD) treatment but was prevented in a long‐day (LD) or night‐break regime (NB). A daily fine‐tuning occurred with gamete release early in the morning at the first sign of daylight, following an obligatory dark (“night”) period of at least 1 h duration. No release took place if the overnight dark phase was replaced by continuous light. Blue, green, or red light all triggered gamete release after a dark phase at an irradiance of 0.1 μmol photons · m?2 ·s?1, while 0.001 μmol photons · m?2 · s?1 was equivalent to a dark control.  相似文献   

18.
The growth rates of two chlorophyte macroalgae, Codium fragile and Ulva curvata, are compared in response to varied, but non-random, NH4+ enrichments (pulses). The species were chosen to contrast radically different morphologies. Pulse frequency and pulse duration were varied independently; however, an equivalent mass of NH4+ was added in each treatment. The growth rate of Codium varied neither as a function of pulse frequency nor duration; the growth rate of Ulva varied with pulse frequency, but not pulse duration. These data are combined with life form and physiological characters, and are discussed in the context of the “function form” hypothesis. From the evidence we argue that by virtue of its life form, Ulva is capable of utilizing transiently high NH4+ concentrations and is capable of high growth rates, attributes contributing to its role as a ruderal species. In contrast, Codium's life form does not allow utilization of transiently high NH4+ concentrations or high growth rates, thereby contributing to its role as a persistent species.  相似文献   

19.
A vegetative clone of the chlorophyte macroalga Ulva rotundata Blid. was maintained in an outdoor continuous flow system and subjected to a large decrease in irradiance. Specific growth rates based on changes in fresh (μFW) and dry weight (μDW) and surface area (μSA) were determined using precut disks over the 24 h following a post-sunset transfer from full sunlight (100% I0) to 9% I0 All three measures of growth rate were approximately equivalent for untransferred control plants at either limiting (9%) or saturating (100%)I0. Transferred disks exhibited μFW and μSA which were slightly lower than 100%I0 controls and much higher than 9% I0 controls; μDW was nearly identical for transferred disks and 9% I0 controls. Cell size was unchanged following transfer, indicating that surface area changes reflected a proportional increase in cell number. Cell division therefore continued at a high rate for one day following transfer of U. rotundata to irradiances which are subsaturating for photosynthesis (indicated by μDw). Starch reserves were largely depleted, and the C/N ratio decreased during this period.  相似文献   

20.
A computerized oxygen electrode Astern was used to make rapid and accurate measurements of photosynthetic light and dissolved inorganic carbon (DIC) response cures with a macroalga. Ulva rotundata Blid. was grown in an outdoor, continuous flow system in seawater under sunlight or 9% of sunlight at Beaufort, North Carolina. The light compensation points in the shade- and sun-grown plants, measured in seawater, were at photon flux densities (PFDs) of 16 and 27 μmol. Photons·m?2·s?1, respectively but the quantum yield of O2 evolution was not significantly different. Rates of photosynthesis in seawater per unit area of thallus under saturating light and rates of dark respiration were about 1.5-fold higher in sun- than in shade-grown plants. The concentration of DIC in seawater (approximately 2 mM) limited photosynthesis at absorbed PFDs above 60–70 μmol photons·m?2·s?1 Addition of 20 mM inorganic carbon had no effect on quantum yield but caused about a 1.5-fold increase in the light-saturated photosynthetic rate in both shade- and sun-grown Ulva. The effect of DIC supplementation was greatest in plants grown in October and least in plants grown in June. The light- and DIC-saturated rate of photosynthesis in seawater was similar to the maximum rate obtained by exposing Ulva to 10% CO2, in the gas phase. The carbon isotope values (δ13C, reflecting the 13C/12C ratio compared to a standard) of Ulva grown in the same seawater supply were dependent on light and agitation. Samples from Beaufort Inlet were more negative (δ13C value, ?20.03‰) than those grown in bright light with agitation (δ13C value, ?17.78‰ outdoors; ?17.23‰ indoors), which may indicate DIC supply limited carbon uptake in seawater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号