首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ribosomes from 8-day-regenerating rat skeletal muscle have been shown to be more active in poly(U)-directed polyphenylalanine synthesis than ribosomes from control muscle. This difference persists after salt washing of the ribosomes and does not appear to be due to the presence of ribonuclease associated with the control ribosome population. Ribosomes from control muscle were also less active than those from regenerates in the nonenzymatic binding of phenylalanyl-tRNA to ribosomes and in the peptidyltransferase reaction. Three glutamyl-tRNA isoacceptors have been isolated from 8-day-regenerating rat skeletal muscle by preparative RPC-5 chromatography of total tRNA charged with [3H]glutamic acid. The two major isoacceptors observed, tRNAgluI and tRNAgluIII, respond to the glutamic acid codons GAG and GAA, respectively. A third, minor glutamyl isoacceptor, tRNAgluII, also responds to the codon GAA. When the three isoacceptors were tested for function in a polysomal cell-free protein synthesizing system, it was found that their relative levels of utilization were essentially identical to their relative abundances. Thus, the tRNA which increases in relative amount after the induction of regeneration, tRNAgluII, is not preferentially utilized for overall muscle protein synthesis.  相似文献   

2.
3.
The proteoglycans synthesized by primary chick skeletal muscle during in vitro myogenesis were compared with those of muscle-specific fibroblasts. Cultures of skeletal muscle cells and muscle fibroblasts were separately labeled using [35S] sulfate as a precursor. The proteoglycans of the cell layer and medium were separately extracted and isolated by ion-exchange chromatography on DEAE-Sephacel followed by gel filtration chromatography on Sepharose CL-2B. Two cell layer-associated proteoglycans synthesized both by skeletal muscle cells and muscle fibroblasts were identified. The first, a high molecular weight proteoglycan, eluted from Sepharose CL-2B with a Kav of 0.07 and contained exclusively chondroitin sulfate chains with an average molecular weight greater than 50,000. The second, a relatively smaller proteoglycan, eluted from Sepharose CL-2B with a Kav of 0.61 and contained primarily heparan sulfate chains with an average molecular weight of 16,000. Two labeled proteoglycans were also found in the medium of both skeletal muscle and muscle fibroblasts. A high molecular weight proteoglycan was found with virtually identical properties to that of the high molecular weight chondroitin sulfate proteoglycan of the cell layer. A second, smaller proteoglycan had a similar monomer size (Kav of 0.63) to the cell layer heparan sulfate proteoglycan, but differed from it in that this molecule contained primarily chondroitin sulfate chains with an average molecular weight of 32,000. Studies on the distribution of these proteoglycans in muscle cells during in vitro myogenesis demonstrated that a parallel increase in the relative amounts of the smaller proteoglycans occurred in both the cell layer and medium compared to the large chondroitin sulfate proteoglycan in each compartment. In contrast, muscle-derived fibroblasts displayed a constant ratio of the small proteoglycans of the cell layer and medium fractions, compared to the larger chondroitin sulfate proteoglycan of the respective fraction as a function of cell density. Our results support the concept that proteoglycan synthesis is under developmental regulation during skeletal myogenesis.  相似文献   

4.
Protein synthesis in skeletal muscle is reduced by as much as 50% as early as 4 h after a septic challenge in adults. However, the effect of sepsis on muscle protein synthesis has not been determined in neonates, a highly anabolic population whose muscle protein synthesis rates are elevated and uniquely sensitive to insulin and amino acid stimulation. Neonatal piglets (n = 10/group) were infused for 8 h with endotoxin [lipopolysaccharide (LPS), 0 and 10 microg. kg(-1). h(-1)]. Plasma amino acid and glucose concentrations were kept at the fed level by infusion of dextrose and a balanced amino acid mixture. Fractional protein synthesis rates were determined by use of a flooding dose of [(3)H]phenylalanine. LPS infusion produced a septic-like state, as indicated by an early and sustained elevation in body temperature, heart rate, and plasma tumor necrosis factor-alpha, interleukin-1, cortisol, and lactate concentrations. Plasma levels of insulin increased, whereas glucose and amino acids decreased, suggesting the absence of insulin resistance. LPS significantly reduced protein synthesis in longissimus dorsi muscle by only 11% and in gastrocnemius by only 15%, but it had no significant effect in masseter and cardiac muscles. LPS increased protein synthesis in the liver (22%), spleen (28%), kidney (53%), jejunum (19%), diaphragm (21%), lung (50%), and skin (13%), but not in the stomach, pancreas, or brain. These findings suggest that, when substrate supply is maintained, skeletal muscle protein synthesis in neonates compared with adults is relatively resistant to the catabolic effects of sepsis.  相似文献   

5.
6.
7.
8.
9.
10.
Glucocorticoids are diabetogenic factors that not only antagonize the action of insulin in target tissues but also render these tissues catabolic. Therefore, in rats, we endeavored to characterize the effects in skeletal muscle of glucocorticoids on translation initiation, a regulated process that, in part, governs overall protein synthesis through the modulated activities of eukaryotic initiation factors (eIFs). Four hours after intraperitoneal administration of dexamethasone (100 microg/100 g body wt), protein synthesis in skeletal muscle was reduced to 59% of the value recorded in untreated control animals. Furthermore, translation initiation factor eIF4E preferred association with its endogenous inhibitor 4E-BP1 rather than eIF4G. Dexamethasone treatment resulted in dephosphorylation of both 4E-BP1 and the 40S ribosomal protein S6 kinase concomitant with enhanced phosphorylation of eIF4E. Moreover, the guanine nucleotide exchange activity of eIF2B was unaffected as was phosphorylation of the alpha-subunit of eIF2. Hence glucocorticoids negatively modulate the activation of a subset of the protein synthetic machinery, thereby contributing to the catabolic properties of this class of hormones in vivo.  相似文献   

11.
12.
13.
Endurance training is associated with increases in mitochondrial density, of which cytochrome c protein is an index. Increases in the synthesis rates of cytochrome c protein in skeletal muscle during endurance training have been inferred (Biochem. Biophys. Res. Commun. 66: 173, 1975; J. Biol. Chem. 252: 416, 1977). One purpose of the present study was to test these indirect approximations with direct measurements of the synthesis rates of cytochrome c protein in skeletal muscles postexercise. No change in the fractional synthesis rate of cytochrome c was detected in the red quadriceps muscle of rats either 2-7 h after a 104-min run on a motor-driven treadmill or 17-22 h after the final bout of 4 days of running 100 min/day. If the 16% increase in cytochrome c protein concentration in the red quadriceps muscle on the 5th day of training is used to calculate the nanomoles of cytochrome c synthesized per gram of wet muscle weight, the normalized rate of cytochrome c protein synthesis is increased 29% on the 5th day of training. The observation of no significant alteration in cytochrome c mRNA in the red quadriceps muscle of rats during the 1st wk of training implies that the initial increase in the synthesis rate of cytochrome c protein normalized per unit of muscle mass during treadmill training is likely to occur at a translational or posttranslational step. These results suggest that the control of increased cytochrome c expression in skeletal muscle during exercise training involves a complex mechanism.  相似文献   

14.
15.
Cardiac and skeletal muscle myosins have been treated by N-ethylmaleimide in presence or absence of Mg-ADP. The variations of Ca2+ and K+-ATPase activities and the incorporation of N-[14C]ethylmaleimide into the whole myosin molecule and into its separated subunits (heavy and light chains) have been measured with N-ethylmaleimide treatment for different lengths of time. The results reported here show the following: 1. The Ca2+-ATPase activity of cardiac myosin is activated by N-ethylmaleimide treatment to a lesser extent than that of skeletal myosin. 2. The K+-ATPase activity of both myosins is inhibited in the same quantitative way. 3. The cardiac light chain L1 contains one highly reactive thiol group which is absent from the skeletal light chains. 4. The labelling of three SH-groups localized in the heavy subunits of both myosins induced the same degree of inactivation. 5. The difference observed between the degree of inhibition of the Ca2+-ATPase activity for the two types of myosin with longer treatments appears to be due to differences in the reactivity of the fourth--SH group labelled on the heavy chains.  相似文献   

16.
17.
How folding of proteins is coupled to their synthesis remains poorly understood. Here, we apply single-molecule fluorescence imaging to full protein synthesis in vitro. Ribosomes were specifically immobilized onto glass surfaces and synthesis of green fluorescent protein (GFP) was achieved using modified commercial Protein Synthesis using Recombinant Elements that lacked ribosomes but contained purified factors and enzyme that are required for translation in Escherichia coli. Translation was monitored using a GFP mutant (F64L/S65T/F99S/M153T/V163A) that has a high fluorophore maturation rate and that contained the Secretion Monitor arrest sequence to prevent dissociation from the ribosome. Immobilized ribosomal subunits were labeled with Cy3 and GFP synthesis was measured by colocalization of GFP fluorescence with the ribosome position. The rate of appearance of colocalized ribosome GFP was equivalent to the rates of fluorescence appearance coupled with translation measured in bulk, and the ribosome-polypeptide complexes were stable for hours. The methods presented here are applicable to single-molecule investigation of translational initiation, elongation and cotranslational folding.  相似文献   

18.
19.
1. The effects of insulin in vitro on tissue pools and incorporation into protein of glycine and leucine in the extensor digitorum longus muscle of the rat are reported. 2. It was found that insulin decreased the lag period before the establishment of a linear rate of incorporation of radioactive glycine into protein. 3. The hormone increased the size of the free intracellular glycine pool. No such effect was found for leucine. The accumulation of radioactive glycine in the intracellular fluid compartment was increased. The content of radioactive leucine in the intracellular compartment was decreased. 4. Insulin decreased the specific radioactivity of both glycine and leucine in the extracellular fluid. 5. The hormone also decreased protein catabolism. 6. The effect on protein synthesis was not caused by an increase in the specific radioactivity of the extracellular pool but was possibly related to increased amino acid concentrations in this pool, which could in turn have affected the aggregation of ribosomes.  相似文献   

20.
A novel three-dimensional (3D) skeletal muscle model composed of C2C12 mouse myoblasts is described. This model was generated by cultivating myoblasts in suspension using the rotary cell culture system (RCCS), a unique culture environment. Single-cell suspensions of myoblasts were seeded at 5 × 105/ml in growth medium without exogenous support structures or substrates. Cell aggregation occurred in both RCCS and suspension control (SC) conditions within 12 h but occurred more rapidly in the SC at all time intervals examined. RCCS-cultured myoblasts fused and differentiated into a 3D construct without serum deprivation or alterations. Syncitia were quantified at 3 and 6+ d in stained thin sections. A significantly greater number of syncitia was found at 6+ d in the RCCS cultures compared to the SC. The majority of syncitia were localized to the periphery of the cell constructs for all treatments. The expression of sarcomeric myosin heavy chain (MHC) was localized at or near the periphery of the 3D construct. The majority of MHC was associated with the large cells (syncitia) of the 6+-d aggregates. These results show, for the first time, that myoblasts form syncitia and express MHC in the presence of growth factors and without the use of exogenous supports or substrates. This model test system is useful for investigating initial cell binding, myoblast fusion and syncitia formation, and differentiation processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号