首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stable isotope probing (SIP) of nucleic acids allows the detection and identification of active members of natural microbial populations that are involved in the assimilation of an isotopically labelled compound into nucleic acids. SIP is based on the separation of isotopically labelled DNA or rRNA by isopycnic density gradient centrifugation. We have developed a highly sensitive protocol for the detection of 'light' and 'heavy' nucleic acids in fractions of centrifugation gradients. It involves the fluorometric quantification of total DNA or rRNA, and the quantification of either 16S rRNA genes or 16S rRNA in gradient fractions by real-time PCR with domain-specific primers. Using this approach, we found that fully 13C-labelled DNA or rRNA of Methylobacterium extorquens was quantitatively resolved from unlabelled DNA or rRNA of Methanosarcina barkeri by cesium chloride or cesium trifluoroacetate density gradient centrifugation respectively. However, a constant low background of unspecific nucleic acids was detected in all DNA or rRNA gradient fractions, which is important for the interpretation of environmental SIP results. Consequently, quantitative analysis of gradient fractions provides a higher precision and finer resolution for retrieval of isotopically enriched nucleic acids than possible using ethidium bromide or gradient fractionation combined with fingerprinting analyses. This is a prerequisite for the fine-scale tracing of microbial populations metabolizing 13C-labelled compounds in natural ecosystems.  相似文献   

2.
'Locked nucleic acids' (LNAs) are sugar modified nucleic acids containing the 2'-O-4'C-methylene-β-D-ribofuranoses. The substitution of RNAs with LNAs leads to an enhanced thermostability. Aptamers are nucleic acids, which are selected for specific target binding from a large library pool by the 'SELEX' method. Introduction of modified nucleic acids into aptamers can improve their stability. The stem region of a ricin A chain RNA aptamer was substituted by locked nucleic acids. Different constructs of the LNA-substituted aptamers were examined for their thermostability, binding activity, folding and RNase sensitivity as compared to the natural RNA counterpart. The LNA-modified aptamers were active in target binding, while the loop regions and the adjacent stem nucleotides remained unsubstituted. The thermostability and RNase resistance of LNA substituted aptamers were enhanced as compared to the native RNA aptamer. This study supports the approach to substitute the aptamer stem region by LNAs and to leave the loop region unmodified, which is responsible for ligand binding. Thus, LNAs possess an encouraging potential for the development of new stabilized nucleic acids and will promote future diagnostic and therapeutic applications.  相似文献   

3.
Nucleic acid aptamers and enzymes as sensors   总被引:1,自引:0,他引:1  
The function of nucleic acids has been an endless source of discovery and invention that has drastically enhanced our appreciation of DNA and RNA as multifaceted polymers. It is now widely known that nucleic acids can act as enzymes (deoxyribozymes and ribozymes) and as receptors (aptamers), and that these functional nucleic acids (FNAs) can either be found in nature or isolated from pools of random nucleic acids. The availability of many natural and artificial FNAs has opened a new horizon for the development of 'smart' molecules for a variety of chemical and biological applications. This review provides a snapshot of recent progress in the application of FNAs as novel sensors for biomolecular detection, drug discovery and nanotechnology.  相似文献   

4.
To develop antisense oligonucleotides, novel nucleosides, 2'-O,4'-C-ethylene nucleosides and their corresponding phosphoramidites, were synthesized as building blocks. The 1H NMR analysis showed that the 2'-O,4'-C-ethylene linkage of these nucleosides restricts the sugar puckering to the N-conformation as well as the linkage of 2'-O,4'-C-methylene nucleosides which are known as bridged nucleic acids (BNA) or locked nucleic acids (LNA). The ethylene-bridged nucleic acids (ENA) showed a high binding affinity for the complementary RNA strand (DeltaT(m)=+5.2 degrees C/modification) and were more nuclease-resistant than natural DNA and BNA/LNA. These results indicate that ENA have better properties as antisense oligonucleotides than BNA/LNA.  相似文献   

5.
6.
Life can be defined as a system of self-sustained chemical processes springing from the ordered synthesis of proteins directed by nucleic acids. To the notoriously difficult problem of the origin of this basic process of nucleic acid-directed protein synthesis, we give a solution of molecular interactions between pentanucleotides and amino acids. A particular conformation of a pentanucleotide forms a double sided template, with its ‘inside’ capable of nestling an amino acid while the ‘outside’ acts as an adaptor to a ‘codon’ triplet on long-chain nucleic acids. This serves as a primitive decoding system. An important aspect of our postulate is that a dynamic interaction is triggered, by this decoding system, through which amino acids are brought to juxtaposition facilitating peptide bond formation. Almost all the important and unique features of contemporary protein-synthesizing machinery are seen to be a direct and natural consequence of our postulate. The emergence of the termination codons also fits in, as a natural consequence of this molecular mechanism.  相似文献   

7.
8.
9.
Negatively charged DNA mimics containing phosphonate analogoues of peptide nucleic acids were designed, and their physicochemical and biological properties were evaluated in the comparison with natural oligonucleotides, classical peptide nucleic acids, and morpholino phosphorodiamidate oligonucleotide analogues. The results obtained revealed a high potential of phosphonate-containing PNA derivatives for a number of biological applications, such as diagnostic, nucleic acids analysis, and inhibition of gene expression.  相似文献   

10.
Nucleic Acids composed of the five natural bases and a phosphate backbone can be designed or evolved to have a wide variety of sequence-dependent functions. Recent in vitro work has addressed some outstanding issues in evolving nucleic acid catalysts, as well as the creation of prescribed shapes and arrays from oligonucleotides and long single-stranded nucleic acids. Nucleic acids have also been engineered in vivo, leading to new modes of gene regulation. It is likely that the improving ability to synthesize long DNA sequences will accelerate the creation of novel functions from nucleic acids.  相似文献   

11.
Molecular evolution allows chemists and biologists to generate nucleic acids with tailor-made binding or catalytic activities. Recent examples of nucleic acid evolution in vitro provide insights into natural ribozyme evolution and also demonstrate potential applications of evolved DNA and RNA molecules. Efforts to expand the scope of nucleic acid evolution are also underway, including the development of novel methods for exploring nucleic acid sequence-space and the incorporation of non-natural chemical functionality into nucleic acid libraries.  相似文献   

12.
The power of in vitro selection methods for the isolation of nucleic acids that display a desired property derives from the enormous number of sequence variants that can be surveyed with relative ease using controlled in vitro biochemistry. This methodology has found a variety of applications, ranging from the study of nucleic acid-protein interactions and natural ribozymes to the isolation of nucleic acids with potential as diagnostic or therapeutic reagents or with new catalytic activities. The number of reported applications is growing exponentially, and each application presents new variables and challenges. The goal of this article is to guide prospective users through the myriad decisions that must be made in the design and execution of a successful in vitro selection experiment.  相似文献   

13.
Peptide nucleic acids and their structural modifications   总被引:3,自引:0,他引:3  
Peptide (polyamide) analogues of nucleic acids (PNAs) make very promising groups of natural nucleic acid (NA) ligands and show many other interesting properties. Two types of these analogues may be highlighted as particularly interesting: the first, containing a polyamide with alternating peptide/pseudopeptide bonds as its backbone, consisting of N-(aminoalkyl)amino-acid units (type I), with nucleobases attached to the backbone nitrogen with the carboxyalkyl linker; and the second, containing a backbone consisting of amino-acid residues carrying the nucleobases in their side chains (type II). So far, these two groups have been studied most intensively. The paper describes main groups of peptide nucleic acids, as well as various other amino acid-derived nucleobase monomers or their oligomers, which were either studied in order to determine their hybridisation to nucleic acids, or only discussed with respect to their potential usefulness in the oligomerisation and nucleic acids binding.  相似文献   

14.

Negatively charged DNA mimics containing phosphonate analogues of peptide nucleic acids were designed, and their physicochemical and biological properties were evaluated in the comparison with natural oligonucleotides, classical peptide nucleic acids, and morpholino phosphorodiamidate oligonucleotide analogues. The results obtained revealed a high potential of phosphonate-containing PNA derivatives for a number of biological applications, such as diagnostic, nucleic acids analysis, and inhibition of gene expression.  相似文献   

15.
We propose the new approach to the synthesis of 5'-triphosphate derivatives of natural and modified dinucleotides with expanded functionality. Our strategy includes the combination of the solution phase synthesis of necessary dimers using the wide range of nucleic acids chemistry methods and the subsequent introduction of the triphosphate residue. A number of the new potential substrates for the template dependent synthesis of nucleic acids with expanded functionality are obtained, namely, 5'-triphosphates of dinucleotides containing the functionally active groups in heterocyclic bases, in carbohydrate-phosphate backbone, and the groups mimicking the residues of natural amino acids. The abilities of the proposed synthetic route are also demonstrated by the synthesis of 5'-triphosphates of dinucleotides with modified carbohydrate-phosphate backbone.  相似文献   

16.
由食源性致病菌引发的疾病对人类健康构成巨大威胁。虽然一些致病菌如金黄色葡萄球菌、大肠杆菌和沙门氏菌等在诊断和预防方面已经取得了重大进展,但开发快速、高效、低成本的检测方法仍然是一项挑战。功能核酸(functional nucleic acids,FNAs)是一类功能超出核酸常规遗传作用的核酸,主要包括天然的核酶(RNAzymes)、核糖开关(riboswitches)以及体外通过指数富集配体系统进化技术(systematic evolution of ligands by exponential enrichment,SELEX)筛选的适配体(aptamers)、核酶(RNAzymes)和脱氧核酶(DNAzymes)。适配体和脱氧核酶因具有较高的稳定性、特异性和可设计性,使其成为病原微生物识别的理想工具,近年来在生物传感和医学诊断领域备受关注。综述了功能核酸的筛选原理和流程、适配体及具有RNA裂解活性的脱氧核酶(RNA cleavage deoxyribozymes,RCDs)在致病菌检测中的应用进展和面临的挑战,并对其未来的发展前景进行了展望。  相似文献   

17.
Detection of picogram amounts of nucleic acid by dot blot hybridization   总被引:1,自引:0,他引:1  
An increasing number of human proteins isolated from cell sources are being produced for pharmaceutical use. Consequently, federal agencies have required the quantitative determination of residual nucleic acids that copurify with the potential protein products. We have conducted these assays in connection with our application for licensure of Alferon Injection. We report a sensitive dot blot hybridization assay that was used to quantitate picogram (or less) amounts of nucleic acids which copurified with human proteins isolated from recombinant (S. cerevisiae) or natural (leukocytes) sources.  相似文献   

18.
Chemically modified nucleic acids (CNAs) are widely explored as antisense oligonucleotide or small interfering RNA (siRNA) candidates for therapeutic applications. CNAs are also of interest in diagnostics, high‐throughput genomics and target validation, nanotechnology and as model systems in investigations directed at a better understanding of the etiology of nucleic acid structure, as well as the physicochemical and pairing properties of DNA and RNA, and for probing protein–nucleic acid interactions. In this article, we review research conducted in our laboratory over the past two decades with a focus on crystal‐structure analyses of CNAs and artificial pairing systems. We highlight key insights into issues ranging from conformational distortions as a consequence of modification to the modulation of pairing strength, and RNA affinity by stereoelectronic effects and hydration. Although crystal structures have only been determined for a subset of the large number of modifications that were synthesized and analyzed in the oligonucleotide context to date, they have yielded guiding principles for the design of new analogs with tailor‐made properties, including pairing specificity, nuclease resistance, and cellular uptake. And, perhaps less obviously, crystallographic studies of CNAs and synthetic pairing systems have shed light on fundamental aspects of DNA and RNA structure and function that would not have been disclosed by investigations solely focused on the natural nucleic acids.  相似文献   

19.
Molecular evolution can be described as a learning process during which previously inanimate matter developed the ability to organize all the reaction pathways that establish a living system. Common to all natural self-organizing procedures is the ability of matter to store, process and evaluate the information achieved by learning. Genetic information which is stored in RNA or DNA is the object of natural evolution. With the recognition of nature's concepts, evolutionary optimization was applied to biopolymers that are not optimally adapted for particular technical or medical purposes. Information can also be stored in molecules with structures and chemical properties that are completely different from nucleic acids. Therefore, optimization processes that mimic the natural evolutionary strategies can also be applied to small organic molecules. Much effort has been made theoretically and practically to find a certain optimized species within the (hyper)astronomical number of possible sequence alternatives. From a series of computer experiments it can be concluded that it is not necessary to search the entire sequence space in order to find a particular structure; this is advantageous because the diversity of mutant libraries that can realistically be achieved in the laboratory never extends to the number of theoretically possible sequences. Molecular mutant libraries that serve as starting populations for in vitro selection have been constructed for nucleic acids, proteins, peptides and small organic molecules.  相似文献   

20.
Since the discovery of the first natural ribozyme more than 20 years ago, it has become clear that nucleic acids are not only the static depository of genetic information, but also possess intriguing catalytic activity. The number of reactions catalyzed by engineered nucleic acid enzymes is growing continuously. The versatility of these catalysts supports the idea of an ancestral world based on RNA predating the emergence of proteins, and also drives many studies towards practical applications for nucleic acid enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号