首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
UV irradiation of simian virus 40-infected cells at fluences between 20 and 60 J/m2, which yield one to three pyrimidine dimers per simian virus 40 genome, leads to a fluence-dependent progressive decrease in simian virus 40 DNA replication as assayed by incorporation of [3H]deoxyribosylthymine into viral DNA. We used a variety of biochemical and biophysical techniques to show that this decrease is due to a block in the progression of replicative-intermediate molecules to completed form I molecules, with a concomitant decrease in the entry of molecules into the replicating pool. Despite this UV-induced inhibition of replication, some pyrimidine dimer-containing molecules become fully replicated after UV irradiation. The fraction of completed molecules containing dimers goes up with time such that by 3 h after a UV fluence of 40 J/m2, more than 50% of completed molecules contain pyrimidine dimers. We postulate that the cellular replication machinery can accommodate limited amounts of UV-induced damage and that the progressive decrease in simian virus 40 DNA synthesis after UV irradiation is due to the accumulation in the replication pool of blocked molecules containing levels of damage greater than that which can be tolerated.  相似文献   

2.
3.
B virus of the family Herpesviridae is endemic to rhesus macaques but results in 80% fatality in untreated humans who are zoonotically infected. Downregulation of major histocompatibility complex (MHC) class I in order to evade CD8+ T-cell activation is characteristic of most herpesviruses. Here we examined the cell surface presence and total protein expression of MHC class I molecules in B virus-infected human foreskin fibroblast cells and macaque kidney epithelial cells in culture, which are representative of foreign and natural host initial target cells of B virus. Our results show <20% downregulation of surface MHC class I molecules in either type of host cells infected with B virus, which is statistically insignificantly different from that observed in uninfected cells. We also examined the surface expression of MHC class Ib molecules, HLA-E and HLA-G, involved in NK cell inhibition. Our results showed significant upregulation of HLA-E and HLA-G in host cells infected with B virus relative to the amounts observed in other herpesvirus-infected cells. These results suggest that B virus-infected cell surfaces maintain normal levels of MHC class Ia molecules, a finding unique among simplex viruses. This is a unique divergence in immune evasion for B virus, which, unlike human simplex viruses, does not inhibit the transport of peptides for loading onto MHC class Ia molecules because B virus ICP47 lacks a transporter-associated protein binding domain. The fact that MHC class Ib molecules were significantly upregulated has additional implications for host-pathogen interactions.  相似文献   

4.
Cocultivation of uninfected and bovine leukemia virus-producing bat cells yielded, in addition to the unintegrated linear DNA duplex, DNA molecules that migrated as 4.4- and 4.8-kilobase-pair DNA fragments in gel electrophoresis. These DNA molecules were purified by acid-phenol extraction and cleaved with restriction endonucleases EcoRI, and HindIII, which have one recognition site each on the bovine leukemia virus proviral DNA. Such cleavage generated DNA molecules of approximately 10.0 and 9.4 kilobase pairs, thus indicating the existence of two species of covalently closed circular molecules of bovine leukemia virus proviral DNA.  相似文献   

5.
The difference in membrane (M) protein compositions between the transmissible gastroenteritis coronavirus (TGEV) virion and the core has been studied. The TGEV M protein adopts two topologies in the virus envelope, a Nexo-Cendo topology (with the amino terminus exposed to the virus surface and the carboxy terminus inside the virus particle) and a Nexo-Cexo topology (with both the amino and carboxy termini exposed to the virion surface). The existence of a population of M molecules adopting a Nexo-Cexo topology in the virion envelope was demonstrated by (i) immunopurification of (35)S-labeled TGEV virions using monoclonal antibodies (MAbs) specific for the M protein carboxy terminus (this immunopurification was inhibited only by deletion mutant M proteins that maintained an intact carboxy terminus), (ii) direct binding of M-specific MAbs to the virus surface, and (iii) mass spectrometry analysis of peptides released from trypsin-treated virions. Two-thirds of the total number of M protein molecules found in the virion were associated with the cores, and one-third was lost during core purification. MAbs specific for the M protein carboxy terminus were bound to native virions through the M protein in a Nexo-Cexo conformation, and these molecules were removed when the virus envelope was disrupted with NP-40 during virus core purification. All of the M protein was susceptible to N-glycosidase F treatment of the native virions, which indicates that all the M protein molecules are exposed to the virus surface. Cores purified from glycosidase-treated virions included M protein molecules that completely or partially lost the carbohydrate moiety, which strongly suggests that the M protein found in the cores was also exposed in the virus envelope and was not present exclusively in the virus interior. A TGEV virion structure integrating all the data is proposed. According to this working model, the TGEV virion consists of an internal core, made of the nucleocapsid and the carboxy terminus of the M protein, and the envelope, containing the spike (S) protein, the envelope (E) protein, and the M protein in two conformations. The two-thirds of the molecules that are in a Nexo-Cendo conformation (with their carboxy termini embedded within the virus core) interact with the internal core, and the remaining third of the molecules, whose carboxy termini are in a Nexo-Cexo conformation, are lost during virus core purification.  相似文献   

6.
Virus entry into a host cell comprises the first step of the viral life cycle. Blockage of this process can stop or prevent the rise of the infection. Development of compounds exhibiting directed blocking activity requires information about host cell and viral molecules, which are involved into reciprocal recognition resulting in the virus entry into the cell. This review is devoted to the problems of the identification of plasma membrane molecules, involved in binding of hepatitis C virus and its subsequent transfer inside the cells. The putative role of these molecules as hepatitis C virus receptors and co-receptors in the beginning and development of the infection is discussed.  相似文献   

7.
Three plaque isolates of SV40 strain 777 and 1 plaque isolate of strain 776 were grown to high-titer stocks and serially passaged, undiluted, in monkey BS-C-1 cells. In each case, the serial passaging procedure resulted in the accumulation of closed-circular SV40 DNA molecules containing covalently linked sequences homologous to reiterated host cell DNA (called substituted virus DNA). The relative yields, at a given passage level, of SV40 DNA with measurable homology to host DNA varied in different sets of serial passages, including passages of the same virus clone. More reproducible yields of substituted viral DNA progeny were obtained when the serial passaging procedure was initiated from earlier passages rather than from the original plaque-purified stock. Fractionation of closed-circular SV40 DNA molecules on alkaline sucrose gadients indicated that the majority of substituted virus DNA molecules are not plaque producers and are slightly smaller in size than plaque-forming DNA molecules which display no detectable homology to host DNA. Evidence that substituted SV40 DNA molecules replicate during serial undiluted passage was obtained from experiments which demonstrated (i) the presence of host sequences in replicative forms of the viral DNA and (ii) the incorporation of (3)H-thymidine into host sequences isolated from the mature substituted virus DNA molecule.  相似文献   

8.
Y Huang  J Mak  Q Cao  Z Li  M A Wainberg    L Kleiman 《Journal of virology》1994,68(12):7676-7683
Human immunodeficiency virus (HIV) particles produced in COS-7 cells transfected with HIV type 1 (HIV-1) proviral DNA contain 8 molecules of tRNA(3Lys) per 2 molecules of genomic RNA and 12 molecules of tRNA1,2Lys per 2 molecules of genomic RNA. When COS-7 cells are transfected with a plasmid containing both HIV-1 proviral DNA and a human tRNA3Lys gene, there is a large increase in the amount of cytoplasmic tRNA3Lys per microgram of total cellular RNA, and the tRNA3Lys content in the virus increases from 8 to 17 molecules per 2 molecules of genomic RNA. However, the total number of tRNALys molecules per 2 molecules of genomic RNA remains constant at 20; i.e., the viral tRNA1,2Lys content decreases from 12 to 3 molecules per 2 molecules of genomic RNA. All detectable tRNA3Lys is aminoacylated in the cytoplasm of infected cells and deacylated in the virus. When COS-7 cells are transfected with a plasmid containing both HIV-1 proviral DNA and a mutant amber suppressor tRNA3Lys gene (in which the anticodon is changed from TTT to CTA), there is also a large increase in the relative concentration of cytoplasmic tRNA3Lys, and the tRNA3Lys content in the virus increases from 8 to 15 molecules per 2 molecules of genomic RNA, with a decrease in viral tRNA1,2Lys from 12 to 5 molecules per 2 molecules of genomic RNA. Thus, the total number of molecules of tRNALys in the virion remains at 20. The alteration of the anticodon has little effect on the viral packaging of this mutant tRNA in spite of the fact that it no longer contains the modified base mcm 5s2U at position 34, and its ability to be aminoacylated is significantly impaired compared with that of wild-type tRNA3Lys. Viral particles which have incorporated either excess wild-type tRNA3Lys or mutant suppressor tRNA3Lys show no differences in viral infectivity compared with wild-type HIV-1.  相似文献   

9.
Free viral DNA in BK virus-induced hamster tumor cells   总被引:9,自引:3,他引:6       下载免费PDF全文
The biological properties of nine clonal lines of BK virus-induced hamster tumor cells were studied. All clonal lines were oncogenic and showed an enhanced ability to form colonies in semisolid medium. The cells of each clonal line contained T antigen; no virus could be rescued from any of the clonal lines. The number of viral DNA copies was determined in three of the clonal lines and varied from 10 to 20 copies per diploid amount of cell DNA. The state of the viral genome was studied in these lines, and the great majority of the viral DNA molecules appeared to be present as free (nonintegrated) molecules. At least six length classes of free defective BK virus DNA molecules, which all lacked a part of the late region of the genome, were detected in these cells. Three of the six length classes of BK virus DNA molecules acquired a TaqI recognition site, which suggested substitution of cellular DNA.  相似文献   

10.
The interaction of polyoma virus with a continuous line of rat cells was studied. Infection of these cells with polyoma did not cause virus multiplication but induced transformation. Transformed cells did not produce infectious virus, but in all clones tested virus was rescuable upon fusion with permissive mouse cells. Transformed rat cells contained, in addition to integrated viral genomes, 20 to 50 copies of nonintegrated viral DNA equivalents per cell (average). "Free" viral DNA molecules were also found in cells transformed by the ts-a and ts-8 polyoma mutants and kept at 33 C. This was not due to a virus carrier state, since the number of nonintegrated viral DNA molecules was found to be unchanged when cells were grown in the presence of antipolyoma serum. Recloning of the transformed cell lines produced subclones, which also contained free viral DNA. Most of these molecules were supercoiled and were found in the muclei of the transformed cells. The nonintegrated viral DNA is infectious. Its specifici infectivity is, however, about 100-fold lower than that of polyoma DNA extracted from productively infected cells, suggesting that these molecules contain a large proportion of defectives.  相似文献   

11.
Raman spectroscopy was applied with a high spectral resolution to a structural study of Influenza (type A) virus before and after its inoculation into Madin–Darby canine kidney cells. This study exploits the fact that the major virus and cell constituents, namely DNA/RNA, lipid, and protein molecules, exhibit peculiar fingerprints in the Raman spectrum, which clearly differed between cells and viruses, as well as before and after virus inoculation into cells. These vibrational features, which allowed us to discuss viral assembly, membrane lipid evolution, and nucleoprotein interactions of the virus with the host cells, reflected the ability of the virus to alter host cells’ pathways to enhance its replication efficiency. Upon comparing Raman signals from the host cells before and after virus inoculation, we were also able to discuss in detail cell metabolic reactions against the presence of the virus in terms of compositional variations of lipid species, the formation of fatty acids, dephosphorylation of high-energy adenosine triphosphate molecules, and enzymatic hydrolysis of the hemagglutinin glycoprotein.  相似文献   

12.
Supercoiled DNA molecules purified from mouse cells infected with high-multiplicity-passaged polyoma virus has a broader size distribution and sediments more slowly than DNA derived from low-multiplicity-passaged virus. The shorter DNA molecules are predominately noninfectious. Virus populations containing distinct size classes of defective virus DNA were isolated by growing virus from single cells infected by a defective and nondefective helper virus (infectious center). This technique probably results in the cloning of defective virus particles. By applying the infectious center method to DNA from various fractions of sucrose gradients it has been possible to obtain shorter circular DNA molecules ranging in size from 50 to 95% of the unit-length polyoma DNA molecule. The shorter molecules in any one preparation are homogeneous in size. This class size is retained upon repeated passage of crude viral lysates at high multiplicity. Thus far, all the purified shorter DNA molecules tested appear to be noninfectious and largely resistant to cleavage by the R(1) restriction enzyme. Some of the purified defective molecules have been found to interfere with the production of infectious virus upon co-infection with unit-length infectious polyoma DNA.  相似文献   

13.
14.
The two species of covalently closed circular DNA molecules of bovine leukemia virus were cloned in the lambda phage vector lambda gtWES X lambda B. Of the nine independent recombinant lambda-bovine leukemia virus clones that were analyzed, three were derived from the small and six were derived from the large circular molecules carrying, respectively, one and two copies of the long terminal repeat sequences. Comprehensive restriction endonuclease mapping of the unintegrated bovine leukemia virus and the cloned DNA molecules showed that eight of the nine clones carried viral information without any detectable deletions or insertions of more than ca. 50 base pairs. One of the nine clones, which carries a retroviral insert with one copy of the long terminal repeat, had a deletion of ca. 150 base pairs.  相似文献   

15.
16.
Purified vaccinia virus, which had been grown on chick-embryo chorioallantoic membranes in the presence or in the absence of 5-iodo-2′-deoxyuridine (IUdR), was suspended in 5 m ammonium acetate and subjected to the one-step Kleinschmidt procedure on surfaces of distilled water or salt solutions. Deoxyribonucleic acid (DNA) molecules were clearly revealed, and in many instances accurate length measurements could be made. The longest continuous molecules from normal virus measured 78, 77, and 65 μ. The most frequent length was approximately 30 μ, which corresponds to only one-third to one-half of the total DNA per virus particle predicted from various chemical analyses. These data provide direct evidence that normal vaccinia DNA may occur as a linear molecule of approximately 150 × 106 molecular weight units, but, for reasons still unknown, the majority of these molecules appears to break into segments of equal length during release from the virion. There is no evidence for the presence of cyclic DNA. The DNA molecules are typically double-stranded. DNA from IUdR-treated vaccinia presents a markedly different picture: the molecules are mostly fragmented into small pieces, and rosettes or tangled masses equivalent to even one-quarter the length of normal molecules occur very rarely. The possibility is discussed that at least part of the virus-inhibitory effect of IUdR on vaccinia is due to extensive fragmentation of the DNA molecules into which IUdR has been incorporated in place of thymidine.  相似文献   

17.
Analysis of restriction endonuclease cleavage sites within the inverted, repeated sequences in the joint region of the DNA of herpes simplex virus type 1 strain KOS revealed the presence of two types of sequence heterogeneity. The first was an insertion of 280 base pairs or multiples of 280 base pairs which was found in approximately half of all DNA molecules from every plaque-purified stock of virus. These insertions seemed to be tandem duplications of sequences which were present at the joint and correspond closely to the inverted terminal redunancy. The second type of heterogeneity was due to variable insertions and deletions which were present in some, but not all, plaque-purified virus stocks. Comparison of restriction fragments from the joint region with fragments from the termini indicated that in the simplest observed molecules of herpes simplex virus type 1 DNA, only one copy of the inverted terminal redundancy was present at the joint. A map of restriction endonuclease cleavage sites in the joint region is presented.  相似文献   

18.
A G Gitman  I Kahane  A Loyter 《Biochemistry》1985,24(11):2762-2768
Anti-human erythrocyte antibodies or insulin molecules were covalently coupled to the glycoproteins (the hemagglutinin/neuraminidase and the fusion polypeptides) of Sendai virus envelopes with N-succinimidyl 3-(2-pyridyldithio)propionate and succinimidyl 4-(p-maleimidophenyl)butyrate as cross-linking reagents. Reconstituted Sendai virus envelopes, bearing covalently attached anti-human erythrocyte antibodies or insulin molecules, were able to bind to but not fuse with virus receptor depleted human erythrocytes (neuraminidase-treated human erythrocytes). Only coreconstitution of Sendai virus glycoproteins, bearing attached anti-human erythrocyte antibodies or insulin molecules with intact, untreated viral glycoproteins, led to the formation of fusogenic, targeted reconstituted Sendai virus envelopes. Binding and fusion of reconstituted Sendai virus envelopes, bearing anti-human erythrocyte antibodies or insulin molecules, with neuraminidase-treated human erythrocytes were blocked by the monovalent fraction, obtained after papain digestion of immunoglobulins, made of anti-human erythrocyte antibodies or free insulin molecules, respectively. The results of this work demonstrate an active role of the viral binding protein (hemagglutinin/neuraminidase polypeptide) in the virus membrane fusion process and show a novel and efficient method for the construction of targeted, fusogenic Sendai virus envelopes.  相似文献   

19.
A procedure for investigating the possibility of small amounts of partial DNA sequence homology between two defined DNA molecules has been developed and used to test for sequence homology between simian virus 40 and polyoma DNAs. This procedure, which does not necessitate the use of separated viral DNA strands, involves the construction of hybrid DNA molecules containing a simian virus 40 DNA molecule covalently joined to a polyoma DNA molecule, using the sequential action of EcoRI restriction endonuclease and Escherichia coli DNA ligase. Denaturation of such hybrid DNA molecules then makes it possible to examine intramolecularly rather than intermolecularly renatured molecules. Visualization of these intramolecularly renatured “snapback” molecules with duplex regions of homology by electron microscopy reveals a 15% region of weak sequence homology. This region is denatured at about 35 °C below the melting temperature of simian virus 40 DNA and therefore corresponds to about 75% homology. This region was mapped on both the simian virus 40 and polyoma genomes by the use of Hemophilus parainfluenzae II restriction endonuclease cleavage of the simian virus 40 DNA prior to EcoRI cleavage and construction of the hybrid molecule. The 15% region of weak homology maps immediately to the left of the EcoRI restriction endonuclease cleavage site in the simian virus 40 genome and halfway around from the EcoRI restriction endonuclease cleavage site in the polyoma genome.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号