首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract Antibiotic drug-resistance cassettes (DRCs) were used to insertionally inactivate the wild-type Bordetella pertussis recA gene cloned into a suicide vector. The mutant allele was mobilized by conjugal gene transfer from Escherichia coli strain SM10 into different genetic backgrounds of B. pertussis . Southern hybridization studies of one of these mutants showed that it contained a DRC integrated within a recA gene situated within a Cla I genomic DNA fragment. Selected mutants were assayed to quantify recombinational and DNA repair deficiencies. These mutants were shown to be highly sensitive to both chemically and physically induced DNA damage. Gene transfer studies of another RecA mutant also indicated that it was defective in intergenic recombination. No difference in hemolytic activity or production of capsule was detected between the RecA mutants and their corresponding wild-type strains. The results of this investigation corroborate previous studies with the cloned B. pertussis recA gene, and demonstrate that the expression of the B. pertussis recA gene in the original host promotes both DNA repair and recombination.  相似文献   

2.
Abstract The genome of Bordetella pertussis contains a strictly conserved 530 base-pair (bp) repeated sequence present in about 70 to 80 copies and accounting for approximately 1% of the bacterial genome. The repeated element, whose complete nucleotide sequence has been determined, is specific for B. pertussis DNA; it could be detected neither in closely related Bordetella strains nor in other bacterial or eukaryotic DNAs. The repeated sequence is not associated with the control of the expression of virulence determinants.  相似文献   

3.
Li Q  Zhu Y  Chu J  Wang Y  Xu Y  Hou Q  Zhang S  Guo X 《Microbiology and immunology》2006,50(12):929-936
A recombinant pertussis DNA vaccine was described here with its immunogenicity and the ability to induce protection against B. pertussis infection in mice. Three immunodominant antigen gene fragments of pertussis, pertussis toxin subunit 1 (pts1), fragments of pertactin (prn) and filamentous hemagglutinin (fha), were recombined as fragment pts1-prn-fha named ppf, and it was cloned to plasmid pVAX1 as pVAX1/ppf. Compared to those injected with pVAX1, the mice injected with pVAX1/ppf significantly elicited more antigen specific antibody anti-PTS1, anti-PRN, anti-FHA and cytokine IL-10, IFN-gamma. When pGM-CSF was coinjected with pVAX1/ppf, the mice showed significantly increases of the three antibodies and cytokine IL-10, IL-4, IFN-gamma and TNF-alpha compared to those injected with pVAX1 only. The mice in group pVAX1/ppf & pGM-CSF, in particular; induced much more anti-PTS1, IL-4 and TNF-alpha than those in group pVAX1/ppf. In the intracerebral mouse protection test, the mice immunized with pVAX1/ppf or pVAX1/ppf & pGM-CSF induced protection to a lethal dose of B. pertussis. The results indicate that recombinant DNA vaccine and pGM-CSF coinjection can induce protective immunity against B. pertussis, demonstrating a valuable method to prevent pertussis.  相似文献   

4.
Bordetella pertussis can attach, invade and survive intracellularly in human macrophages in vitro. To study the significance of this bacterial feature in vivo, we analyzed the presence of viable bacteria in broncho-alveolar lavage (BAL) cells of mice infected with B. pertussis. We found B. pertussis to be present in a viable state in BAL fluid cells until at least 19 days after infection, suggesting B. pertussis to be able to survive in those cells. This intracellular niche may play an important role in the pathogenesis of pertussis. Pertussis toxin and the RGD sequence of the virulence factor filamentous hemagglutinin (FHA) both play a role in the attachment of B. pertussis to human and mouse macrophages in vitro and we hypothesized these virulence factors to be required for invasion and subsequent intracellular survival of B. pertussis in macrophages in vivo. A B. pertussis double mutant, in which the FHA RGD motif was changed to RAD and the ptx genes were deleted, was also found in a viable state in BAL fluid cells, albeit at lower levels than the wild-type strain. In our model, uptake of B. pertussis by alveolar phagocytes in vivo is thus, at least in part, determined by the bacterial virulence factors FHA and pertussis toxin.  相似文献   

5.
Bordetella pertussis is a re-emerging human respiratory pathogen whose infectious process is not fully understood, hampering the design of effective vaccines. The nature of bacterial attachment to host cells is a key event in the outcome of the infection. However, host cell receptors involved in B. pertussis colonization of the respiratory tract are still under investigation. Here, we report that cholesterol-rich domains are involved in B. pertussis adhesion to epithelial cells. Treatment of A549 cells with cholesterol-sequestering drugs such as methyl-β-cyclodextrin, nystatin, or filipin resulted in a significant decrease of B. pertussis attachment. Confocal laser microscopy studies showed B. pertussis associated with cholesterol-rich domains. Accordingly, B. pertussis was found in detergent-resistant membrane domain fractions isolated from bacterial-infected A549 cells. Our results indicate a main role of filamentous hemagglutinin, an environmentally regulated virulence factor, in this interaction, and a specific affinity for cholesterol, one of the major components of traqueal secretions, which might additionally contribute to the effective colonization of the respiratory tract.  相似文献   

6.
Isolation of a repeated DNA sequence from Bordetella pertussis   总被引:8,自引:0,他引:8  
A repeated DNA sequence in the genome of Bordetella pertussis has been demonstrated. At least 20 copies of this sequence could be observed in either BamHI or EcoRI restriction enzyme digests of chromosomal DNA; fragments carrying the repeated DNA sequence ranged in size from about 1.5 to 20 kbp. The repeated DNA sequence was cloned from two separate regions of the B. pertussis genome, as shown by restriction enzyme site maps of the two clones and by hybridization studies. A small number of differences in the pattern of hybridization of the repeated DNA sequence to chromosomal DNA from several strains of B. pertussis was observed. No repeated DNA sequences were observed in one strain each of B. parapertussis and B. bronchiseptica, and there was no hybridization of B. pertussis DNA to Escherichia coli chromosomal DNA. The repeated DNA sequence was subcloned on a 2.54 kbp BamHI fragment from one of the two original clones. Restriction enzyme digests and hybridization studies showed that the repeated DNA sequence was about 1 kbp in size and had a single, internal ClaI site.  相似文献   

7.
Abstract Filamentous hemagglutinin (FHA), a 220-kDa protein located on the surface of Bordetella pertussis , is one of the major cell adhesins of this bacterium. We have produced three hybridoma cell lines that express monoclonal antibodies (mAbs) against FHA: X3C, X3E and X4B. The anti-FHA mAbs X3C and X3E reacted with 220-kDa FHA protein bands on Western blots. The mAb X4B, which reacted with FHA in ELISA, did not bind to FHA in a Western blot assay. All three mAbs seemed to be directed to the same epitope or to epitopes in close proximity as suggested by competition ELISAs. All three mAbs were able to inhibit the adherence of Chinese hamster ovary cells to purified FHA, and they could also inhibit the FHA-mediated agglutination of goose red blood cells. The attachment of B. pertussis to epithelial cell monolayers was inhibited by the mAb X3C. These antibodies are very useful probes to identify the presence of FHA in bordetellae species and in clinical reagents such as pertussis vaccines, and to characterize the functional domains of this important bacterial adhesin.  相似文献   

8.
Molecular cloning of pertussis toxin genes.   总被引:24,自引:0,他引:24       下载免费PDF全文
We have cloned a 4.5 kb EcoRI/BamHI DNA fragment from Bordetella pertussis which contains at least two genes responsible for expression of pertussis toxin. The S4 subunit of the toxin was isolated by high pressure liquid chromatography and the NH2-terminal amino acid sequence determined. Using a mixed synthetic oligonucleotide probe designed by reverse translation of a portion of the protein sequence, a cloned DNA fragment was identified which contains the coding information for at least the S4 structural subunit of the toxin. Sequence analyses indicate that the mature protein is derived by proteolytic cleavage of a precursor molecule. Southern blot analyses of Tn5-induced B. pertussis toxin-deficient mutants show that the Tn5 DNA is inserted 1.3 kb downstream from the S4 subunit gene. This second gene could code for another subunit required for assembly of the mature toxin or a non-structural transport protein, possibly in the same polycistronic operon. The molecular cloning of pertussis toxin genes provides the basis for development of a safer recombinant "new generation" vaccine for whooping cough.  相似文献   

9.
《Biologicals》2014,42(2):101-108
Speculation that the Japanese modified intra-cerebral challenge assay, which is used in several countries for control of acellular pertussis vaccines, depends on the presence of small amounts of active pertussis toxin led to an assumption that it may not be appropriate for highly toxoided or genetically detoxified vaccines. Consequently, at the recommendation of a World Health Organisation AD Hoc Working Group on mouse protection models for testing and control of acellular pertussis vaccine, the effect of pertussis toxin on the modified intra-cerebral challenge assay (modified Kendrick, MICA) was evaluated in an international collaborative study. Results of this study showed that for genetically detoxified vaccines both with and without active pertussis toxin the MICA clearly distinguished mice vaccinated with acellular vaccines from unvaccinated mice and gave a significant dose–response relationship. However, vaccine samples containing active pertussis toxin (5 or 50 ng/single human dose) appeared to be more potent than the equivalent sample without active pertussis toxin. Similar results were also given by two respiratory infection models (intranasal and aerosol) included in the study. The results also indicated that the effect of pertussis toxin may vary depending on mouse strain.  相似文献   

10.
百日咳是传染性强、感染率高的急性呼吸道传染病,主要感染婴幼儿,是婴儿死亡的主要原因之一。百日咳鲍特菌(Bordetella pertussis)是引起百日咳的最主要病原菌。近年来世界各地多次出现百日咳暴发,迫切需研制更加有效的新型百日咳疫苗。本研究构建了一株减毒百日咳活疫苗BPTM1,利用同源重组方法敲除编码百日咳鲍特菌主要毒力因子百日咳毒素(pertussis toxin,PTX)和皮肤坏死毒素(dermonecrotic toxin,DNT)的基因,并用大肠埃希菌的同源基因置换了负责气管细胞毒素(tracheal cytotoxin,TCT)转运的基因ampG。通过聚合酶链反应验证了毒素及相关基因的敲除和置换,蛋白免疫印迹法检测表明PTX的S1亚基未表达。体外生长曲线和体内定植曲线均表明,相比于野生型百日咳鲍特菌BPMM,减毒BPTM1的生长和定植能力未受影响,其所致肺部病理效应减轻,而所诱导的百日咳鲍特菌特异性IgG、IgG1、IgG2a抗体保持高水平。本研究表明,减毒百日咳鲍特菌BPTM1有可能成为百日咳疫苗的候选疫苗。  相似文献   

11.
The filamentous hemagglutinin (FHA) of Bordetella pertussis is a principal adhesin, which plays a key role in the colonization of the upper respiratory tract. FHA is also a protective antigen, which has been incorporated in the new generation of acellular vaccines against whooping cough. The protein is synthesized as a large 367-kDa precursor, which is then processed into a 220-kDa secreted polypeptide. To optimize the use of this protein for vaccine purposes it would be helpful to define the regions encompassing immunodominant epitopes. Twelve recombinant plasmids have been generated encoding fusion proteins between fragments of the matured-secreted 220-kDa form of FHA and the vector-encoded phage MS2 polymerase. Protein extracts of the resulting recombinant clones have been tested for reactivity with sera from 20 patients convalescent from whooping cough, and two human standard sera. The results indicate the presence of an immunodominant B cell epitope in the polypeptide coded by a 1-kb DNA fragment encompassing positions 5781-6800 of the published sequence. These results suggest that the identified fragment should be conserved in the formulation of vaccines against pertussis.  相似文献   

12.
Bordetella pertussis virulence-associated 30-, 32-, 90- and 95-kDa outer membrane proteins were purified and their N-terminal amino acid sequences were determined. The 30- and 32-kDa outer membrane proteins showed identity to the C-terminal region of the precursors of the serum resistance protein (BrkA) and the tracheal colonization factor, respectively. We confirmed the cleavage site of these precursors after N731 for BrkA and after N393 for tracheal colonization factor. Associated with the 32-kDa outer membrane protein, we found a new group of 36-kDa virulence-associated peptides. The 95-kDa outer membrane protein showed identity to Vag8. The 90-kDa outer membrane protein did not show homology with the described proteins. We report the N-termini sequence of Vir-90, a novel potential virulence factor.  相似文献   

13.
Abstract Vaccination is the most effective way to prevent infectious diseases. Recombinant DNA technologies have provided powerful new tools to develop vaccines that were previously impossible or difficult to make, and to improve the vaccines that were already available but had been developed using old technology. In the case of whooping cough, an effective vaccine (composed of killed bacterial cells) is available, but its use is controversial because of the many side effects that have been associated with it. An improved vaccine against this disease should contain pertussis toxin, a molecule that needs to be detoxified in order to be included in the vaccine. Classical methods of detoxification, such as formaldehyde treatment have been used to inactivate this toxin. We have used recombinant DNA technologies to clone the pertussis toxin gene, express it in bacteria, map the B and T cell epitopes of the molecule, and to identify the amino acids that are important for enzymatic activity and toxicity. Finally, we have used this information to mutate the gene in the chromosome of Bordetella pertussis in order to obtain a strain that produces a molecule that is already non-toxic. This genetically inactivated pertussis toxin was tested extensively in animal models and clinical trials and was found to induce an immune response that is superior in quality and quantity to that induced by the vaccines produced by conventional technologies.  相似文献   

14.
D Favre  S J Cryz  J F Viret 《Biochimie》1991,73(2-3):235-244
A recA gene of Bordetella pertussis was identified in a plasmid library by complementation of a recA mutation in E coli and subcloned as a 2.1-kb Sph I DNA fragment. Southern hybridization experiments showed no similarity to the E coli recA gene, but very strong similarity to other Bordetella species. E coli recA mutant cells containing the B pertussis recA gene at high gene dosage were resistant to DNA-damaging agents such as methyl methane sulfonate or 4-nitroquinoline-N-oxide, displayed induction of SOS functions, and were able to promote DNA recombination, but not induction of phage lambda. The latter phenotype distinguishes the B pertussis recA gene product from the corresponding proteins from most other Gram-negative organisms. Amino acid sequence comparisons revealed a high degree of structural conservation between prokaryotic RecA proteins.  相似文献   

15.
To study the structural arrangement of the chromosomal region containing vir genes of Bordetella pertussis the corresponding 15 kb fragment of Bordetella pertussis chromosomal DNA has been cloned. The sequence homology to an earlier characterized Bordetella pertussis genetical element RSBP1 and flanked by two 400 bp inverted repeats has been shown to be located at an end of a BamHI fragment. The restriction map of Bordetella pertussis 475 coincides with the previously published maps of Bordetella pertussis Tohama and 18323 permitting one to conclude the definite conservatism of the cloned sequence. The preliminary data obtained make possible mapping of the RSBP1 homologous sequence adjacent to adenylate cyclase, agglutinin 2 and pertussis toxin genes. The possible role of RSBP1 elements in the regulation of Bordetella virulence is suggested.  相似文献   

16.
Bordetella pertussis must survive the defenses of the human respiratory tract including the complement system. The BrkA (Bordetella resistance to killing) protein prevents killing by the antibody-dependent classical pathway. In this study, the ability of B. pertussis to activate the human complement cascade by other pathways was examined. B. pertussis was not killed in serum depleted of C2, however serum depleted for factor B killed B. pertussis as efficiently as intact serum, suggesting complement activation occurred exclusively by the classical pathway. B. pertussis was not killed by serum depleted of antibody, suggesting the bacteria fail to activate the antibody-independent branches of the classical pathway, including the mannose binding lectin pathway. Mutants lacking the terminal trisaccharide of lipopolysaccharide retained the complement-resistant phenotype, suggesting this structure does not influence activation of complement.  相似文献   

17.
Culture supernatants of Bordetella pertussis are a brilliant yellow; however, the structure and biological role of the responsible pigment have not been investigated. In this study, a brilliant yellow‐colored fraction was extracted from culture supernatants of B. pertussis and analyzed by HPLC. UV–visible spectral analysis and mass spectrometry identified the brilliant yellow pigment as riboflavin. Riboflavin production was high in lag and early log phases and riboflavin was found to enhance growth of B. pertussis in low‐density cultures. Riboflavin production is not regulated by the BvgAS system. In addition, it was found that other Bordetella species, such as B. parapertussis , B. holmesii and B. bronchiseptica, also release riboflavin into their culture supernatants. This is the first report that B. pertussis secrets riboflavin to the extracellular space and that riboflavin may promote its growth. The mechanism may be associated with pathogenesis of B. pertussis .
  相似文献   

18.
Abstract Adherence of B. pertussis to NIH3T3 mouse fibroblasts was efficiently inhibited by a mouse immune serum reacting specifically with the filamentous haemagglutinin (FHA), whereas a mouse immune serum reacting specifically with the pertussis toxin (Ptx) produced partial inhibition only significant after 3 h infection. Protection against cytopathic effects on infected 3T3 cells with anti-FHA antibodies was at least as effective (83.3%± 7.5) as with anti-Ptx antibodies (75%± 4). This suggests that adherence of B. pertussis to eukaryotic receptors is a primary mechanism determining both bacterial proliferation and toxic effects in susceptible cells, and that prevention of B. pertussis attachment to cell receptors might be sufficient to protect against both infectious and toxic processes in whooping cough.  相似文献   

19.
A repeating element of DNA has been isolated and sequenced from the genome of Bordetella pertussis. Restriction map analysis of this element shows single internal ClaI, SphI, BstEII and SalI sites. Over 40 DNA fragments are seen in ClaI digests of B. pertussis genomic DNA to which the repetitive DNA sequence hybridizes. Sequence analysis of the repeat reveals that it has properties consistent with bacterial insertion sequence (IS) elements. These properties include its length of 1053 bp, multiple copy number and presence of 28 bp of near-perfect inverted repeats at its termini. Unlike most IS elements, the presence of this element in the B. pertussis genome is not associated with a short duplication in the target DNA sequence. This repeating element is not found in the genomes of B. parapertussis or B. bronchiseptica. Analysis of a DNA fragment adjacent to one copy of the repetitive DNA sequence has identified a different repeating element which is found in nine copies in B. parapertussis and four copies in B. pertussis, suggesting that there may be other repeating DNA elements in the different Bordetella species. Computer analysis of the B. pertussis repetitive DNA element has revealed no significant nucleotide homology between it and any other bacterial transposable elements, suggesting that this repetitive sequence is specific for B. pertussis.  相似文献   

20.
Two independent isolates of a Bordetella pertussis repeated DNA unit were sequenced and shown to be an insertion sequence element with five nucleotide differences between the two copies. The sequences were 1053 bp in length with near-perfect terminal inverted repeats of 28 bp, had three open reading frames, and were each flanked by short direct repeats. The two insertion sequences showed considerable homology to two other B. pertussis repeated DNA sequences reported recently: IS481 and a 530 bp repeated DNA unit. The B. pertussis insertion sequence would appear to comprise a group of closely related sequences differing mainly in flanking direct repeats and the terminal inverted repeats. The two isolates reported here, which were from the adenylate cyclase and agglutinogen 2 regions of the genome, were numbered IS48lvl and IS48lv2 respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号