共查询到20条相似文献,搜索用时 9 毫秒
1.
The cytosolic ATPase N-ethylmaleimide-sensitive fusion protein (NSF) disassembles complexes of membrane-bound proteins known as SNAREs, an activity essential for vesicular trafficking. The amino-terminal domain of NSF (NSF-N) is required for the interaction of NSF with the SNARE complex through the adaptor protein alpha-SNAP. The crystal structure of NSF-N reveals two subdomains linked by a single stretch of polypeptide. A polar interface between the two subdomains indicates that they can move with respect to one another during the catalytic cycle of NSF. Structure-based sequence alignments indicate that in addition to NSF orthologues, the p97 family of ATPases contain an amino-terminal domain of similar structure. 相似文献
2.
Li S Finley J Liu ZJ Qiu SH Chen H Luan CH Carson M Tsao J Johnson D Lin G Zhao J Thomas W Nagy LA Sha B DeLucas LJ Wang BC Luo M 《The Journal of biological chemistry》2002,277(50):48596-48601
Cytoskeleton-associated proteins (CAPs) are involved in the organization of microtubules and transportation of vesicles and organelles along the cytoskeletal network. A conserved motif, CAP-Gly, has been identified in a number of CAPs, including CLIP-170 and dynactins. The crystal structure of the CAP-Gly domain of Caenorhabditis elegans F53F4.3 protein, solved by single wavelength sulfur-anomalous phasing, revealed a novel protein fold containing three beta-sheets. The most conserved sequence, GKNDG, is located in two consecutive sharp turns on the surface, forming the entrance to a groove. Residues in the groove are highly conserved as measured from the information content of the aligned sequences. The C-terminal tail of another molecule in the crystal is bound in this groove. 相似文献
3.
Coiled coils serve as dimerization domains for a wide variety of proteins, including the medically important oligomeric tumor suppressor protein, APC. Mutations in the APC gene are associated with an inherited susceptibility to colon cancer and with approximately 75 % of sporadic colorectal tumors. To define the basis for APC pairing and to explore the anatomy of dimeric coiled coils, we determined the 2.4 A resolution X-ray crystal structure of the N-terminal dimerization domain of APC. The peptide APC-55, encompassing the heptad repeats in APC residues 2-55, primarily forms an alpha-helical, coiled-coil dimer with newly observed core packing features. Correlated asymmetric packing of four core residues in distinct, standard rotamers is associated with a small shift in the helix register. At the C terminus, the helices splay apart and interact with a symmetry-related dimer in the crystal to form a short, anti-parallel, four-helix bundle. N-terminal fraying and C-terminal splaying of the helices, as well as the asymmetry and helix register shift describe unprecedented dynamic excursions of coiled coils. The low stability of APC-55 and divergence from the expected coiled-coil fold support the suggestion that the APC dimerization domain may extend beyond the first 55 residues. 相似文献
4.
Jian Lei Jeroen R. Mesters Albrecht von Brunn Rolf Hilgenfeld 《Biochemical and biophysical research communications》2011,(4):680
In eukaryotes, the poly(A)-binding protein (PABP) is one of the important factors for initiation of messenger RNA translation. PABP activity is regulated by the PABP-interacting proteins (Paips), which include Paip1, Paip2A, and Paip2B. Human Paip1 has three different isoforms. Here, we report the crystal structure of the middle domain of Paip1 isoform 2 (Paip1M) as determined by single-wavelength anomalous dispersion phasing. The structure reveals a crescent-shaped domain consisting of 10 α-helices and two antiparallel β-strands forming a β-hairpin. The 10 α-helices are arranged as five HEAT repeats which form a double layer of α helices with a convex and a concave surface. Despite low sequence identity, the overall fold of Paip1M is similar to the middle domain of human eIF4GII and yeast eIF4GI. Moreover, the amino-acid sequence motif and the local structure of eIF4G involved in binding of eIF4A, are conserved in Paip1. The structure reported here is the first of a member of the Paip family, thereby filling a gap in our understanding of initiation of eukaryotic mRNA translation in three dimensions. 相似文献
5.
Lei J Mesters JR von Brunn A Hilgenfeld R 《Biochemical and biophysical research communications》2011,(4):680-685
This communication describes SAXS data based global structures of tetravalent antibody CD4–IgG2 and its dimeric to pentameric complexes with gp120s. Comparison of models brought forth that while the two CD4s grafted on each arm remain tightly packed in the unliganded antibody, they enable binding of first two gp120s preferentially to the same Fab arm in an asymmetric manner. Retention of residues in the CD4–Fab linker earlier reasoned to enable bi-fold collapse of gp120-bound soluble CD4, and observed asymmetry of the (CD4–IgG2)/(gp120)2 complex suggest that encoded flexibility in CD4–Fab linker is a critical structure–function factor for this broad spectrum neutralizing antibody. 相似文献
6.
Kumar P Chimenti MS Pemble H Schönichen A Thompson O Jacobson MP Wittmann T 《The Journal of biological chemistry》2012,287(21):17050-17064
A group of diverse proteins reversibly binds to growing microtubule plus ends through interactions with end-binding proteins (EBs). These +TIPs control microtubule dynamics and microtubule interactions with other intracellular structures. Here, we use cytoplasmic linker-associated protein 2 (CLASP2) binding to EB1 to determine how multisite phosphorylation regulates interactions with EB1. The central, intrinsically disordered region of vertebrate CLASP proteins contains two SXIP EB1 binding motifs that are required for EB1-mediated plus-end-tracking in vitro. In cells, both EB1 binding motifs can be functional, but most of the binding free energy results from nearby electrostatic interactions. By employing molecular dynamics simulations of the EB1 interaction with a minimal CLASP2 plus-end-tracking module, we find that conserved arginine residues in CLASP2 form extensive hydrogen-bond networks with glutamate residues predominantly in the unstructured, acidic C-terminal tail of EB1. Multisite phosphorylation of glycogen synthase kinase 3 (GSK3) sites near the EB1 binding motifs disrupts this electrostatic "molecular Velcro." Molecular dynamics simulations and (31)P NMR spectroscopy indicate that phosphorylated serines participate in intramolecular interactions with and sequester arginine residues required for EB1 binding. Multisite phosphorylation of these GSK3 motifs requires priming phosphorylation by interphase or mitotic cyclin-dependent kinases (CDKs), and we find that CDK- and GSK3-dependent phosphorylation completely disrupts CLASP2 microtubule plus-end-tracking in mitosis. 相似文献
7.
Kusano S Kukimoto-Niino M Akasaka R Toyama M Terada T Shirouzu M Shindo T Yokoyama S 《Protein science : a publication of the Protein Society》2008,17(11):1907-1914
Receptor activity-modifying protein (RAMP) 1 forms a heterodimer with calcitonin receptor-like receptor (CRLR) and regulates its transport to the cell surface. The CRLR.RAMP1 heterodimer functions as a specific receptor for calcitonin gene-related peptide (CGRP). Here, we report the crystal structure of the human RAMP1 extracellular domain. The RAMP1 structure is a three-helix bundle that is stabilized by three disulfide bonds. The RAMP1 residues important for cell-surface expression of the CRLR.RAMP1 heterodimer are clustered to form a hydrophobic patch on the molecular surface. The hydrophobic patch is located near the tryptophan residue essential for binding of the CGRP antagonist, BIBN4096BS. These results suggest that the hydrophobic patch participates in the interaction with CRLR and the formation of the ligand-binding pocket when it forms the CRLR.RAMP1 heterodimer. 相似文献
8.
Sharma A Jenkins KR Héroux A Bowman GD 《The Journal of biological chemistry》2011,286(49):42099-42104
Chromatin remodelers are ATP-dependent machines that dynamically alter the chromatin packaging of eukaryotic genomes by assembling, sliding, and displacing nucleosomes. The Chd1 chromatin remodeler possesses a C-terminal DNA-binding domain that is required for efficient nucleosome sliding and believed to be essential for sensing the length of DNA flanking the nucleosome core. The structure of the Chd1 DNA-binding domain was recently shown to consist of a SANT and SLIDE domain, analogous to the DNA-binding domain of the ISWI family, yet the details of how Chd1 recognized DNA were not known. Here we present the crystal structure of the Saccharomyces cerevisiae Chd1 DNA-binding domain in complex with a DNA duplex. The bound DNA duplex is straight, consistent with the preference exhibited by the Chd1 DNA-binding domain for extranucleosomal DNA. Comparison of this structure with the recently solved ISW1a DNA-binding domain bound to DNA reveals that DNA lays across each protein at a distinct angle, yet contacts similar surfaces on the SANT and SLIDE domains. In contrast to the minor groove binding seen for Isw1 and predicted for Chd1, the SLIDE domain of the Chd1 DNA-binding domain contacts the DNA major groove. The majority of direct contacts with the phosphate backbone occur only on one DNA strand, suggesting that Chd1 may not strongly discriminate between major and minor grooves. 相似文献
9.
Oxytricha nova telomere end-binding protein specifically recognizes and caps single strand (T(4)G(4))(n) telomeric DNA at the very 3'-ends of O. nova macronuclear chromosomes. Proteins homologous to the N-terminal domain of OnTEBP alpha subunit have now been identified in Oxytricha trifallax, Stylonychia mytilis, Euplotes crassus, Schizosaccharomyces pombe, and Homo sapiens, suggesting that this protein is widely distributed in eukaryotes. We describe here the crystal structures of the N-terminal single-stranded DNA (ssDNA)-binding domain of O. nova telomere end-binding protein alpha subunit both uncomplexed and complexed with single strand telomeric DNA. These structures show how the N-terminal domain of alpha alone, in the absence of the beta subunit and without alpha dimerization, can bind single-stranded telomeric DNA in a sequence-specific and 3'-end-specific manner. Furthermore, comparison of the uncomplexed and complexed forms of this protein shows that the ssDNA-binding site is largely pre-organized in the absence of ssDNA with modest, but interesting, rearrangements of amino acid side-chains that compose the ssDNA-binding site. The structures described here extend our understanding of structures of O. nova telomeric complexes by adding uncomplexed and complexed forms of monomeric alpha to previously described structures for (alpha 56/ssDNA)(2) dimer and alpha 56/beta 28/ssDNA ternary complexes. We believe that each of these four structures represent intermediates in an ordered assembly/disassembly pathway for O. nova telomeric complexes. 相似文献
10.
Rudolph MJ Amodeo GA Bai Y Tong L 《Biochemical and biophysical research communications》2005,337(4):1224-1228
AMP-activated protein kinase (AMPK) is a master metabolic regulator, and is an important target for drug development against diabetes, obesity, and other diseases. AMPK is a hetero-trimeric enzyme, with a catalytic (alpha) subunit, and two regulatory (beta and gamma) subunits. Here we report the crystal structure at 2.2A resolution of the protein kinase domain (KD) of the catalytic subunit of yeast AMPK (commonly known as SNF1). The Snf1-KD structure shares strong similarity to other protein kinases, with a small N-terminal lobe and a large C-terminal lobe. Two negative surface patches in the structure may be important for the recognition of the substrates of this kinase. 相似文献
11.
Saccharomyces cerevisiae Est1p is a telomerase-associated protein essential for telomere length homeostasis. hEST1A is one of the three human Est1p homologues and is considered to be involved not only in regulation of telomere elongation or capping but also in nonsense-mediated degradation of RNA. hEST1A is composed of two conserved regions, Est1p homology and PIN (PilT N-terminus) domains. The present study shows the crystal structure of the PIN domain at 1.8 A resolution. The overall structure is composed of an alpha/beta fold or a core structure similar to the counterpart of 5' nucleases and an extended structure absent from archaeal PIN-domain proteins and 5' nucleases. The structural properties of the PIN domain indicate its putative active center consisting of invariant acidic amino acid residues, which is geometrically similar to the active center of 5' nucleases and an archaeal PAE2754 PIN-domain protein associated with exonuclease activity. 相似文献
12.
13.
Weissenhorn W 《Journal of molecular biology》2005,351(3):653-661
Endophilin has been implicated in the retrieval of membrane via endocytosis of clathrin-coated vesicles, which is crucial for the maintenance of neurotransmitter exocytosis during stimulation; both exocytosis and endocytosis are regulated by intracellular calcium levels. Here, we present the 2.3 A crystal structure of the endophilin-A1 BAR domain, which has been suggested to function in inducing and sensing membrane curvature at the site of endocytosis. Endo-BAR folds into a crescent-shaped dimer composed of two elongated, three-helix bundles. Two additional domains of 30 residues each, inserted into helix 1 at the center of the concave side of the dimer, may interfere with the proposed mode of BAR domain membrane interaction. In addition, the dimer binds 11 divalent cadmium ions in the crystal mostly with typical Ca2+ co-ordination spheres. The endophilin-1A BAR domain thus constitutes a new variant of a BAR domain, and it may link endophilin-1A BAR function to calcium regulation of endocytosis. 相似文献
14.
Huntington's disease is a genetic neurological disorder that is triggered by the dissociation of the huntingtin protein (htt) from its obligate interaction partner Huntingtin-interacting protein 1 (HIP1). The release of the huntingtin protein permits HIP1 protein interactor (HIPPI) to bind to its recognition site on HIP1 to form a HIPPI/HIP1 complex that recruits procaspase-8 to begin the process of apoptosis. The interaction module between HIPPI and HIP1 was predicted to resemble a death-effector domain. Our 2.8-Å crystal structure of the HIP1 371-481 subfragment that includes F432 and K474, which is important for HIPPI binding, is not a death-effector domain but is a partially opened coiled coil. The HIP1 371-481 model reveals a basic surface that we hypothesize to be suitable for binding HIPPI. There is an opened region next to the putative HIPPI site that is highly negatively charged. The acidic residues in this region are highly conserved in HIP1 and a related protein, HIP1R, from different organisms but are not conserved in the yeast homologue of HIP1, sla2p. We have modeled ∼ 85% of the coiled-coil domain by joining our new HIP1 371-481 structure to the HIP1 482-586 model (Protein Data Bank code: 2NO2). Finally, the middle of this coiled-coil domain may be intrinsically flexible and suggests a new interaction model where HIPPI binds to a U-shaped HIP1 molecule. 相似文献
15.
The microtubule plus end-binding protein EB1 is involved in Sertoli cell plasticity in testicular seminiferous tubules 总被引:1,自引:0,他引:1
Sertoli cells of testis belong to a unique type of polarized epithelial cells and are essential for spermatogenesis. They form the blood-testis barrier at the base of seminiferous tubule. Their numerous long, microtubule-rich processes extend inward and associate with developing germ cells to sustain germ cell growth and differentiation. How Sertoli cells develop and maintain their elaborate processes has been an intriguing question. Here we showed that, by microinjecting lentiviral preparations into mouse testes of 29 days postpartum, we were able to specifically label individual Sertoli cells with GFP, thus achieving a clear view of their natural configurations together with associated germ cells in situ. Moreover, compared to other microtubule plus end-tracking proteins such as CLIP-170 and p150(Glued), EB1 was highly expressed in Sertoli cells and located along microtubule bundles in Sertoli cell processes. Stable overexpression of a GFP-tagged dominant-negative EB1 mutant disrupted microtubule organizations in cultured Sertoli cells. Furthermore, its overexpression in testis Sertoli cells altered their shapes. Sertoli cells in situ became rod-like, with decreased basal and lateral cell processes. Seminiferous tubule circularity and germ cell number were also reduced. These data indicate a requirement of proper microtubule arrays for Sertoli cell plasticity and function in testis. 相似文献
16.
The scaffold protein NBR1 is involved in signal transmission downstream of the serine/protein kinase from the giant muscle protein titin. Its N-terminal Phox and Bem1p (PB1) domain plays a critical role in mediating protein-protein interactions with both titin kinase and with another scaffold protein, p62. We have determined the crystal structure of the PB1 domain of NBR1 at 1.55A resolution. It reveals a type-A PB1 domain with two negatively charged residue clusters. We provide a structural perspective on the involvement of NBR1 in the titin kinase signalling pathway. 相似文献
17.
Neuropilin-1 (Npn-1) is a type I cell surface receptor involved in a broad range of developmental processes, including axon guidance, angiogenesis, and heterophilic cell adhesion. We have determined the crystal structure of the human Npn-1 b1 domain to 1.9 A. The overall structure resembles coagulation factor V and VIII (F5/8) C1 and C2 domains, exhibiting a distorted jellyroll fold. Details of the structure provide insight to b1 domain regions responsible for ligand binding and facilitate rationalization of existing biochemical binding data. A polar cleft formed by adjacent loops at one end of the molecule in conjunction with flanking electronegative surfaces may represent the binding site for the positively charged tails of semaphorins and VEGF(165). The nature of the cell adhesion binding site of the b1 domain can be visualized in context of the structure. 相似文献
18.
Andras Boeszoermenyi Jens C. Schmidt Iain M. Cheeseman Monika Oberer Gerhard Wagner Haribabu Arthanari 《Biomolecular NMR assignments》2014,8(2):275-278
During mitosis, kinetochores coordinate the attachment of centromeric DNA to the dynamic plus ends of microtubules, which is hypothesized to pull sister chromatids toward opposing poles of the mitotic spindle. The outer kinetochore Ndc80 complex acts synergistically with the Ska (spindle and kinetochore-associated) complex to harness the energy of depolymerizing microtubules and power chromosome movement. The Ska complex is a hexamer consisting of two copies of the proteins Ska1, Ska2 and Ska3, respectively. The C-terminal domain of the spindle and kinetochore-associated protein 1 (Ska1) is the microtubule-binding domain of the Ska complex. We solved the solution structure of the C. elegans microtubule-binding domain (MTBD) of the protein Ska1 using NMR spectroscopy. Here, we report the resonance assignments of the MTBD of C. elegans Ska1. 相似文献
19.
Tawaramoto MS Park SY Tanaka Y Nureki O Kurumizaka H Yokoyama S 《The Journal of biological chemistry》2003,278(51):51454-51461
The human centromere protein B (CENP-B), a centromeric heterochromatin component, forms a homodimer that specifically binds to a distinct DNA sequence (the CENP-B box), which appears within every other alpha-satellite repeat. Previously, we determined the structure of the human CENP-B DNA-binding domain, CENP-B-(1-129), complexed with the CENP-B box DNA. In the present study, we determined the crystal structure of its dimerization domain (CENP-B-(540-599)), another functional domain of CENP-B, at 1.65-A resolution. CENP-B-(540-599) contains two alpha-helices, which are folded into an antiparallel configuration. The CENP-B-(540-599) dimer formed a symmetrical, antiparallel, four-helix bundle structure with a large hydrophobic patch in which 23 residues of one monomer form van der Waals contacts with the other monomer. In the CENP-B-(540-599) dimer, the N-terminal ends of CENP-B-(540-599) are oriented on opposite sides of the dimer. This CENP-B dimer configuration may be suitable for capturing two distant CENP-B boxes during centromeric heterochromatin formation. 相似文献
20.
Crystal structure of the M1 protein-binding domain of the influenza A virus nuclear export protein (NEP/NS2) 总被引:2,自引:0,他引:2 下载免费PDF全文
Akarsu H Burmeister WP Petosa C Petit I Müller CW Ruigrok RW Baudin F 《The EMBO journal》2003,22(18):4646-4655
During influenza virus infection, viral ribonucleoproteins (vRNPs) are replicated in the nucleus and must be exported to the cytoplasm before assembling into mature viral particles. Nuclear export is mediated by the cellular protein Crm1 and putatively by the viral protein NEP/NS2. Proteolytic cleavage of NEP defines an N-terminal domain which mediates RanGTP-dependent binding to Crm1 and a C-terminal domain which binds to the viral matrix protein M1. The 2.6 A crystal structure of the C-terminal domain reveals an amphipathic helical hairpin which dimerizes as a four-helix bundle. The NEP-M1 interaction involves two critical epitopes: an exposed tryptophan (Trp78) surrounded by a cluster of glutamate residues on NEP, and the basic nuclear localization signal (NLS) of M1. Implications for vRNP export are discussed. 相似文献