首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A less frequently employed Escherichia coli strain W, yet possessing useful metabolic characteristics such as less acetic acid production and high L ‐valine tolerance, was metabolically engineered for the production of L ‐valine. The ilvA gene was deleted to make more pyruvate, a key precursor for L ‐valine, available for enhanced L ‐valine biosynthesis. The lacI gene was deleted to allow constitutive expression of genes under the tac or trc promoter. The ilvBNmut genes encoding feedback‐resistant acetohydroxy acid synthase (AHAS) I and the L ‐valine biosynthetic ilvCED genes encoding acetohydroxy acid isomeroreductase, dihydroxy acid dehydratase, and branched chain amino acid aminotransferase, respectively, were amplified by plasmid‐based overexpression. The global regulator Lrp and L ‐valine exporter YgaZH were also amplified by plasmid‐based overexpression. The engineered E. coli W (ΔlacI ΔilvA) strain overexpressing the ilvBNmut, ilvCED, ygaZH, and lrp genes was able to produce an impressively high concentration of 60.7 g/L L ‐valine by fed‐batch culture in 29.5 h, resulting in a high volumetric productivity of 2.06 g/L/h. The most notable finding is that there was no other byproduct produced during L ‐valine production. The results obtained in this study suggest that E. coli W can be a good alternative to Corynebacterium glutamicum and E. coli K‐12, which have so far been the most efficient L ‐valine producer. Furthermore, it is expected that various bioproducts including other amino acids might be more efficiently produced by this revisited platform strain of E. coli. Bioeng. 2011; 108:1140–1147. © 2010 Wiley Periodicals, Inc.  相似文献   

2.
Cofactor recycling is known to be crucial for amino acid synthesis. Hence, cofactor supply was now analyzed for L ‐valine to identify new targets for an improvement of production. The central carbon metabolism was analyzed by stoichiometric modeling to estimate the influence of cofactors and to quantify the theoretical yield of L ‐valine on glucose. Three different optimal routes for L ‐valine biosynthesis were identified by elementary mode (EM) analysis. The modes differed mainly in the manner of NADPH regeneration, substantiating that the cofactor supply may be crucial for efficient L ‐valine production. Although the isocitrate dehydrogenase as an NADPH source within the tricarboxylic acid cycle only enables an L ‐valine yield of YVal/Glc = 0.5 mol L ‐valine/mol glucose (mol Val/mol Glc), the pentose phosphate pathway seems to be the most promising NADPH source. Based on the theoretical calculation of EMs, the gene encoding phosphoglucoisomerase (PGI) was deleted to achieve this EM with a theoretical yield YVal/Glc = 0.86 mol Val/mol Glc during the production phase. The intracellular NADPH concentration was significantly increased in the PGI‐deficient mutant. L ‐Valine yield increased from 0.49 ± 0.13 to 0.67 ± 0.03 mol Val/mol Glc, and, concomitantly, the formation of by‐products such as pyruvate was reduced. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

3.
A five carbon linear chain diamine, cadaverine (1,5‐diaminopentane), is an important platform chemical having many applications in chemical industry. Bio‐based production of cadaverine from renewable feedstock is a promising and sustainable alternative to the petroleum‐based chemical synthesis. Here, we report development of a metabolically engineered strain of Escherichia coli that overproduces cadaverine in glucose mineral salts medium. First, cadaverine degradation and utilization pathways were inactivated. Next, L ‐lysine decarboxylase, which converts L ‐lysine directly to cadaverine, was amplified by plasmid‐based overexpression of the cadA gene under the strong tac promoter. Furthermore, the L ‐lysine biosynthetic pool was increased by the overexpression of the dapA gene encoding dihydrodipicolinate synthase through the replacement of the native promoter with the strong trc promoter in the genome. The final engineered strain was able to produce 9.61 g L−1 of cadaverine with a productivity of 0.32 g L−1 h−1 by fed‐batch cultivation. The strategy reported here should be useful for the bio‐based production of cadaverine from renewable resources. Biotechnol. Bioeng. 2011; 108:93–103. © 2010 Wiley Periodicals, Inc.  相似文献   

4.
L ‐Lysine is a potential feedstock for the production of bio‐based precursors for engineering plastics. In this study, we developed a microbial process for high‐level conversion of L ‐lysine into 5‐aminovalerate (5AVA) that can be used as a monomer in nylon 6,5 synthesis. Recombinant Escherichia coli WL3110 strain expressing Pseudomonas putida delta‐aminovaleramidase (DavA) and lysine 2‐monooxygenase (DavB) was grown to high density in fed‐batch culture and used as a whole cell catalyst. High‐density E. coli WL3110 expressing DavAB, grown to an optical density at 600 nm (OD600) of 30, yielded 36.51 g/L 5AVA from 60 g/L L ‐lysine in 24 h. Doubling the cell density of E. coli WL3110 improved the conversion yield to 47.96 g/L 5AVA from 60 g/L of L ‐lysine in 24 h. 5AVA production was further improved by doubling the L ‐lysine concentration from 60 to 120 g/L. The highest 5AVA titer (90.59 g/L; molar yield 0.942) was obtained from 120 g/L L ‐lysine by E. coli WL3110 cells grown to OD600 of 60. Finally, nylon 6,5 was synthesized by bulk polymerization of ?‐caprolactam and δ‐valerolactam prepared from microbially synthesized 5AVA. The hybrid system demonstrated here has promising possibilities for application in the development of industrial bio‐nylon production processes.  相似文献   

5.
3‐Fucosyllactose (3‐FL), one of the major oligosaccharides in human breast milk, is produced in engineered Escherichia coli. In order to search for a good α‐1,3‐fucosyltransferase, three bacterial α‐1,3‐fucosyltransferases are expressed in engineered E. coli deficient in β‐galactosidase activity and expressing the essential enzymes for the production of guanosine 5′‐diphosphate‐l ‐fucose, the donor of fucose for 3‐FL biosynthesis. Among the three enzymes tested, the fucT gene from Helicobacter pylori National Collection of Type Cultures 11637 gives the best 3‐FL production in a simple batch fermentation process using glycerol as a carbon source and lactose as an acceptor. In order to use glucose as a carbon source, the chromosomal ptsG gene, considered the main regulator of the glucose repression mechanism, is disrupted. The resulting E. coli strain of ?LP‐YA+FT shows a much lower performance of 3‐FL production (4.50 g L?1) than the ?L‐YA+FT strain grown in a glycerol medium (10.7 g L?1), suggesting that glycerol is a better carbon source than glucose. Finally, the engineered E. coli ?LW‐YA+FT expressing the essential genes for 3‐FL production and blocking the colanic acid biosynthetic pathway (?wcaJ) exhibits the highest concentration (11.5 g L?1), yield (0.39 mol mol?1), and productivity (0.22 g L?1 h) of 3‐FL in glycerol‐limited fed‐batch fermentation.  相似文献   

6.
The aim of this study was to improve l ‐lactic acid production of Lactobacillus thermophilus SRZ50. For this purpose, high efficient heavy‐ion mutagenesis technique was performed using SRZ50 as the original strain. To enhance the screening efficiency for high yield l ‐lactic acid producers, a scale‐down from shake flask to microtiter plate was developed. The results showed that 24‐well U‐bottom MTPs could well alternate shake flasks for L. thermophilus cultivation as a scale‐down tool due to its a very good comparability to the shake flasks. Based on this microtiter plate screening method, two high l ‐lactic acid productivity mutants, A59 and A69, were successfully screened out, which presented, respectively, 15.8 and 16.2% higher productivities than that of the original strain. Based on fed‐batch fermentation, the A69 mutant can accumulate 114.2 g/L l ‐lactic acid at 96 h. Hence, the proposed traditional microbial breeding method with efficient high‐throughput screening assay was proved to be an appropriate strategy to obtain lactic acid‐overproducing strain.  相似文献   

7.
To improve biomass and microalgal oil production of Botryococcus braunii, fed‐batch culture was investigated in an airlift photobioreactor. The optimal feeding time of the fed‐batch culture was after 15 days of cultivation, where 1.82 g/L of the microalgal biomass was obtained in the batch culture. Nitrate nutrient was the restrictive factor for the fed‐batch cultivation while phosphate nutrient with high concentration did not affect the microalgal growth. The optimal mole ratio of nitrate to phosphate was 34.7:1, where nitrate concentration reached the initial level and phosphate concentration was one quarter of its initial level. With one feeding, the biomass of B. braunii reached 2.56 g/L after 18 days. Two feedings in 2‐day interval enhanced the biomass production up to 2.87 g/L after 19 days of cultivation. The hydrocarbon content in dry biomass of B. braunii kept at high level of 64.3% w/w. Compared with the batch culture, biomass production and hydrocarbon productivity of B. braunii were greatly improved by the strategic fed‐batch cultivation.  相似文献   

8.
β‐poly(l ‐malic acid) (PMLA) is a biopolyester, which has attracted growing attention due to its potential applications in medicine and other industries. In this study, the biosynthetic pathway of PMLA and the fermentation strategies with mixed sugars were both investigated to enhance PMLA production by Aureobasidium pullulans ipe‐1. Metabolic intermediates and inhibitors were used to study the biosynthetic pathway of PMLA. It showed that exogenous addition of l ‐malic acid, succinic acid, TFA, and avidin had negligible effect on PMLA production, while pyruvic acid and biotin were the inhibitors, indicating that PMLA biosynthesis was probably related to phosphoenolpyruvate via oxaloacetate catalyzed by phosphoenolpyruvate carboxylase. Sucrose was suitable for achieving the highest PMLA concentration, while fructose generated a higher yield of PMLA (PMLA produced per biomass). Furthermore, the fed‐batch culture using fed solution with different sugar mixture for PMLA production was implemented. During the fed‐batch culture with mixed solution, fructose could increase PMLA production. Compared with the batch culture, the feeding with mixed sugar (sucrose and glucose) increased PMLA concentration by 23.9%, up to 63.2 g/L, and the final volume of the broth was increased by 25%. These results provide a good reference for process development and optimization of PMLA production.  相似文献   

9.
A miniaturized reactor system with on‐line measurement of respiration rates by membrane inlet mass spectrometry was applied for the on‐line metabolic flux analysis at different phases of a 1.2 L batch culture of lysine‐producing Corynebacterium glutamicum. For this purpose, cells taken from the batch culture were transferred into the 12 mL mini reactor, and incubated for 15 min with [1‐18O]glucose. Quantification of oxygen uptake rate and CO2 mass isotopomer production rates in combination with a simple metabolic model allowed the estimation of the flux partitioning ratio between the pentose phosphate pathway and glycolysis during the process. The relative flux into the pentose pathway increased during growth, and reached maxima at 11 and 17 h cultivation time coinciding with maxima of the differential lysine yield. The developed system is a promising tool for determination of metabolic flux dynamics in industrially relevant batch and fed‐batch cultures.  相似文献   

10.
d ‐Lactic acid production is gaining increasing attention due to the thermostable properties of its polymer, poly‐d ‐lactic acid . In this study, Lactobacillus coryniformis subsp. torquens, was evaluated for its ability to produce d ‐lactic acid using Dried Distiller's Grains with Solubles (DDGS) hydrolysate as the substrate. DDGS was first subjected to alkaline pretreatment with sodium hydroxide to remove the hemicellulose component and the generated carbohydrate‐rich solids were then subjected to enzymatic hydrolysis using cellulase mixture Accellerase® 1500. When comparing separate hydrolysis and fermentation and simultaneous saccharification and fermentation (SSF) of L. coryniformis on DDGS hydrolysate, the latter method demonstrated higher d ‐lactic acid production (27.9 g/L, 99.9% optical purity of d ‐lactic acid), with a higher glucose to d ‐lactic acid conversion yield (84.5%) compared to the former one (24.1 g/L, 99.9% optical purity of d ‐lactic acid). In addition, the effect of increasing the DDGS concentration in the fermentation system was investigated via a fed‐batch SSF approach, where it was shown that the d ‐lactic acid production increased to 38.1 g/L and the conversion yield decreased to 70%. In conclusion, the SSF approach proved to be an efficient strategy for the production of d ‐lactic acid from DDGS as it reduced the overall processing time and yielded high d ‐lactic acid concentrations.  相似文献   

11.
Since most bio‐production processes are conducted in a batch or fed‐batch manner, the evaluation of metabolism with respect to time is highly desirable. Toward this aim, we applied 13C‐metabolic flux analysis to nonstationary conditions by measuring the mass isotopomer distribution of intracellular metabolites. We performed our analysis on batch cultures of wild‐type Escherichia coli, as well as on Pyk and Pgi mutants, obtained the fluxes and metabolite concentrations as a function of time. Our results for the wild‐type indicated that the TCA cycle flux tended to increase during growth on glucose. Following glucose exhaustion, cells controlled the branch ratio between the glyoxylate pathway and the TCA cycle, depending on the availability of acetate. In the Pyk mutant, the concentrations of glycolytic intermediates changed drastically over time due to the dumping and feedback inhibition caused by PEP accumulation. Nevertheless, the flux distribution and free amino acid concentrations changed little. The growth rate and the fluxes remained constant in the Pgi mutant and the glucose‐6‐phosphate dehydrogenase reaction was the rate‐limiting step. The measured fluxes were compared with those predicted by flux balance analysis using maximization of biomass yield or ATP production. Our findings indicate that the objective function of biosynthesis became less important as time proceeds on glucose in the wild‐type, while it remained highly important in the Pyk mutant. Furthermore, ATP production was the primary objective function in the Pgi mutant. This study demonstrates how cells adjust their metabolism in response to environmental changes and/or genetic perturbations in the batch cultivation. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

12.
D‐Glucaric acid can be produced as a value‐added chemical from biomass through a de novo pathway in Escherichia coli. However, previous studies have identified pH‐mediated toxicity at product concentrations of 5 g/L and have also found the eukaryotic myo‐inositol oxygenase (MIOX) enzyme to be rate‐limiting. We ported this pathway to Saccaromyces cerevisiae, which is naturally acid‐tolerant and evaluate a codon‐optimized MIOX homologue. We constructed two engineered yeast strains that were distinguished solely by their MIOX gene – either the previous version from Mus musculus or a homologue from Arabidopsis thaliana codon‐optimized for expression in S. cerevisiae – in order to identify the rate‐limiting steps for D‐glucaric acid production both from a fermentative and non‐fermentative carbon source. myo‐Inositol availability was found to be rate‐limiting from glucose in both strains and demonstrated to be dependent on growth rate, whereas the previously used M. musculus MIOX activity was found to be rate‐limiting from glycerol. Maximum titers were 0.56 g/L from glucose in batch mode, 0.98 g/L from glucose in fed‐batch mode, and 1.6 g/L from glucose supplemented with myo‐inositol. Future work focusing on the MIOX enzyme, the interplay between growth and production modes, and promoting aerobic respiration should further improve this pathway.  相似文献   

13.
Fumaric acid is a naturally occurring organic acid that is an intermediate of the tricarboxylic acid cycle. Fungal species belonging to Rhizopus have traditionally been employed for the production of fumaric acid. In this study, Escherichia coli was metabolically engineered for the production of fumaric acid under aerobic condition. For the aerobic production of fumaric acid, the iclR gene was deleted to redirect the carbon flux through the glyoxylate shunt. In addition, the fumA, fumB, and fumC genes were also deleted to enhance fumaric acid formation. The resulting strain was able to produce 1.45 g/L of fumaric acid from 15 g/L of glucose in flask culture. Based on in silico flux response analysis, this base strain was further engineered by plasmid‐based overexpression of the native ppc gene, encoding phosphoenolpyruvate carboxylase (PPC), from the strong tac promoter, which resulted in the production of 4.09 g/L of fumaric acid. Additionally, the arcA and ptsG genes were deleted to reinforce the oxidative TCA cycle flux, and the aspA gene was deleted to block the conversion of fumaric acid into L ‐aspartic acid. Since it is desirable to avoid the use of inducer, the lacI gene was also deleted. To increase glucose uptake rate and fumaric acid productivity, the native promoter of the galP gene was replaced with the strong trc promoter. Fed‐batch culture of the final strain CWF812 allowed production of 28.2 g/L fumaric acid in 63 h with the overall yield and productivity of 0.389 g fumaric acid/g glucose and 0.448 g/L/h, respectively. This study demonstrates the possibility for the efficient production of fumaric acid by metabolically engineered E. coli. Biotechnol. Bioeng. 2013; 110: 2025–2034. © 2013 Wiley Periodicals, Inc.  相似文献   

14.
Phosphoserine aminotransferase (SerC) from Escherichia coli (E. coli) MG1655 is engineered to catalyze the deamination of homoserine to 4‐hydroxy‐2‐ketobutyrate, a key reaction in producing 1,3‐propanediol (1,3‐PDO) from glucose in a novel glycerol‐independent metabolic pathway. To this end, a computation‐based rational approach is used to change the substrate specificity of SerC from l ‐phosphoserine to l ‐homoserine. In this approach, molecular dynamics simulations and virtual screening are combined to predict mutation sites. The enzyme activity of the best mutant, SerCR42W/R77W, is successfully improved by 4.2‐fold in comparison to the wild type when l ‐homoserine is used as the substrate, while its activity toward the natural substrate l ‐phosphoserine is completely deactivated. To validate the effects of the mutant on 1,3‐PDO production, the “homoserine to 1,3‐PDO” pathway is constructed in E. coli by coexpression of SerCR42W/R77W with pyruvate decarboxylase and alcohol dehydrogenase. The resulting mutant strain achieves the production of 3.03 g L?1 1,3‐PDO in fed‐batch fermentation, which is 13‐fold higher than the wild‐type strain and represents an important step forward to realize the promise of the glycerol‐independent synthetic pathway for 1,3‐PDO production from glucose.  相似文献   

15.
Lactate and ammonia accumulation is a major factor limiting the performance of fed‐batch strategies for mammalian cell culture processes. In addition to the detrimental effects of these by‐products on production yield, ammonia also contributes to recombinant glycoprotein quality deterioration. In this study, we tackled the accumulation of these two inhibiting metabolic wastes by culturing in glutamine‐free fed‐batch cultures an engineered HEK293 cell line displaying an improved central carbon metabolism. Batch cultures highlighted the ability of PYC2‐overexpressing HEK293 cells to grow and sustain a relatively high viability in absence of glutamine without prior adaptation to the culture medium. In fed‐batch cultures designed to maintain glucose at high concentration by daily feeding a glutamine‐free concentrated nutrient feed, the maximum lactate and ammonia concentrations did not exceed 5 and 1 mM, respectively. In flask, this resulted in more than a 2.5‐fold increase in IFNα2b titer in comparison to the control glutamine‐supplied fed‐batch. In bioreactor, this strategy led to similar reductions in lactate and ammonia accumulation and an increase in IFNα2b production. Of utmost importance, this strategy did not affect IFNα2b quality with respect to sialylation and glycoform distribution as confirmed by surface plasmon resonance biosensing and LC‐MS, respectively. Our strategy thus offers an attractive and simple approach for the development of efficient cell culture processes for the mass production of high‐quality therapeutic glycoproteins. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:494–504, 2018  相似文献   

16.
Schizochytrium mangrovei strain PQ 6 was investigated for coproduction of docosahexaenoic acid (C22: 6ω‐3, DHA ) and squalene using a 30‐L bioreactor with a working volume of 15 L under various batch and fed‐batch fermentation process regimes. The fed‐batch process was a more efficient cultivation strategy for achieving higher biomass production rich in DHA and squalene. The final biomass, total lipid, unsaponifiable lipid content, and DHA productivity were 105.25 g · L?1, 43.40% of dry cell weight, 8.58% total lipid, and 61.66 mg · g?1 · L?1, respectively, after a 96 h fed‐batch fermentation. The squalene content was highest at 48 h after feeding glucose (98.07 mg · g?1 of lipid). Differences in lipid accumulation during fermentation were correlated with changes in ultrastructure using transmission electron microscopy and Nile Red staining of cells. The results may be of relevance to industrial‐scale coproduction of DHA and squalene in heterotrophic marine microalgae such as Schizochytrium .  相似文献   

17.

Aims

A novel chimeric‐truncated form of tissue‐type plasminogen activator (t‐PA) with improved fibrin affinity and resistance to PAI was successfully produced in CHO expression system during our previous studies. Considering advantages of prokaryotic expression systems, the aim in this study was to produce the novel protein in Escherichia coli (BL21) strain and compare the protein potency in batch and fed‐batch processes.

Methods and Results

The expression cassette for the novel t‐PA was prepared in pET‐28a(+). The E. coli expression procedure was compared in traditional batch and newly developed fed batch, EnBase® Flo system. The protein was purified in soluble format, and potency results were identified using Chromolize t‐PA Assay Kit. The fed‐batch fermentation mode, coupled with a Ni‐NTA affinity purification procedure under native condition, resulted in higher amounts of soluble protein, and about a 30% of improvement in the specific activity of the resulted recombinant protein (46·66 IU mg?1) compared to traditional batch mode (35·8 IU mg?1).

Conclusions

Considering the undeniable advantages of expression in the prokaryotic expression systems such as E. coli for recombinant protein production, applying alternative methods of cultivation is a promising approach. In this study, fed‐batch cultivation methods showed the potential to replace miss‐folded formats of protein with proper folded, soluble form with improved potency.

Significance and Impact of the Study

Escherichia coli expression of recombinant proteins still counts for nearly 40% of marketed biopharmaceuticals. The major drawback of this system is the lack of appropriate post‐translational modifications, which may cause potency loss/decline. Therefore, applying alternative methods of cultivation as investigated here is a promising approach to overcome potency decrease problem in this protein production system.  相似文献   

18.
Fed‐batch fermentation was applied to the production of pyruvate by using a recombinant Escherichia coli YYC202 strain. This strain is completely blocked in its ability to convert pyruvate into acetyl‐CoA or acetate, resulting in acetate auxotrophy during growth in glucose minimal medium. By controlling acetate and glucose feed rate, a series of lab‐scale fed‐batch experiments were performed at pH 7 and 37 °C. CO2 production rate (CTR) was used for on‐line regulation of the acetate feed rate. The correlation between CTR and acetate consumption rate (ACR) was determined experimentally. At optimal process conditions a final pyruvate concentration higher than 62 g/L, a space‐time yield of up to 42 g/L/d and pyruvate/glucose molar yield of 1.11 mol/mol were achieved. Experimental evidence was gathered that pyruvate export is active.  相似文献   

19.
Poly(γ‐glutamic acid) (γ‐PGA) is a promising biopolymer with many potential industrial and pharmaceutical applications. To reduce the production costs, the effects of yeast extract and L ‐glutamate in the substrate for γ‐PGA production were investigated systematically at shake flask scale. The results showed that lower concentrations of yeast extract (40 g/L) and L ‐glutamate (30 g/L) were beneficial for the cost‐effective production of γ‐PGA in the formulated medium. By maintaining the glucose concentration in the range of 3–10 g/L via a fed‐batch strategy in a 10‐L fermentor, the production of γ‐PGA was greatly improved with the highest γ‐PGA concentration of 101.1 g/L, a productivity of 2.19 g/L·h and a yield of 0.57 g/g total substrate, which is about 1.4‐ to 3.2‐fold higher than those in the batch fermentation. Finally, this high‐density fermentation process was successfully scaled up in a 100‐L fermentor. The present work provides a powerful approach to produce this biopolymer as a bulk chemical in large scale.  相似文献   

20.
Our study aimed at the development of an effective method for citric acid production from glucose by use of the yeast Yarrowia lipolytica. The new method included an automated bioprocess control using a glucose biosensor. Several fermentation methodologies including batch, fed‐batch, repeated batch and repeated fed‐batch cultivation were tested. The best results were achieved during repeated fed‐batch cultivation: Within 3 days of cycle duration, approximately 100 g/L citric acid were produced. The yields reached values between 0.51 and 0.65 g/g and the selectivity of the bioprocess for citric acid was as high as 94%. Due to the elongation of the production phase of the bioprocess with growth‐decoupled citric acid production, and by operating the fermentation in cycles, an increase in citric acid production of 32% was achieved compared with simple batch fermentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号