首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 15 毫秒
1.
The Rab coupling protein (RCP) is a recently identified novel protein that belongs to the Rab11-FIP family. RCP interacts specifically with Rab4 and Rab11, small guanosine-5'-triphosphatases that function as regulators along the endosomal recycling pathway. We used fluorescence confocal microscopy and biochemical approaches to evaluate the participation of RCP during particle uptake and phagosome maturation. In macrophages, RCP is predominantly membrane-bound and displays a punctuate vesicular pattern throughout the cytoplasm. RCP is mainly associated with transferrin-containing structures and Rab11-labeled endosomes. Overexpression of H13, the carboxyl-terminal region of RCP that contains the Rab binding domain, results in an abnormal endosomal compartment. Interestingly, we found that RCP is associated as discrete patches or protein domains to early phagosomal membranes. In macrophages, overexpression of full-length RCP stimulates recycling from the phagosomal compartment, whereas overexpression of H13 diminishes this vesicular transport step. It is likely that acting as an intermediate between Rab4 and Rab11, RCP regulates membrane flux along the phagocytic pathway via recycling events.  相似文献   

2.
The retinal pigment epithelium (RPE) contains melanosomes similar to those found in the skin melanocytes, which undergo dramatic light-dependent movements in fish and amphibians. In mammals, those movements are more subtle and appear to be regulated by the Rab27a GTPase and the unconventional myosin, Myosin VIIa (MyoVIIa). Here we address the hypothesis that a recently identified Rab27a- and MyoVIIa-interacting protein, Myrip, promotes the formation of a functional tripartite complex. In heterologous cultured cells, all three proteins co-immunoprecipitated following overexpression. Rab27a and Myrip localize to the peripheral membrane of RPE melanosomes as observed by immunofluorescence and immunoelectron microscopy. Melanosome dynamics were studied using live-cell imaging of mouse RPE primary cultures. Wild-type RPE melanosomes exhibited either stationary or slow movement interrupted by bursts of fast movement, with a peripheral directionality trend. Nocodazole treatment led to melanosome paralysis, suggesting that movement requires microtubule motors. Significant and similar alterations in melanosome dynamics were observed when any one of the three components of the complex was missing, as studied in ashen- (Rab27a defective) and shaker-1 (MyoVIIa mutant)-derived RPE cells, and in wild-type RPE cells transduced with adenovirus carrying specific sequences to knockdown Myrip expression. We observed a significant increase in the number of motile melanosomes, exhibiting more frequent and prolonged bursts of fast movement, and inversion of directionality. Similar alterations were observed upon cytochalasin D treatment, suggesting that the Rab27a-Myrip-MyoVIIa complex regulates tethering of melanosomes onto actin filaments, a process that ensures melanosome movement towards the cell periphery.  相似文献   

3.
Cytokinesis requires a dramatic remodeling of the cortical cytoskeleton as well as membrane addition. The Drosophila pericentrosomal protein, Nuclear-fallout (Nuf), provides a link between these two processes. In nuf-derived embryos, actin remodeling and membrane recruitment during the initial stages of metaphase and cellular furrow formation are disrupted. Nuf is a homologue of arfophilin-2, an ADP ribosylation factor effector that binds Rab11 and influences recycling endosome (RE) organization. Here, we show that Nuf is an important component of the RE, and that these phenotypes are a consequence of Nuf activities at the RE. Nuf exhibits extensive colocalization with Rab11, a key RE component. GST pull-downs and the presence of a conserved Rab11-binding domain in Nuf demonstrate that Nuf and Rab11 physically associate. In addition, Nuf and Rab11 are mutually required for their localization to the RE. Embryos with reduced levels of Rab11 produce membrane recruitment and actin remodeling defects strikingly similar to nuf-derived embryos. These analyses support a common role for Nuf and Rab11 at the RE in membrane trafficking and actin remodeling during the initial stages of furrow formation.  相似文献   

4.
The HIV-1 accessory gene product Vpu is required for efficient viral particle release from infected human cells. The mechanism by which Vpu enhances particle assembly or release is not yet defined. Here, we identify an intracellular site that is critical for Vpu-mediated enhancement of particle release. Vpu was found to co-localize with markers for the pericentriolar recycling endosome. Expression of dominant negative mutants of Rab11a and myosin Vb that disrupt protein sorting through the recycling endosome abrogated the ability of Vpu to augment particle release. Remarkably, the effects of blocking recycling endosome function on HIV particle release were demonstrable only in human cell lines known to be responsive to Vpu, while no effect on particle release was seen in African green monkey cells. Inhibition of recycling endosome function in human cells also blocked the ability of HIV-2 envelope to enhance particle release. These studies indicate that Vpu and HIV-2 envelope glycoprotein enhance particle release via a common mechanism that requires the activity of the pericentriolar recycling endosome.  相似文献   

5.
Bacterial pathogens have developed a wide range of strategies to survive within human cells. A number of pathogens multiply in a vacuolar compartment, whereas others can rupture the vacuole and replicate in the host cytosol. A common theme among many bacterial pathogens is the use of specialised secretion systems to deliver effector proteins into the host cell. These effectors can manipulate the host's membrane trafficking pathways to remodel the vacuole into a replication‐permissive niche and prevent degradation. As master regulators of eukaryotic membrane traffic, Rab GTPases are principal targets of bacterial effectors. This review highlights the manipulation of Rab GTPases that regulate host recycling endocytosis by several bacterial pathogens, including Chlamydia pneumoniae, Chlamydia trachomatis, Shigella flexneri, Salmonella enterica serovar Typhimurium, Uropathogenic Escherichia coli, and Legionella pneumophila. Recycling endocytosis plays key roles in a variety of cellular aspects such as nutrient uptake, immunity, cell division, migration, and adhesion. Though much remains to be understood about the molecular basis and the biological relevance of bacterial pathogens exploiting Rab GTPases, current knowledge supports the notion that endocytic recycling Rab GTPases are differentially targeted to avoid degradation and support bacterial replication. Thus, future studies of the interactions between bacterial pathogens and host endocytic recycling pathways are poised to deepen our understanding of bacterial survival strategies.  相似文献   

6.
The small GTPase Rab4 is involved in endocytosis through sorting and recycling early endosomes. To better understand the role of Rab4 in regulation of vesicular trafficking, we searched for effectors that specifically interact with Rab4-Q67L, the GTP-bound form of Rab4. We cloned an ubiquitous 80-kDa protein, identical to CD2-associated protein/Cas ligand with multiple SH3 domains (CD2AP/CMS), that interacts with Rab4-Q67L in the yeast two-hybrid system and in vitro . CD2AP/CMS expressed in mammalian cells was localized to punctate structures and along actin filaments. None of the known markers of early endosomes [Early Endosomes Antigen 1 (EEA1), Rab5 and Rab11] colocalized with the CD2AP/CMS-positive vesicles. However, coexpression of Rab4-Q67L with CD2AP/CMS induces a significant enlargement of EEA1-positive early endosomes. Rab4, CD2AP/CMS and Rab7 colocalized in these modified endosomes. Coexpression of c-Cbl and CD2AP/CMS also resulted in an enlargement of early endosomes. Using various truncated forms of CD2AP/CMS, we demonstrate that early endosomes enlargement requires that CD2AP/CMS interacts with both Rab4 and c-Cbl. The expression of a truncated form of CD2AP/CMS that retains the ability to interact with Rab4 but not c-Cbl inhibits ligand-induced PDGF receptor degradation. We propose that CD2AP/CMS, through interactions with Rab4 and c-Cbl, controls early endosome morphology and may play a role in traffic between early and late endosomes, and thus in the degradative pathway .  相似文献   

7.
In comparison to the internalization pathways of endocytosis, the recycling pathways are less understood. Even less defined is the process of regulated recycling, as few examples exist and their underlying mechanisms remain to be clarified. In this study, we examine the endocytic recycling of integrin β1, a process that has been suggested to play an important role during cell motility by mediating the redistribution of integrins to the migrating front. External stimulation regulates the endocytic itinerary of β1, mainly at an internal compartment that is likely to be a subset of the recycling endosomes. This stimulation-dependent recycling is regulated by ARF6 and Rab11, and also requires the actin cytoskeleton in an ARF6-dependent manner. Consistent with these observations being relevant for cell motility, mutant forms of ARF6 that affect either actin rearrangement or recycling inhibit the motility of a breast cancer cell line.  相似文献   

8.
9.
Proteolytic fragments of the pigment cell‐specific glycoprotein, PMEL, form the amyloid fibrillar matrix underlying melanins in melanosomes. The fibrils form within multivesicular endosomes to which PMEL is selectively sorted and that serve as melanosome precursors. GPNMB is a tissue‐restricted glycoprotein with substantial sequence homology to PMEL, but no known function, and was proposed to localize to non‐fibrillar domains of distinct melanosome subcompartments in melanocytes. Here we confirm that GPNMB localizes to compartments distinct from the PMEL‐containing multivesicular premelanosomes or late endosomes in melanocytes and HeLa cells, respectively, and is largely absent from fibrils. Using domain swapping, the unique PMEL localization is ascribed to its polycystic kidney disease (PKD) domain, whereas the homologous PKD domain of GPNMB lacks apparent sorting function. The difference likely reflects extensive modification of the GPNMB PKD domain by N‐glycosylation, nullifying its sorting function. These results reveal the molecular basis for the distinct trafficking and morphogenetic properties of PMEL and GPNMB and support a deterministic function of the PMEL PKD domain in both protein sorting and amyloidogenesis.  相似文献   

10.
The small GTPase Rab11 and its effectors control trafficking of recycling endosomes, receptor replenishment and the up-regulation of adhesion and adaptor molecules at the plasma membrane. Despite recent advances in the understanding of Rab11-regulated mechanisms, the final steps mediating docking and fusion of Rab11-positive vesicles at the plasma membrane are not fully understood. Munc13-4 is a docking factor proposed to regulate fusion through interactions with SNAREs. In hematopoietic cells, including neutrophils, Munc13-4 regulates exocytosis in a Rab27a-dependent manner, but its possible regulation of other GTPases has not been explored in detail. Here, we show that Munc13-4 binds to Rab11 and regulates the trafficking of Rab11-containing vesicles. Using a novel Time-resolved Fluorescence Resonance Energy Transfer (TR-FRET) assay, we demonstrate that Munc13-4 binds to Rab11a but not to dominant negative Rab11a. Immunoprecipitation analysis confirmed the specificity of the interaction between Munc13-4 and Rab11, and super-resolution microscopy studies support the interaction of endogenous Munc13-4 with Rab11 at the single molecule level in neutrophils. Vesicular dynamic analysis shows the common spatio-temporal distribution of Munc13-4 and Rab11, while expression of a calcium binding-deficient mutant of Munc13-4 significantly affected Rab11 trafficking. Munc13-4-deficient neutrophils showed normal endocytosis, but the trafficking, up-regulation, and retention of Rab11-positive vesicles at the plasma membrane was significantly impaired. This correlated with deficient NADPH oxidase activation at the plasma membrane in response to Rab11 interference. Our data demonstrate that Munc13-4 is a Rab11-binding partner that regulates the final steps of Rab11-positive vesicle docking at the plasma membrane.  相似文献   

11.
Autophagy is an evolutionarily conserved catabolic mechanism that targets intracellular molecules and damaged organelles to lysosomes. Autophagy is achieved by a series of membrane trafficking events, but their regulatory mechanisms are poorly understood. Here, we report small GTPase Rab12 as a new type of autophagic regulator that controls the degradation of an amino‐acid transporter. Knockdown of Rab12 results in inhibition of autophagy and in increased activity of mTORC1 (mammalian/mechanistic target of rapamycin complex 1), an upstream regulator of autophagy. We also found that Rab12 promotes constitutive degradation of PAT4 (proton‐coupled amino‐acid transporter 4), whose accumulation in Rab12‐knockdown cells modulates mTORC1 activity and autophagy. Our findings reveal a new mechanism of regulation of mTORC1 signalling and autophagy, that is, quality control of PAT4 by Rab12.  相似文献   

12.
Rab-interacting lysosomal protein (RILP) has been identified as an interacting partner of the small GTPases Rab7 and Rab34. Active Rab7 recruits RILP on the late endosomal/lysosomal membrane and RILP then functions as a Rab7 effector controlling transport to degradative compartments. Indeed, RILP induces recruitment of dynein-dynactin motor complexes to Rab7-containing late endosomes and lysosomes. Recently, Rab7 and RILP have been found to be key proteins also for the biogenesis of phagolysosomes. Therefore, RILP represents probably an important factor for all endocytic routes to lysosomes. In this study, we show, using the yeast two-hybrid system, that RILP is able to interact with itself. The data obtained with the two-hybrid system were confirmed using co-immunoprecipitation in HeLa cells. The data together indicate that RILP, as already demonstrated for several other Rab effector proteins, is capable of self-association, thus probably forming a homo-dimer.  相似文献   

13.
Macroautophagy/autophagy involves the formation of an autophagosome, a double-membrane vesicle that delivers sequestered cytoplasmic cargo to lysosomes for degradation and recycling. Closely related, endocytosis mediates the sorting and transport of cargo throughout the cell, and both processes are important for cellular homeostasis. However, how endocytic proteins functionally intersect with autophagy is not clear. Mutations in the DAF-2/insulin-like IGF-1 (INSR) receptor at the permissive temperature result in a small increase in GFP::LGG-1 foci, i.e. autophagosomes, but a large increase at the nonpermissive temperature, allowing us to control the level of autophagy. In a RNAi screen for endocytic genes that alter the expression of GFP::LGG-1 in daf-2 mutants, we identified RAB-10, a small GTPase that regulates basolateral endocytosis. Loss of rab-10 in daf-2 mutants results in more GFP::LGG-1-positive foci at the permissive, but less GFP::LGG-1 or SQST-1::GFP foci at the nonpermissive temperature. As previously reported, loss of rab-10 alone resulted in an increase of GFP:LGG-1 foci. Exposure of rab-10 mutant animals to chloroquine, a known inhibitor of autophagic flux, failed to increase the number of GFP::LGG-1 foci. Moreover, colocalization between LMP-1::tagRFP and GFP::LGG-1 (the lysosome and autophagosome reporters) was decreased in daf-2; rab-10 dauers at the nonpermissive temperature. Intriguingly, RAB-10 was required to maintain the normal size of GFP::ATG-9-positive structures in daf-2 mutants at both the permissive and nonpermissive temperature. Finally, we found that RAB-10 GTPase cycling was required to control the size of GFP::ATG-9 foci. Collectively, our data support a model where rab-10 controls autophagic flux by regulating autophagosome formation and maturation.  相似文献   

14.
Sato M  Sato K  Liou W  Pant S  Harada A  Grant BD 《The EMBO journal》2008,27(8):1183-1196
Using Caenorhabditis elegans genetic screens, we identified receptor-mediated endocytosis (RME)-4 and RME-5/RAB-35 as important regulators of yolk endocytosis in vivo. In rme-4 and rab-35 mutants, yolk receptors do not accumulate on the plasma membrane as would be expected in an internalization mutant, rather the receptors are lost from cortical endosomes and accumulate in dispersed small vesicles, suggesting a defect in receptor recycling. Consistent with this, genetic tests indicate the RME-4 and RAB-35 function downstream of clathrin, upstream of RAB-7, and act synergistically with recycling regulators RAB-11 and RME-1. We find that RME-4 is a conserved DENN domain protein that binds to RAB-35 in its GDP-loaded conformation. GFP-RME-4 also physically interacts with AP-2, is enriched on clathrin-coated pits, and requires clathrin but not RAB-5 for cortical association. GFP-RAB-35 localizes to the plasma membrane and early endocytic compartments but is lost from endosomes in rme-4 mutants. We propose that RME-4 functions on coated pits and/or vesicles to recruit RAB-35, which in turn functions in the endosome to promote receptor recycling.  相似文献   

15.
Endosymbiotic association of the Symbiodinium dinoflagellates (zooxanthellae) with their cnidarian host cells involves an alteration in the development of the alga-enclosing phagosomes. To uncover its molecular basis, we previously investigated and established that the intracellular persistence of the zooxanthella-containing phagosomes involves specific alga-mediated interference with the expression of ApRab5 and ApRab7, two key endocytic regulatory Rab proteins, which results in the selective retention of the former on and exclusion of the later from the organelles. Here we examined the role of ApRab11, a cnidarian homologue of the key endocytic recycling regulator, Rab11, in the Aiptasia-Symbiodinium endosymbiosis. ApRab11 protein shared 88% overall sequence identity with human Rab11A and contained all Rab-specific signature motifs. Co-localization and mutagenesis studies showed that EGFP-tagged ApRab11 was predominantly associated with recycling endosomes and functioned in the recycling of internalized transferrin. In phagocytosis of latex beads, ApRab11 was quickly recruited to and later gradually removed from the developing phagosomes. Significantly, although ApRab11 immunoreactivity was rapidly detected on the phagosomes containing either newly internalized, heat-killed zooxanthellae, or resident zooxanthellae briefly treated with the photosynthesis inhibitor DCMU, it was rarely observed in the majority of phagosomes containing either newly internalized live, or healthy resident, zooxanthellae. It was concluded that through active exclusion of ApRab11 from the phagosomes in which they reside, zooxanthellae interfere with the normal recycling process required for efficient phagosome maturation, and thereby, secure their intracellular persistence, and consequently their endosymbiotic relationship with their cnidarian hosts.  相似文献   

16.
Inner-membrane transport is critical to cell function. Rab family GTPases play an important role in vesicle transport. In mammalian cells, Rab5 is reported to be involved in the regulation of endosome formation, phagocytosis and chromosome alignment. Here, we examined the role of the fission yeast Rab5 homologue Ypt5 using a point mutant allele. Mutant cells displayed abnormal cell morphology, mating, sporulation, endocytosis, vacuole fusion and responses to ion stress. Our data strongly suggest that fission yeast Rab5 is involved in the regulation of various types of cellular functions.  相似文献   

17.
In Saccharomyces cerevisiae, endocytic material is transported through different membrane-bound compartments before it reaches the vacuole. In a screen for mutants that affect membrane trafficking along the endocytic pathway, we have identified a novel mutant disrupted for the gene YJL204c that we have renamed RCY1 (recycling 1). Deletion of RCY1 leads to an early block in the endocytic pathway before the intersection with the vacuolar protein sorting pathway. Mutation of RCY1 leads to the accumulation of an enlarged compartment that contains the t-SNARE Tlg1p and lies close to areas of cell expansion. In addition, endocytic markers such as Ste2p and the fluorescent dyes, Lucifer yellow and FM4-64, were found in a similar enlarged compartment after their internalization. To determine whether rcy1Delta is defective for recycling, we have developed an assay that measures the recycling of previously internalized FM4-64. This method enables us to follow the recycling pathway in yeast in real time. Using this assay, it could be demonstrated that recycling of membranes is rapid in S. cerevisiae and that a major fraction of internalized FM4-64 is secreted back into the medium within a few minutes. The rcy1Delta mutant is strongly defective in recycling.  相似文献   

18.
Arabidopsis root hair formation is determined by the patterning genes CAPRICE ( CPC ), GLABRA3 ( GL3 ), WEREWOLF ( WER ) and GLABRA2 ( GL2 ), but little is known about the later changes in cell wall material during root hair formation. A combined Fourier-transform infrared microspectroscopy–principal components analysis (FTIR-PCA) method was used to detect subtle differences in the cell wall material between wild-type and root hair mutants in Arabidopsis. Among several root hair mutants, only the gl2 mutation affected root cell wall polysaccharides. Five of the 10 genes encoding cellulose synthase ( CESA1 – 10 ) and 4 of 33 xyloglucan endotransglucosylase ( XTH1 – 33 ) genes in Arabidopsis are expressed in the root, but only CESA5 and XTH17 were affected by the gl2 mutation. The L1-box sequence located in the promoter region of these genes was recognized by the GL2 protein. These results indicate that GL2 directly regulates cell wall-related gene expression during root development.  相似文献   

19.
The low-density lipoprotein receptor (LDLR) mediates the hepatic uptake of circulating low-density lipoproteins (LDLs), a process that modulates the development of atherosclerotic cardiovascular disease. We recently identified RAB10, encoding a small GTPase, as a positive regulator of LDL uptake in hepatocellular carcinoma cells (HuH7) in a genome-wide CRISPR screen, though the underlying molecular mechanism for this effect was unknown. We now report that RAB10 regulates hepatocyte LDL uptake by promoting the recycling of endocytosed LDLR from RAB11-positive endosomes to the plasma membrane. We also show that RAB10 similarly promotes the recycling of the transferrin receptor, which binds the transferrin protein that mediates the transport of iron in the blood, albeit from a distinct RAB4-positive compartment. Taken together, our findings suggest a model in which RAB10 regulates LDL and transferrin uptake by promoting both slow and rapid recycling routes for their respective receptor proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号