首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 218 毫秒
1.
群感效应对电活性微生物胞外电子传递的影响   总被引:3,自引:1,他引:2  
杨钰婷  陈瑾  陈姗姗  周顺桂 《微生物学报》2020,60(11):2399-2411
群感效应(quorum sensing,QS)是微生物之间以信号分子受体蛋白感知信号浓度变化,从而调控菌群的行为及功能,使其适应环境变化的信号通讯机制。电活性微生物(electroactive microorganisms,EAMs)能进行胞外电子传递,在可再生能源利用和环境修复方面具有广阔的应用前景。近年来,关于QS在EAMs胞外电子传递中的作用的研究日益增多。本文总结了QS对纯EAMs或混合产电菌群的直接或间接电子传递的影响效应及机制,阐述了基于QS的EAMs逻辑与门的构建及其应用前景,并从机制研究的角度展望其未来发展方向。  相似文献   

2.
方彦伦  陈姗姗 《微生物学报》2018,58(8):1361-1371
产电呼吸是指电活性微生物(electroactive microorganisms,EAMs)以胞外固体电极作为电子受体的一种呼吸形式,在可再生能源利用和环境修复方面具有广阔的应用前景。能否进一步提高EAMs的产电呼吸能力是相关技术能否从实验室走向实际应用的核心,而提高产电呼吸能力的关键是加强EAMs与胞外固体电极间的电子传递能力。目前总结如何促进EAMs产电呼吸能力的综述文献极少。因此,本文从投加化学试剂、施加物理作用及改造生物基因3个方面总结了现有的促进EAMs产电呼吸能力的方法,介绍了每种方法的优势与缺陷,重点阐述了每种手段的作用机理及促进效果,并从实际应用和机理研究的角度展望了今后的研究方向。  相似文献   

3.
微生物电合成(Microbial electrosynthesis,MES)可直接利用电能驱动微生物还原固定CO_2合成多碳化合物,为可再生新能源转化、精细化学品制备和生态环境保护提供新机遇。但是,微生物吸收胞外电极电子速率慢、产物合成效率低和产品品位不高,限制了MES实现工业化应用。在概述阴极电活性微生物吸收胞外电子的分子机制的基础上,重点综述近5年应用生物工程的理论和技术强化MES用于CO_2转化的策略与研究进展,包括改造和调控胞外电子传递通路和胞内代谢途径以及定向构建有限微生物混合培养菌群三方面,阐明了生物工程可有效突破MES中电子传递慢和可用代谢途径相对单一等瓶颈。针对目前生物工程在改进MES所面临的主要问题,从胞外电子传递机理研究、基因工具箱开发、组学技术与现代分析技术联用等角度展望了今后的研究方向。  相似文献   

4.
李锋  宋浩 《生物工程学报》2017,33(3):516-534
电活性微生物(产电微生物和亲电微生物)通过与外界环境进行双向电子和能量传递来实现多种微生物电催化过程(包括微生物燃料电池、微生物电解电池、微生物电催化等),从而实现在环境、能源领域的广泛应用,并为开发有效且可持续性生产新能源或大宗精细化学品的工艺提供了新机会。但是,电活性微生物的胞外电子传递效率比较低,这已经成为限制微生物电催化系统在工业应用中的主要瓶颈。以下综述了近年来利用合成生物学改造电活性微生物的相关研究成果,阐明了合成生物学如何用于打破电活性微生物胞外电子传递途径低效率的瓶颈,从而实现电活性微生物与环境的高效电子传递和能量交换,推动电活性微生物电催化系统的实用化进程。  相似文献   

5.
微生物胞外呼吸是厌氧环境中控制性能量代谢方式,直接驱动着C、N、S、Fe等关键元素的生物地球化学循环。微生物纳米导线(Microbial nanowires)的发现,被认为是微生物胞外呼吸的里程碑事件,推动了电微生物学(Electromicrobiology)的形成与发展。微生物纳米导线是一类由微生物合成的,具有导电性的纤维状表面附属结构。通过细菌纳米导线,微生物胞内代谢产生的电子可以长距离输送到胞外受体或其他微生物,改变了电子传递链仅仅局限于细胞胞内的认识,从而大大拓展了微生物-胞外环境互作的范围。微生物纳米导线的良好导电性,赋予了其作为天然纳米材料的广阔应用前景。目前,微生物纳米导线的导电机制、生态功能及其在生物材料、生物能源、生物修复及人体健康多领域的应用,已经成为新兴电微生物学的前沿与热点。然而,微生物纳米导线的生物学、生态学功能尚不清楚,它的电子传递机制仍存在分歧。本文在系统性总结微生物纳米导线性质、功能的基础上,以Geobacter sulfurreducensShewanella oneidensis纳米导线为模型,详细阐述了纳米导线的组成与结构、表征与测量方法、导电理论(类金属导电学说与电子跃迁学说)及其潜在的应用,最后提出了未来微生物纳米导线研究的重点方向、挑战与机遇。  相似文献   

6.
产电微生物的胞外电子转移在能源、环境等诸多领域有着非常重要的应用价值。希瓦氏菌(Shewanella oneidensis)作为模式产电微生物,其电催化系统引起了广泛的研究。黄素作为S. oneidensis重要的电子载体,其介导的胞外电子转移是电子传递过程中的一个限速步骤。然而自然环境中野生型S. oneidensis的黄素分泌量极低,对其工程改造也存在一定的局限性,因而严重阻碍了胞外电子的传递过程,这已成为限制其电子转移的主要瓶颈。基于S. oneidensis黄素介导的电子转移机制,系统地从黄素的合成路径及转录调控的角度阐明了黄素合成的调控因素,并综述近年来利用代谢工程、合成生物学以及电极材料修饰等方法来提高黄素介导电子转移的工程化策略,未来可利用一些系统的研究方法和表达工具来加速产电微生物黄素介导的胞外电子转移。  相似文献   

7.
产电微生物是一类具有胞外电子转移能力的微生物,能够将有机物中储存的化学能转化为电能,其作为微生物电催化系统的催化剂,已经成为环境和能源领域的研究热点。但目前所发现的产电菌,产电机制有所差异,产电能力参差不齐,菌株的性能从根本上影响了其产电能力,其产电能力不足成为限制微生物燃料电池在工业上广泛应用的主要瓶颈。目前,通过理性设计或定向进化等改造方法,难以实现产电微生物在复杂多样环境中的广泛应用。通过定向筛选策略,建立一套快速、高效的筛选鉴定技术,挖掘环境中性能优异的产电微生物,是促进其广泛应用的有效途径。文中基于产电微生物的种类,总结回顾了现有的产电微生物的筛选鉴定方法,并对其研究前景进行了展望。  相似文献   

8.
电活性微生物是一类能够通过直接接触、导电菌毛或氧化还原介质与电极或者其他细胞进行胞外电子传递的微生物。而在这个过程中,胞外聚合物(extracellular polymeric substances, EPS)扮演着重要的角色。EPS是微生物生长过程中通过细胞裂解、水解分泌的高分子聚合物的混合物,主要由蛋白质、多糖和腐殖质等物质组成。来自电活性微生物的EPS的不同组成成分和特性会对EPS的电活性以及电活性微生物胞外电子传递产生一定的影响,同时在环境应用方面发挥重要作用。因此,为了更全面了解电活性微生物EPS的电活性及其对电活性微生物胞外电子传递的作用,本文总体介绍了电活性微生物EPS的电活性的直接表征方法,再从组成成分、化学性质、物理性质和空间分布4个方面综述了其对EPS电活性的影响及其在电子传递中的作用,介绍了当前电活性微生物EPS在染料废水脱色、重金属吸附、有机污染物的生物转化和渗滤液管理等方面的环境应用,并从表征方法、试验规模和互作机理研究等角度展望了未来的研究方向。  相似文献   

9.
矿物是无机自然界吸收与转化能量的重要载体,其与微生物的胞外电子传递过程体现出矿物电子能量对微生物生长代谢与能量获取方式的影响。根据电子来源与产生途径,以往研究表明矿物中变价元素原子最外层或次外层价电子与半导体矿物导带上的光电子是微生物可以利用的两种不同胞外电子能量形式,其产生及传递方式与微生物胞外电子传递的电子载体密切相关。在协同微生物胞外电子传递过程中,矿物不同电子能量形式之间既有相似性亦存在着差异。反过来,微生物胞内-胞外电子传递途径也影响对矿物电子能量的吸收与获取,进而对微生物生长代谢等生命活动产生影响。本文在阐述矿物不同电子能量形式产生机制及其参与生物化学反应的共性和差异性特征基础上,综述了微生物获取矿物电子能量所需的不同电子载体类型与传递途径,探讨了矿物不同电子能量形式对微生物生长代谢等生命活动的影响,展望了自然条件下微生物利用矿物电子能量调节其生命活动、调控元素与能量循环的新方式。  相似文献   

10.
电活性微生物具有独特的胞外电子传递功能,在地球化学循环和环境污染修复中起着重要作用。细胞色素c在电活性微生物胞外电子传递过程中扮演了重要角色,不仅参与直接电子传递途径,还参与电子媒介介导的间接电子传递。其电子传递功能不仅对地球环境中铁、锰、碳等元素的循环具有重要作用,还应用于能源生产、废水处理、生物修复等众多领域,具有良好的应用潜力。本文以电活性微生物的2个模式菌属(希瓦氏菌属和地杆菌属)为例,综述了电活性微生物将电子由胞内转移至胞外的方式和途径,详细阐述了细胞色素c在该胞外电子传递过程中的重要作用,总结了细胞色素c介导的胞外电子传递过程所涉及的分析方法,并对微生物胞外电子传递未来的研究方向提出了展望。  相似文献   

11.
The interplay between electrochemically active microorganisms (EAMs) and adjacent minerals universally occurs in natural environments, in which soil is an extremely typical and active one. We stimulated the extracellular electron transfer (EET) process between the bacterial community and birnessite in red soil (collected from Hainan, China) by constructing a microbial fuel cell equipped with synthetic birnessite cathode. Compared to graphite-cathode, the cell voltage of birnessite-cathode was increased by 22% when loading a 1000 Ω-resistance, indicating the EET between microbes and birnessite. Eleven genera of EAMs in red soil were confirmed through 16S rRNA analysis. Neither palpable novel mineral formation nor change of birnessite crystallinity was observed after reaction by Raman and SEM. As oxygen pumped into cathode chamber was the terminal electron acceptor, birnessite principally performed as an intermediate of holistic electron transfer process to favor the cathodic oxygen reduction.  相似文献   

12.
Direct, shuttle-free uptake of extracellular, cathode-derived electrons has been postulated as a novel mechanism of electron metabolism in some prokaryotes that may also be involved in syntrophic electron transport between two microorganisms. Experimental proof for direct uptake of cathodic electrons has been mostly indirect and has been based on the absence of detectable concentrations of molecular hydrogen. However, hydrogen can be formed as a transient intermediate abiotically at low cathodic potentials (<−414 mV) under conditions of electromethanogenesis. Here we provide genetic evidence for hydrogen-independent uptake of extracellular electrons. Methane formation from cathodic electrons was observed in a wild-type strain of the methanogenic archaeon Methanococcus maripaludis as well as in a hydrogenase-deletion mutant lacking all catabolic hydrogenases, indicating the presence of a hydrogenase-independent mechanism of electron catabolism. In addition, we discovered a new route for hydrogen or formate production from cathodic electrons: Upon chemical inhibition of methanogenesis with 2-bromo-ethane sulfonate, hydrogen or formate accumulated in the bioelectrochemical cells instead of methane. These results have implications for our understanding on the diversity of microbial electron uptake and metabolism.  相似文献   

13.
产电微生物是微生物燃料电池、电解池和电合成等微生物电化学技术(Microbial electrochemical technologies,METs)的研究基础.产电微生物与电极界面间的胞外电子传递(Extracellular electron transfer,EET)效率低以及生物被膜形成能力弱限制了METs在有机...  相似文献   

14.
芳香烃类化合物(aromatic hydrocarbon compounds)是一类基于苯环结构的有机物,广泛分布在自然环境中,难以自然降解、易被生物积累,且有很大的环境危害性。生物法是有机化合物转化降解的主流工艺,而电活性微生物(electroactive microorganisms, EAM)因其独特的胞外电子传递(extracellular electron transfer, EET)能力和生理代谢模式在芳香烃类化合物污染修复领域具有巨大的应用潜力。电活性微生物可以通过还原脱卤、脱硝与氧化开环过程相结合的方式,最终实现芳香烃类污染物的降解矿化。本文重点综述了电活性微生物降解芳香烃类污染物过程中主要还原/氧化反应机理,归纳了电活性微生物高效还原脱卤、脱硝的关键酶活、代谢途径及转化机理,分析了不同含氧条件下电活性微生物开环方式及降解代谢途径,并通过调控微生物胞外聚合物与添加导电材料等途径来提升电活性微生物的胞外电子传递过程,总结了电极电位、电极材料、电解液性质及温度等环境因子对芳香烃类化合物降解的影响,探讨了芳香烃类污染物的强化生物降解策略的可行性。最后,展望了电活性微生物降解技...  相似文献   

15.
一直以来氢气和甲酸被认为是微生物间电子传递的中间电子传递体.近年来的研究发现,微生物之间可以通过种间直接电子传递(DIET)来替代氢气/甲酸传递.DIET作为一种新发现的微生物间电子传递途径,其电子传递效率要高于传统的种间氢气/甲酸传递.DIET这一新发现改变了微生物互营生长代谢必须依赖氢气或甲酸等电子载体的传统认识,...  相似文献   

16.
Microbes have been shown to naturally form veritable electric grids in which different species acting as electron donors and others acting as electron acceptors cooperate. The uptake of electrons from cells adjacent to them is a mechanism used by microorganisms to gain energy for cell growth and maintenance. The external discharge of electrons in lieu of a terminal electron acceptor, and the reduction of external substrates to uphold certain metabolic processes, also plays a significant role in a variety of microbial environments. These vital microbial respiration events, viz. extracellular electron transfer to and from microorganisms, have attracted widespread attention in recent decades and have led to the development of fascinating research concerning microbial electrochemical sensors and bioelectrochemical systems for environmental and bioproduction applications involving different fuels and chemicals. In such systems, microorganisms use mainly either (1) indirect routes involving use of small redox-active organic molecules referred to as redox mediators, secreted by cells or added exogenously, (2) primary metabolites or other intermediates, or (3) direct modes involving physical contact in which naturally occurring outer-membrane c-type cytochromes shuttle electrons for the reduction or oxidation of electrodes. Electron transfer mechanisms play a role in maximizing the performance of microbe?Celectrode interaction-based systems and help very much in providing an understanding of how such systems operate. This review summarizes the mechanisms of electron transfer between bacteria and electrodes, at both the anode and the cathode, in bioelectrochemical systems. The use over the years of various electrochemical approaches and techniques, cyclic voltammetry in particular, for obtaining a better understanding of the microbial electrocatalysis and the electron transfer mechanisms involved is also described and exemplified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号