首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Free radical research》2013,47(5):550-558
Abstract

Reactive oxygen species (ROS) are involved in both bone and cartilage physiology and play an important role in the pathogenesis of osteoporosis and osteoarthritis. The present study investigated the effect of running exercise on bone and cartilage in heterozygous manganese superoxide dismutase (SOD2)-deficient mice. It was hypothesized that exercise might induce an increased production of ROS in these tissues. Heterozygous SOD2-deficient mice should exhibit an impaired capability to compensate, resulting in an increased oxidative stress in cartilage and bone. Thirteen female wild type and 20 SOD2+/? mice (aged 16 weeks) were randomly assigned to a non-active wild type (SOD2+/+Con, n = 7), a trained wild type (SOD2+/+Run, n = 6), a non-active SOD2+/? (SOD2+/?Con, n = 9) and a trained SOD2+/? (SOD2+/?Run, n = 11) group. Training groups underwent running exercise on a treadmill for 8 weeks. In SOD2+/? mice elevated levels of 15-F2t-isoprostane and nitrotyrosine were detected in bone and articular cartilage compared to wild type littermates. In osteocytes the elevated levels of these molecules were found to be reduced after exercise while in chondrocytes they were increased by aerobic running exercise. The observed changes in oxidative and nitrosative stress did neither affect morphological, structural nor mechanical properties of both tissues. These results demonstrate that exercise might protect bone against oxidative stress in heterozygous SOD2-deficient mice.  相似文献   

2.
3.
The pulmonary ionizing radiation sensitivity of C57BL/6 Sod2(+/-) mice heterozygous for MnSOD deficiency was compared to that Sod2(+/+) control littermates. Embryo fibroblast cell lines from Sod2(-/-) (neonatal lethal) or Sod2(+/-) mice produced less biochemically active MnSOD and demonstrated a significantly greater in vitro radiosensitivity. No G(2)/M-phase cell cycle arrest after 5 Gy was observed in Sod2(-/-) cells compared to the Sod2(+/-) or Sod2(+/+) lines. Subclonal Sod2(-/-) or Sod2(+/-) embryo fibroblast lines expressing the human SOD2 transgene showed increased biochemical activity of MnSOD and radioresistance. Sod2(+/-) mice receiving 18 Gy whole-lung irradiation died sooner and had an increased percentage of lung with organizing alveolitis between 100 and 160 days compared to Sod2(+/+) wild-type littermates. Both Sod2(+/-) and Sod2(+/+) littermates injected intratracheally with human manganese superoxide dismutase-plasmid/liposome (SOD2-PL) complex 24 h prior to whole-lung irradiation showed decreased DNA strand breaks and improved survival with decreased organizing alveolitis. Thus underexpression of MnSOD in the lungs of heterozygous Sod2(+/-) knockout mice is associated with increased pulmonary radiation sensitivity and parallels increased radiation sensitivity of embryo fibroblast cell lines in vitro. The restoration of cellular radioresistance in vitro and in lungs in vivo by SOD2-PL transgene expression supports a potential role for SOD2-PL gene therapy in organ-specific radioprotection.  相似文献   

4.
Tobacco smoke contains high concentrations of reactive oxygen species (ROS) that can damage DNA, proteins, and lipids. Manganese superoxide dismutase (SOD2) catalyzes the dismutation of superoxide radicals into hydrogen peroxide and protects against oxidative stress in lung tissues. Three tagSNPs were identified in one block of high linkage disequilibrium that spans the entire SOD2 gene and 5-kb promoter region. These tagSNPs, representing four haplotypes (TAA, TCA, TCG, CCG), were genotyped in 372 lung cancer cases and 605 controls. There was no association between the haplotype frequencies and the overall lung cancer risk. The TCG haplotype (6% in controls) was significantly associated with a lower risk of lung cancer in light smokers (相似文献   

5.
The superoxide dismutases (SODs) protect oxygen-using cells against reactive oxygen species, the potentially toxic by-products of respiration, oxidative metabolism, and radiation. We have previously shown that genetic disruption of CuZn SOD (SOD1) in Drosophila imparts a recessive phenotype of reduced lifespan, infertility, and hypersensitivity to oxidative stress. We now show that the absence of SOD1 increases spontaneous genomic damage. The increase in spontaneous mutation rate occurs in SOD1-null mutants in somatic cells as well as in the germ line. Further, we show that specific DNA repair-defective mutations, which are easily tolerated in SOD1(+) flies, lead to high mortality when introduced into the SOD1-null homozygous mutant background.  相似文献   

6.
Manganese superoxide dismutase (MnSOD) is the enzyme that converts toxic O(2)(-) to H(2)O(2) in mitochondria. Previous reports showed that a deficiency of MnSOD in mice was neonatal lethal. Therefore, a model mouse was not available for the analysis of the pathological role of O(2)(-) injuries in adult tissues. To explore an adult-type model mouse, we designed tissue-specific MnSOD conditional knockout mice using a Cre-loxp system. First, we crossbred MnSOD flox mice with transgenic mice expressing Cre recombinase under the control of the chicken actin promoter (CAG). We confirmed that CAG MnSOD knockout mice were completely deficient in MnSOD and died as neonates, validating the use of the Cre-loxp system. Next, we generated liver-specific MnSOD-deficient mice by crossbreeding with Alb-Cre transgenic mice. MnSOD activity and protein were both significantly downregulated in the liver of liver-specific MnSOD knockout mice. However, no obvious morphological abnormality was observed in the liver when biochemical alterations such as lipid peroxidation were not detectable, suggesting a redundant or less important physiological role for MnSOD in the liver than previously thought. In the present study, we successfully generated tissue-specific MnSOD conditional knockout mice that would provide a useful tool for the analysis of various age-associated diseases such as diabetes mellitus, Parkinson's disease, stroke, and heart disease, when crossbred with tissue-specific transgenic Cre mice.  相似文献   

7.
Park CK  Lee JH  Cheong HT  Yang BK  Kim CI 《Theriogenology》1997,48(7):1137-1146
This study was undertaken to evaluate the effects of superoxide dismutase (SOD) on pronucleus formation in porcine oocytes fertilized in vitro by frozen-thawed spermatozoa. No differences were found in penetration rates when SOD was added to maturation or fertilization medium at any level tested in first and second experiments. Pronucleus formation rates were higher (P < 0.05) when SOD at 10 and 100 units was added to the maturation medium (46 and 53%, respectively) compared with the controls (26%). On the other hand, when the fertilization medium was supplemented with SOD at different concentrations (1, 10 and 100 units/ml), pronucleus formation rates (55, 52 and 50%) were significantly higher (P < 0.05) than in the control group. In third experiment, the oocytes were cultured in medium with (1 unit/ml) or without SOD for 8, 16, 24 and 32 h after insemination. The penetration rates had a tendency to increase as time of sperm-oocyte culture was prolonged. No significant differences, however, were observed in penetration rates between groups with and without SOD. On the other hand, the pronucleus formation rates were higher in medium with than without SOD at 8 (7 vs 0%), 16 (14 vs 3%), 24 (48 vs 16%; P < 0.01) and 32 h (49 vs 22%; P < 0.05). These findings demonstrate the advantage of culture with SOD on pronucleus formation in porcine oocytes penetrated by spermatozoa. However, SOD does not affect penetration rates and polyspermy.  相似文献   

8.
The antioxidant status of several tissues (liver, kidney, lung, brain, heart, muscle, stomach, and spleen) from heterozygous manganese superoxide dismutase (MnSOD) mutant mice (Sod2-/+) was characterized. The activity of MnSOD was decreased (30 to 80%) in all tissues examined. The levels of mRNA coding for the major antioxidant enzymes (CuZnSOD, catalase, and glutathione peroxidase) were not significantly altered in liver, kidney, heart, lung, or brain in the Sod2-/+ mice. The activities of the enzymes were not altered in any of these tissues, with the exception of a decrease in glutathione peroxidase activity in muscle in the Sod2-/+ mice compared to the Sod2+/+ mice. Thus, there was no up-regulation of the activities of the major antioxidant enzymes to compensate for the decrease in MnSOD activity. Reduced glutathione levels were 30 to 50% lower in the lung, brain, and muscle of the Sod2-/+ mice compared to the wild-type Sod2+/+ mice. In addition, the ratio of GSH/GSSG was decreased approximately 50% in Sod2-/+ muscle, indicating that the decrease in MnSOD activity in the Sod2-/+ mice results in some degree of oxidative stress in this tissue.  相似文献   

9.
In evaluating the relative expression of copper-zinc and manganese superoxide dismutase (CuZnSOD and MnSOD) in vivo in states like Down syndrome in which one dismutase is present at increased levels, we measured activities of both enzymes, in tissues of control and transgenic mice constitutively expressing increased levels of CuZnSOD, during exposure to normal and elevated oxygen tensions. Using SOD gel electrophoresis assay, CuZnSOD and MnSOD activities of brain, lung, heart, kidney, and liver from mice exposed to either normal (21%) or elevated (>99% oxygen, 630 torr) oxygen tensions for 120 h were compared. Whereas CuZnSOD activity was elevated in tissues of transgenic relative to control mice under both normoxic or hyperoxic conditions, MnSOD activities in organs of transgenic mice were remarkably similar to those of controls under both conditions. To confirm the accuracy of this method in quantitating MnSOD relative to CuZnSOD expression, two other methods were utilized. In lung, which is the organ exposed to the highest oxygen tension during ambient hyperoxia, a sensitive, specific ELISA for MnSOD was used. Again, MnSOD protein was not different in transgenic relative to control mice during exposure to air or hyperoxia. In addition, lung MnSOD protein was not changed significantly by exposure to hyperoxia in either group. In kidney, a mitochondrion-rich organ, SOD assay, before and after inactivation of CuZnSOD with diethyldithiocarbamate, was used. MnSOD activity was not different in organs from air-exposed transgenic relative to control mice. The data indicated that expression of MnSOD in vivo was not affected by overexpression of the CuZnSOD and, therefore, the two enzymes are probably regulated independently.  相似文献   

10.
11.
A non copper containing superoxide dismutase (Cu-SOD), presumably manganese superoxide dismutase (Mn-SOD), has been identified in carp erythrocytes. Erythrocyte catalase is low, glutathione peroxidase (GPX) is extremely high, and superoxide dismutase (SOD) is relatively low. The distribution of Cu-SOD, Mn-SOD and glutathione peroxidase in various tissues is described. Highest activities of both enzymes are found in the liver and lowest in white muscle and the swim bladder.  相似文献   

12.
13.
Manganese superoxide dismutase (Mn-SOD) plays an important role in attenuating free radical-induced oxidative damage. The purpose of this research was to determine if increased expression of Mn-SOD gene alters intracellular redox status. Twelve week old male B6C3 mice, engineered to express human Mn-SOD in multiple organs, and their nontransgenic littermates were assessed for oxidative stress and antioxidant status in heart, brain, lung, skeletal muscle, liver, and kidney. Relative to their nontransgenic littermates, transgenic mice had significantly (p <.01) higher activity of Mn-SOD in heart, skeletal muscle, lung, and brain. Copper, zinc (Cu,Zn)-SOD activity was significantly higher in kidney, whereas catalase activity was lower in brain and liver. The activities of selenium (Se)-GSH peroxidase and non-Se-GSH peroxidase, and levels of vitamin E, ascorbic acid and GSH were not significantly different in any tissues measured between Mn-SOD transgenic mice and their nontransgenic controls. The levels of malondialdehyde were significantly lower in the muscle and heart of Mn-SOD mice, and conjugated dienes and protein carbonyls were not altered in any tissues measured. The results obtained showed that expression of human SOD gene did not systematical alter antioxidant systems or adversely affect the redox state of the transgenic mice. The results also suggest that expression of human SOD gene confers protection against peroxidative damage to membrane lipids.  相似文献   

14.
The direct electrochemical redox reaction of bovine erythrocyte copper--zinc superoxide dismutase (Cu(2)Zn(2)SOD) was clearly observed at a gold electrode modified with a self-assembled monolayer (SAM) of cysteine in phosphate buffer solution containing SOD, although its reaction could not be observed at the bare electrode. In this case, SOD was found to be stably confined on the SAM of cysteine and the redox response could be observed even when the cysteine-SAM electrode used in the SOD solution was transferred to the pure electrolyte solution containing no SOD, suggesting the permanent binding of SOD via the SAM of cysteine on the electrode surface. The electrode reaction of the SOD confined on the cysteine-SAM electrode was found to be quasi-reversible with the formal potential of 65 +/- 3 mV vs. Ag/AgCl and its kinetic parameters were estimated: the electron transfer rate constant k(s) is 1.2 +/- 0.2 s(-1) and the anodic (alpha(a)) and cathodic (alpha(c)) transfer coefficients are 0.39 +/- 0.02 and 0.61 +/- 0.02, respectively. The assignment of the redox peak of SOD at the cysteine-SAM modified electrode could be sufficiently carried out using the native SOD (Cu(2)Zn(2)SOD), its Cu- or Zn-free derivatives (E(2)Zn(2)SOD and Cu(2)E(2)SOD, E designates an empty site) and the SOD reconstituted from E(2)Zn(2)SOD and Cu(2+). The Cu complex moiety, the active site for the enzymatic dismutation of the superoxide ion, was characterized to be also the electroactive site of SOD. In addition, we found that the SOD confined on the electrode can be expected to possess its inherent enzymatic activity for dismutation of the superoxide ion.  相似文献   

15.
16.
Superoxide dismutase (SOD) activities of various metallobacitracin complexes were evaluated using the riboflavin-methionine-nitro blue tetrazolium assay. The radical scavenging activity of various metallobacitracin complexes was shown to be higher than those of the negative controls, e.g., free transition metal ions and metal-free bacitracin. The SOD activity of the complex was found to be in the order of Mn(II)>Cu(II)>Co(II)>Ni(II). Furthermore, the effect of bacitracin and their complexation to metals on various microorganisms was assessed by antibiotic susceptibility testing. Moreover, molecular modeling and quantum chemical calculation of the metallobacitracin complex was performed to evaluate the correlation of electrostatic charge of transition metal ions on the SOD activity.  相似文献   

17.
The inhibitory effect of lecithinized superoxide dismutase (PC-SOD) on pulmonary metastasis in mice was investigated. In an experimental pulmonary metastasis model employing Meth A-T cells, significant and dose-dependent inhibition was observed after i.v. pre-administration of PC-SOD. Unmodified SOD (U-SOD) was also effective, but a 10-times higher dose was necessary to be significant. The pulmonary accumulation of Meth A-T cells labeled with 5-[125I]iodo-2'-deoxyuridine was not reduced by either PC-SOD or U-SOD, and neither of the compounds decreased pulmonary MPO activity. However, PC-SOD increased pulmonary SOD activity for longer, compared with U-SOD. In vitro addition of PC-SOD dose-dependently suppressed the growth of Meth A-T cells, while U-SOD had little effect. The combination of PC-SOD and S-nitroso-N-acetyl-D,L-penicillamine (SNAP), a nitric oxide (NO)-generating agent, had an additive effect. It was also found that PC-SOD prevented a decrease of pulmonary NOx level following tumor cell inoculation. It was concluded that PC-SOD possessed antimetastatic activity, and its potency was superior to that of U-SOD. These results suggest that PC-SOD may prevent the excessive formation of oxygen radicals and peroxynitrite (ONOO-) which cause cell damage and facilitate tumor metastasis.  相似文献   

18.
Human recombinant MnSOD and CuZnSOD were both inactivated when exposed to simultaneous fluxes of superoxide (JO(2)(*-)) and nitric oxide (J*NO). The inactivation was also observed with varying J*NO/JO(2)(*-) ratios. Protein-derived radicals were detected in both CuZn and MnSOD by immuno-spin trapping. The formation of protein radicals was followed by tyrosine nitration in the case of MnSOD. When MnSOD was exposed to J*NO and JO(2)(*-) in the presence of uric acid, a scavenger of peroxynitrite-derived free radicals, nitration was decreased but inactivation was not prevented. On the other hand, glutathione, known to react with both peroxynitrite and nitrogen dioxide, totally protected MnSOD from inactivation and nitration on addition of authentic peroxynitrite but, notably, it was only partially inhibitory in the presence of the more biologically relevant J*NO and JO(2)(*-). The data are consistent with the direct reaction of peroxynitrite with the Mn center and a metal-catalyzed nitration of Tyr-34 in MnSOD. In this context, we propose that inactivation is also occurring through a *NO-dependent nitration mechanism. Our results help to rationalize MnSOD tyrosine nitration observed in inflammatory conditions in vivo in the presence of low molecular weight scavengers such as glutathione that otherwise would completely consume nitrogen dioxide and prevent nitration reactions.  相似文献   

19.
The CuZn superoxide dismutase (SOD1), a member of a group of isoenzymes involved in the scavenger of superoxide anions, is a dimeric carbohydrate free protein, mainly localized in the cytosol. The reactive oxygen species (ROS) are involved in many pathophysiological events correlated with mutagenesis, cancer, degenerative processes and aging. In the first part of this mini-review the well known role of SOD1 and ROS are briefly summarized. Following, a potential novel biological action that SOD1 could exert is described, based on the recent researches demonstrating the secretion of this enzyme in many cellular lines. Moreover, the role of impaired mutant SOD1 secretion, associated with cytoplasmic toxic inclusion, which occurs in familial amyotrophic lateral sclerosis (ALS), is summarized. In addition, a depolarization-dependent release of SOD1 in pituitary GH3 cells and in rat synaptosomes through a calcium and SNARE-dependent mechanism is reported.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号