首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
The binding of [125I]gastrin releasing peptide ([125I]GRP) to Swiss 3T3 cells at 37 degrees C increases rapidly, reaching a maximum after 30 min and decreasing afterwards. The decrease in cell-associated radioactivity at this temperature is accompanied by extensive degradation of the labelled peptide. At 4 degrees C equilibrium binding is achieved after 6 h and [125I]GRP degradation is markedly inhibited. Extraction of surface-bound ligand at low pH demonstrates that the iodinated peptide is internalized within minutes after addition to 3T3 cells at 37 degrees C. The rate of internalization is strikingly temperature-dependent and is virtually abolished at 4 degrees C. In addition, lysomotropic agents including chloroquine increase the cell-associated radioactivity in cells incubated with [125I]GRP. The binding of [125I]GRP to Swiss 3T3 cells was not affected by pretreatment for up to 24 h with either GRP or bombesin at mitogenic concentrations. Furthermore, pretreatment with GRP did not reduce the affinity labelling of a Mr 75,000-85,000 surface protein recently identified as a putative receptor for bombesin-like peptides. These results demonstrate that while peptides of the bombesin family are rapidly internalized and degraded by Swiss 3T3 cells, the cell surface receptors for these molecules are not down-regulated.  相似文献   

2.
Thyrotropin releasing hormone (TRH) causes phosphatidylinositol bisphosphate hydrolysis to form inositol trisphosphate and diacylglycerol. Since diacylglycerol activates protein kinase C (Ca2+/phospholipid-dependent enzyme), this enzyme may be involved in mediating the physiological response to TRH. Activation of protein kinase C leads to phosphorylation of receptors for epidermal growth factor (EGF) and decreased EGF affinity. The present study examined the effect of TRH on EGF binding to intact GH4C1 rat pituitary tumor cells to test whether TRH activates protein kinase C. Cells were incubated with TRH at 37 degrees C and specific 125I-EGF binding was then measured at 4 degrees C. 125I-EGF binding was decreased by a 10-min treatment with 0.1-100 nM TRH to 30-40% of control in a dose-dependent manner. 125I-EGF binding was not altered if cells were incubated at 4 degrees C, although TRH receptors were saturated or in a variant pituitary cell line without TRH receptors. TRH (10 min at 37 degrees C) decreased EGF receptor affinity but caused little change in receptor density, 125I-EGF internalization, or degradation. When cells were incubated continuously with TRH, there was a recovery of 125I-EGF binding after 24 h. Incubation with the protein kinase C activating phorbol ester TPA caused an immediate (less than 10 min) profound (greater than 85%) decrease in 125I-EGF binding followed by partial recovery at 24 h. Maximally effective doses of TRH and TPA decreased EGF receptor affinity with half-times of 3 min. EGF treatment (5 min) caused an increase in the tyrosine phosphate content of several proteins; prior incubation with TRH resulted in a small decline in the EGF response. GH4C1 cells were incubated with 500 nM TPA for 24 h in order to down-regulate protein kinase C. Protein kinase C depletion was confirmed by immunoblots and the effects of TRH and TPA on 125I-EGF binding were tested. TRH and TPA were both much less effective in cells pretreated with phorbol esters. TRH increased cytoplasmic pH measured with an intracellularly trapped pH sensitive dye after mild acidification with nigericin. This TRH response is presumed to be the result of protein kinase C-mediated activation of the amiloride-sensitive Na+/H+ exchanger and was blunted in protein kinase C-depleted cells. All of these results are consistent with the view that TRH acts rapidly in the intact cell to activate protein kinase C and that a consequence of this activation is EGF receptor phosphorylation and Na+/H+ exchanger activation.  相似文献   

3.
The asialoglycoprotein receptor has been identified on a continuous human hepatoma cell line, HepG2. This receptor requires Ca2+ for ligand binding and is specific for asialoglycoprotein. There are approximately 150,000 ligand molecules bound/cell at 4 degrees C. These receptors represent a homogeneous population of high affinity binding sites with Kd = 7 X 10(-9) M. From the rate of 125I-ASOR binding at 4 degrees C, kon was 0.95 X 10(6) M-1 min-1. Uptake of 125I-ASOR at 37 degrees C was approximately 0.02 pmol/min/10(6) cells.  相似文献   

4.
Experiments were performed to examine how human granulocytes, stimulated by N-formyl-chemotactic peptides, process the N-formyl peptide receptor. One percent of the surface N-formyl-chemotactic peptide receptors of purified human granulocytes were covalently, specifically, and radioactively labeled at 4 degrees C using the photochemically reactive N-formyl-chemotactic hexapeptide CHO-Nle-Leu-Phe-Nle-[125I] Tyr-N epsilon (6-(4'-azido-2'-nitrophenyl-amino)hexanoyl)-Lys. After incubation in the presence of 500 nM of N-formyl-Met-Leu-Phe at 37 degrees C, the cells were lysed and fractionated by isopycnic surcrose density gradient sedimentation. Receptor-associated radioactivity cosedimented with plasma membrane in fractions from cells kept at 4 degrees C or incubated at 37 degrees C for 2 min or less. Fractionation of cells incubated at 37 degrees C for longer times revealed that the radioactivity sedimented to lower densities coincident with Golgi markers and the site of noncovalently bound and internalized formyl-chemotactic peptide. To follow the redistribution of unoccupied receptors, human granulocytes were stimulated with 500 nM N-formyl-Met-Leu-Phe at 37 degrees C for 5 min, washed, lysed by N2 cavitation, and fractionated by rate zonal sucrose density gradient sedimentation. Compared to unstimulated controls the specific binding of N-formyl-Met-Leu-[3H]Phe decreased 76% +/- 9% in plasma membrane fractions. N-formyl-Met-Leu-[3H]Phe-binding activity associated with an intracellular pool cosedimenting with specific granules remained unchanged. Approximately 20% of the activity lost in the plasma membrane could be accounted for by a redistribution of specific N-formyl-Met-Leu-Phe binding to fractions enriched in azurophil granules. We conclude that the receptor is the carrier in the internalization of the N-formyl-chemotactic peptides to a Golgi-enriched fraction and hypothesize that after a short residency in this fraction, the receptor may dissociate from the ligand and pass onto a fraction cosedimenting with dense granules.  相似文献   

5.
Bombesin is a tetradecapeptide which stimulates insulin secretion in vivo by isolated islets and by HIT-T15 cells, a clonal line of hamster pancreatic-islet cells. In the present study we have used [125I-Tyr4]bombesin to characterize bombesin receptors in HIT-T15 cells. [125I-Tyr4]Bombesin binding was time- and temperature-dependent: maximum binding occurred after 45 min, 90 min and 10 h at 37, 22 and 4 degrees C respectively. Thereafter, cell-associated radioactivity declined at 37 degrees C and 22 degrees C but not at 4 degrees C. Scatchard analysis of [125I-Tyr4]bombesin binding measured at 4 degrees C showed that HIT-T15 cells contain a single class of binding sites (approximately equal to 85000/cell) with an apparent Kd of 0.9 +/- 0.11 nM. Structurally unrelated neuropeptides did not compete for [125I-Tyr4]bombesin binding. However, the relative potencies of bombesin and four bombesin analogues in inhibiting the binding of [125I-Tyr4]bombesin correlated with their ability to stimulate insulin release. Receptor-mediated processing of [125I-Tyr4]bombesin was examined by using an acid wash (0.2 M-acetic acid/0.5 M-NaCl, pH 2.5) to dissociate surface-bound peptide from the cells. Following [125I-Tyr4]bombesin binding at 4 degrees C, more than 85% of the cell-associated radioactivity could be released by acid. When the temperature was then increased to 37 degrees C, the bound radioactivity was rapidly (t1/2 less than 3 min) converted into an acid-resistant state. These results indicate that receptor-bound [125I-Tyr4]bombesin is internalized in a temperature-dependent manner. In fact, the entire ligand-receptor complex appeared to be internalized, since pretreatment of cells with 100 nM-bombesin for 90 min at 37 degrees C decreased the subsequent binding of [125I-Tyr4]bombesin by 90%. The chemical nature of the cell-associated radioactivity was determined by reverse-phase chromatography of the material extracted from cells after a 30 min binding incubation at 37 degrees C. Although 70% of the saturably bound radioactivity was co-eluted with intact [125I-Tyr4]bombesin 90% of the radioactivity subsequently dissociated from cells chromatographed as free iodide. At least some of the degradation of receptor-bound [125I-Tyr4]bombesin appeared to occur in lysosomes, since chloroquine increased the cellular accumulation of [125I-Tyr4]bombesin at 37 degrees C and slowed the release of radioactivity.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
125I-human growth hormone (125I-hGH) binds specifically to receptors on cultures human lymphocytes (IM-9). When this process is studied by use of quantitative EM radioautography, under conditions of incubation at 15 degrees C for 5 min, the ligand is localized to the plasma membrane of the cell. At 30 degrees and 37 degrees C, however, 125I-hGH is progressively internalized by the cell as a function of time. The internalized ligand is found predominantly in the Golgi region of the cells, with a five-fold preferential localization to membrane-bounded structures with the morphological and cytochemical characteristics of lysosomes. Up to 59% of these lysosome-like structures are positive for the acid phosphatase reaction under the conditions of incubation at 37 degrees C for 120 min. When the cell associated radioactivity after 15- 120 min of incubation at 37 degrees C is extracted in 1 M acetic acid and filtered on a Sephadex G-100 column, 58-73% of the material elutes as intact hGH. When cells are incubated with 125I-hGH at 37 degrees C for 15-120 min, separated from the incubation medium, and washed and diluted 100-fold, the percent 125I-hGH dissociable decreases as a function of increasing time of incubation. When cells are incubated with 125I-hGH for 15 min at 37 degrees C and the radioactivity that dissociates from the cells during 15-90 min is studied, the labeled material appearing in the incubation medium is progressively degraded as a function of time of incubation. When the dissociation process is studied radioautographically, grains are found both in plasma membrane and intracelluar compartments after 30 min of association, but after 30 and 120 min of dissociation a higher proportion of grains are in the intracellular compartment. After 120 min of association, there is less dissociation from either compartment and a preferential increase of grains in the intracellular compartment. These data suggest that receptor-linked internalization of a polypeptide hormone provides a mechanism that couples degradation of the ligand with loss of the cell surface receptor.  相似文献   

7.
Binding of porcine interleukin 1, radiolabeled with Bolton-Hunter reagent (125I IL 1), to monolayers of porcine synovial fibroblasts (PSF) was found to be a temperature-dependent process. The rate of uptake and the amount of cell-associated ligand was higher at 37 degrees C than at 4 degrees C or 19 degrees C, and exceeded the apparent equilibrium binding capacity. The amount of bound 125I IL 1 that was removed by brief treatment with acidic buffers decreased from 80% at 4 degrees C to 35% for PSF incubated at 37 degrees C; this procedure was used to distinguish surface-bound from internalized ligand. In untreated PSF, surface binding was maximal at 1 hr and was maintained for at least 5 hr during which time the internal pool continued to increase. The lysosomotropic agent methylamine (20 mM) decreased surface binding by 50%; monensin (20 microM) decreased the rate and extent of internalization. Cycloheximide (10 micrograms/ml) did not affect ligand uptake, hence, continual expression of surface receptors could not be ascribed to their de novo synthesis. 40% of the radioactivity taken up by PSF during incubation at 37 degrees C subsequently appeared in the culture medium upon prolonged postincubation (5 hr) in the absence of added 125I IL 1: 60% of this fraction was trichloroacetic acid-soluble in untreated cultures, but the extent of degradation was halved by treatment with methylamine or monensin. Direct measurement of the rate of internalization of prebound 125I IL 1 was obtained by monitoring the formation of covalently cross-linked ligand-receptor complexes after warming PSF monolayers to 37 degrees C. By using gel electrophoresis we observed a decrease (t1/2 = 9 to 11 min) in labeling of the major cross-linkable species.  相似文献   

8.
There is morphological and biochemical evidence that insulin is internalized in hepatocytes. The present study was designed to investigate the fate of the insulin receptor itself, subsequently to the initial binding step of the hormone to the hepatocyte plasma membrane. The insulin receptor was labeled with a 125I-photoreactive insulin analogue (B2[2-nitro,4-azidophenylacetyl]des-PheB1-insulin). This photoprobe was covalently coupled to the receptor by UV irradiation of hepatocytes after an initial binding step of 2-4 h at 15 degrees C. At this temperature, only limited (approximately 20%) internalization of the ligand occurred. In a second step, hepatocytes were resuspended in insulin-free buffer and further incubated for 2-4 h at 37 degrees C. After h at 37 degrees C, no significant radioactivity could be detected in non-UV-irradiated cells, whereas 12-15 % of the radioactivity initially bound remained associated to UV-irradiated cells. Morphological analysis after electron microscopy revealed that approximately 70% of this radioactivity was internalized and preferentially associated with lysosomal structures. SDS PAGE analysis under reducing conditions revealed that most of the radioactivity was associated with a 130,000-dalton band, previously identified as the major subunit of the insulin receptor in a variety of tissues. Internalization of the labeled insulin-receptor complex at the end of the 37 degrees C incubation was further demonstrated by its inaccessibility to trypsin. Conversely, at the end of the association step, the receptor (also characterized as a predominant 130,000-dalton species) was localized on the cell surface since it was cleaved by trypsin. We conclude that in hepatocytes the insulin receptor is internalized with insulin.  相似文献   

9.
We studied the effect of hyperosmotic inhibition of the clathrin coated pit cycle on the monensin- and chloroquine-dependent loss of surface galactosyl (Gal) receptor activity on isolated rat hepatocytes. Cells treated for 60 min without ligand at 37 degrees C with 25 microM monensin or 300 microM chloroquine in normal medium (osmolality congruent to 275 mmol/kg) bound 40-60% less 125I-asialo-orosomucoid (ASOR) at 4 degrees C than untreated cells. Cells exposed to monensin or chloroquine retained progressively more surface Gal receptor activity, however, when the osmolality of the medium was increased above 400 mmol/kg (using sucrose as osmolite) 10 min prior to and during drug treatment. Cells pretreated for 10 min with hyperosmolal media (600 mmol/kg) alone internalized less than or equal to 10% of surface-bound 125I-ASOR. Thus, the ligand-independent loss of surface Gal receptor activity on monensin- and chloroquine-treated hepatocytes requires internalization of constitutively recycling receptors via a coated pit pathway.  相似文献   

10.
Rat liver parenchymal cell binding, uptake, and proteolytic degradation of rat 125I-labeled high density lipoprotein (HDL) subfraction, HDL3 (1.10 less than d less than 1.210 g/ml), in which apo-A-I is the major polypeptide, were investigated. Structural and metabolic integrity of the isolated cells was verified by trypan blue exclusion, low lactic dehydrogenase leakage, expected morphology, and gluconeogenesis from lactate and pyruvate. 125I-labeled HDL3 was incubated with 10 X 10(6) cells at 37 degrees and 4 degrees in albumin and Krebs-Henseleit bicarbonate buffer, pH 7.4. Binding and uptake were determined by radioactivity in washed cells. Proteolytic degradation was determined by trichloroacetic acid-soluble radioactivity in the incubation medium. At 37 degrees, maximum HDL3 binding (Bmax) and uptake occurred at 30 min with a Bmax of 31 ng/mg dry weight of cells. The apparent dissociation constant of the HDL3 receptor system (Kd) was 60 X 10(-8) M, based on Mr = 28,000 of apo-A-I, the predominant rat HDL3 protein. Proteolytic degradation showed a 15-min lag and then constant proteolysis. After 2 hours 5.8% of incubated 125I-labeled HDL3 was degraded. Sixty per cent of cell radioactivity at 37 degrees was trypsin-releasable. At 37 degrees, 125I-labeled HDL3 was incubated with cells in the presence of varying concentrations of native (cold) HDL3, very low density lipoproteins, and low density lipoproteins. Incubation with native HDL3 resulted in greatest inhibition of 125I-labeled HDL3 binding, uptake, and proteolytic degradation. When 125I-labeled HDL3 was preincubated with increasing amounts of HDL3 antiserum, binding and uptake by cells were decreased to complete inhibition. Cell binding, uptake, and proteolytic degradation of 125I-labeled HDL3 were markedly diminished at 4 degrees. Less than 1 mM chloroquine enhanced 125I-labeled HDL3 proteolysis but at 5 mM or greater, chloroquine inhibited proteolysis with 125I-labeled HDL3 accumulation in cells. L-[U-14C]Lysine-labeled HDL3 was bound, taken up, and degraded by cells as effectively as 125I-labeled HDL3. These data suggest that liver cell binding, uptake, and proteolytic degradation of rat HDL3 are actively performed and linked in the sequence:binding, then uptake, and finally proteolytic degradation. Furthermore, there may be a specific HDL3 (lipoprotein A) receptor of recognition site(s) on the plasma membrane. Finally, our data further support our previous reports of the important role of liver lysosomes in proteolytic degradation of HDL3.  相似文献   

11.
The ability of rat hepatocytes to degrade internalized surface-bound 125I-asialoorosomucoid (ASOR) was determined by measuring the appearance of acid-soluble radioactivity at 37 degrees C. The degradation kinetics were biphasic in cells previously equilibrated at 37 degrees C for 1 h or cultured for 24 h. Degradation began immediately and was linear for at least 20 min after which the rate increased to a steady state value 3-4 times greater than the initial rate. We previously showed that hepatocytes have two functionally distinct populations of galactosyl receptors that mediate ligand dissociation by two kinetically different pathways (Weigel, P. H., Clarke, B. L., and Oka, J. A. (1986) Biochem. Biophys. Res. Commun. 140, 43-50). The activity of one receptor population, designated State 2 galactosyl receptors, can be reversibly modulated by incubating cells between 22 and 37 degrees C and is not expressed on the surface of freshly isolated cells. When 125I-ASOR was prebound to freshly isolated cells at 4 degrees C and degradation was assessed subsequently at 37 degrees C, the kinetics were monophasic, not biphasic. Degradation of the surface-bound 125I-ASOR began immediately and was greater than 90% complete by 6 h. Freshly isolated cells were incubated at temperatures between 22 and 37 degrees C, chilled to 4 degrees C, allowed to pre-bind 125I-ASOR, and then incubated at 37 degrees C. As the State 2 galactosyl receptor population increased, the kinetics of degradation became progressively more biphasic and the rate of the delayed degradation process increased. This effect could be reversed in cells in culture or in suspension by down-modulating surface receptor activity at temperatures below 37 degrees C; only the degradation process appearing after a 20-min lag was affected. Degradation in both pathways is an apparent first order process with identical rate constants (kappa = 0.006 min-1, t1/2 = 116 min). We conclude that there are two separate pathways by which asialoglycoproteins are degraded. The major "classic" pathway mediated by State 2 galactosyl receptors occurs after a 20-min lag and the minor pathway mediated by State 1 galactosyl receptors begins immediately with no detectable lag.  相似文献   

12.
J Kaplan 《Cell》1980,19(1):197-205
Rabbit alveolar macrophages internalize α-macroglobulin 125I-trypsin complexes subsequent to binding of complexes to high affinity surface receptors. Cells were capable of accumulating a 5–10 fold greater amount of αM · 125I-T at 37°C than at 0°C. At 0°C cell-bound αM · 125I-T was bound solely to surface receptors, whereas at 37°C the majority (85%) of cell-bound radioactivity was intracellular. The temperature-dependent accumulation of αM · 125I-T did not reflect a change in surface receptor number or ligand-receptor affinity. Rather, the greater rate of uptake reflected continued internalization of αM · 125I-T complexes. At 37°C cells took up 5–9 fmole αMT per μg cell protein per hr, whereas binding to surface receptors accounted for 0.5–0.7 fmole per μg cell protein. Once bound to surface receptors internalized αM · 125I-T was localized in lysosomes, where it was degraded at a rate of 35–45% per hr. Following binding of αM · T to receptors at 37°C, but not at 0°C, unoccupied receptors could be found on the cell surface. Using cycloheximide to probe receptor turnover, I calculated that receptors were replenished at a rate of 15% per hr. Cells incubated in the presence of cycloheximide exhibited unaltered ligand uptake and catabolism for hours. Thus the reappearance of receptor activity during ligand uptake was not primarily due to de novo receptor synthesis. The rate of ligand uptake was a function of the number of surface receptors. Measurement of αM125I-T binding to subcellular fractions did not reveal the presence of any intracellular reservoir of receptors. These observations are consistent with the hypothesis that continued ligand uptake reflects receptor reutilization.  相似文献   

13.
A thrombin receptor in resident rat peritoneal macrophages.   总被引:2,自引:0,他引:2  
Resident rat peritoneal macrophages possess 6 x 10(2) high-affinity binding sites per cell for bovine thrombin with a Kd of 11 pM, and 7.5 x 10(4) low-affinity sites with a Kd of 5.8 nM. These binding sites are highly specific for thrombin. Half-maximal binding of 125I-labeled bovine thrombin is achieved after 1 min at 37 degrees C, and after 12 min at 4 degrees C. The reversibly bound fraction of the ligand dissociates according to a biexponential time course with the rate constants 0.27 and 0.06 min-1 at 4 degrees C. Part of the tracer remains cell-associated even after prolonged incubation, but all cell-associated radio-activity migrates as intact thrombin upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The bound thrombin is minimally endocytosed as judged by the resistance to pH 3 treatment, and the receptor does not mediate a quantitatively important degradation of the ligand. The binding is not dependent on the catalytic site of thrombin, since irreversibly inactivated thrombin also binds to the receptor. 125I-labeled thrombin covalently cross-linked to its receptor migrates in sodium dodecyl sulfate-polyacrylamide gel electrophoresis with a Mr 160,000, corresponding to an approximate receptor size of Mr 120,000.  相似文献   

14.
125I-labelled pregnancy zone protein complex was injected intravenously in rats and after 6 min uptake into cells of the liver and spleen was determined by electron microscopic autoradiography. The liver took up 68% of the injected radioactivity; 61% was in the hepatocytes and 7% was in the liver macrophages (Kupffer cells). The spleen took up 3-4% and nearly all the radioactivity was in the macrophages of the red pulp. The uptake per cell volume was several times higher in the macrophage than in the hepatocyte. The radioactivity associated with macrophages was largely in endocytotic vacuoles and lysosomes. Binding of labelled pregnancy zone protein complex to peritoneal macrophages at 4 degrees C was 2-3 times higher than binding of the homologous alpha 2-macroglobulin complex. The two ligands competed for binding to the same receptors and the difference was due to a higher affinity of the pregnancy zone protein complex (Kd approx. 60 pM). After binding to the receptor, this ligand was internalised within 2-3 min at 37 degrees C and radioactivity inside the cells largely represented intact pregnancy zone protein complex. Radioactivity was released from the cell as iodotyrosine after a lag time of about 10 min. It is concluded that pregnancy zone protein complex is bound with a high affinity to the alpha 2-macroglobulin receptors in rat macrophages followed by receptor-mediated endocytosis and degradation of the ligand in the lysosomes.  相似文献   

15.
Receptor-mediated uptake and degradation of 125I-asialoorosomucoid (ASOR) in human hepatoma HepG2 cells is inhibited by the lysosomotropic amines chloroquine and primaquine. In the absence of added ligand at 37 degrees C, these amines induce a rapid (t1/2 5.5-6 min) and reversible loss of cell surface 125I-ASOR binding sites as well as a rapid decrease in 125I-ASOR uptake and degradation. There is no effect of these amines on the binding of 125I-ASOR to the cell surface at 4 degrees C or on the rate of internalization of prebound 125I-ASOR. The loss of 125I-ASOR surface binding at 37 degrees C is not attributable to altered affinity of ligand-receptor binding. In the presence of added ligand at 37 degrees C, there is a more rapid (t1/2 2.5-3 min) loss of hepatoma cell surface receptors. In addition, the amines inhibit the rapid return of the internalized receptor to the cell surface. We examined the nature of this loss of 125I-ASOR surface binding sites by following the fate of receptor molecules after biosynthetic labeling and after cell surface iodination. At 37 degrees C, chloroquine and primaquine induce a loss of asialoglycoprotein receptor molecules from the hepatoma cell surface to an internal pool.  相似文献   

16.
The regulation of interleukin 1 (IL 1) receptor expression on a human large granular lymphocyte cell line, YT, and fate of internalized 125I-labeled IL 1 beta (125I-IL 1 beta) were studied. YT cells were selected for this study, because this cell line expresses a large number of specific high-affinity receptor for IL 1, responds biologically to exogenously added IL 1 by expressing high-affinity IL 2 receptors, and does not produce IL 1. YT cells constitutively express approximately 7 X 10(3) IL 1 receptors/cell with a Kd approximately 10(-10) M. Neither IL 2, phorbol myristic acid, nor lipopolysaccharide affected the total binding of 125I-IL 1 beta by YT cells. In contrast, the capacity of YT cells to bind 125I-IL 1 beta when incubated at 37 degrees C for 3 to 16 hr with a low dose of purified IL 1 beta (approximately 6 U/ml) was reduced by greater than 80%. The loss of binding capability gradually recovered by 16 hr after removal of IL 1 beta from cultured YT cells. The apparent loss of IL 1 receptor expression was accompanied by the internalization of 125I-IL 1 beta into cells. Acid treatment of YT cells to remove bound 125I-IL 1 beta at 4 degrees C showed that 50% of the 125I-IL 1 beta bound to cells could no longer be recovered after 30 min at 37 degrees C, and this increased to 80% after 3 hr at 37 degrees C. Fractionation of cell extracts on Percoll gradient additionally showed 125I-IL 1 beta to appear intracellularly after receptor binding on plasma membranes, and to be successively transferred to some membranous organelles (d approximately equal to 1.037) through an intermediate density organelle (d approximately equal to 1.050), and to finally end up in lysosomal cell fractions (d approximately equal to 1.05 to 1.08) after approximately 3 hr at 37 degrees C. Only approximately 5% of internalized 125I-IL 1 beta was released into culture media by 6 hr of incubation at 37 degrees C. However, the radioactivity in the TCA soluble fraction of the culture media increased gradually by 6 hr and a lysosomotropic enzyme, ethylamine, significantly inhibited both the transfer of internalized 125I-IL 1 beta to the lysosomal fraction and the degradation of 125I-IL 1 beta. This study represents the first evidence of autoregulation of IL 1 receptors by IL 1 and internalization of IL 1 molecules after binding to receptors.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
Asialoglycoprotein receptors on hepatocytes lose endocytic and ligand binding activity when hepatocytes are exposed to iron ions. Here, we report the effects of zinc and copper ions on the endocytic and ligand binding activity of asialoglycoprotein receptors on isolated rat hepatocytes. Treatment of cells at 37 degrees C for 2 h with ZnCl2 (0-220 microM) or CuCl2 (0-225 microM) reversibly blocked sustained endocytosis of 125I-asialoorosomucoid by up to 93% (t1/2 = 62 min) and 99% (t1/2 = 54 min), respectively. Cells remained viable during such treatments. Zinc- and copper-treated cells lost approximately 50% of their surface asialoglycoprotein receptor ligand binding activity; zinc-treated cells accumulated inactive asialoglycoprotein receptors intracellularly, whereas copper-treated cells accumulated inactive receptors on their surfaces. Cells treated at 4 degrees C with metal did not lose surface asialoglycoprotein receptor activity. Exposure of cells to copper ions, but not to zinc ions, blocked internalization of prebound 125I-asialoorosomucoid, but degradation of internalized ligand and pinocytosis of the fluid-phase marker Lucifer Yellow were not blocked by metal treatment. Zinc ions reduced diferric transferrin binding and endocytosis on hepatocytes by approximately 33%; copper ions had no inhibitory effects. These findings are the first demonstration of a specific inhibition of receptor-mediated endocytosis by non-iron transition metals.  相似文献   

18.
We have developed conditions for studying the binding, uptake, degradation and transport of 125I-labelled IgG by yolk sac in vitro. Specific binding to tissue at 4 degrees C and to paraformaldehyde-treated tissue at 37 degrees C was time- and temperature-dependent and showed saturation kinetics (Kd,4 degrees C = 2.9 X 10(-6) M, Kd,37 degrees C = 5.3 X 10(-6) M). Uptake was studied at 37 degrees C using untreated tissue (K uptake = 13.3 X 10(-6) M) and was inhibited by preincubation with metabolic poisons but not with cycloheximide. Tissue that had been incubated with 125I-labelled IgG at 37 degrees C released radiolabelled degradation products and intact 125I-labelled IgG into the medium. Experiments with paraformaldehyde-treated and untreated tissue showed that release of intact 125I-labelled IgG was mostly the result of ligand dissociation from surface binding sites. However, more 125I-labelled IgG was released from untreated tissue than could be accounted for solely by loss of surface-bound ligand and the difference was presumed to reflect uptake, transport and exocytosis of 125I-labelled IgG. Degradation of 125I-labelled IgG was inhibited by leupeptin and lysosomotropic amines. These drugs had no detectable effect on 125I-labelled IgG release. The results suggest that degradation and transport of IgG are not intimately related and are consistent with a previously proposed model for IgG transport via coated vesicles which do not fuse with lysosomes and for non-selective uptake into another class of vesicle which does fuse with lysosomes.  相似文献   

19.
Receptor-mediated endocytosis of tissue-type plasminogen activator (t-PA) was characterized with the human hepatoma cell line Hep G2. At 4 degrees C binding of 125I-t-PA to Hep G2 cells is rapid, specific, saturable, and reflective of a homogeneous population of 76,000 high-affinity surface sites per cell (Kd = 3.7 nM). The kinetics of 125I-t-PA binding to its receptor are characterized by rate constants for association (k1 = 1.2 x 10(6) min-1 M-1) and dissociation (k-1 = 0.001 min-1). A specific glycosylation pattern does not appear to be required for binding. Binding does not appear to be mediated by other recognized hepatic receptor systems. At 37 degrees C a single cohort of bound 125I-t-PA molecules disappears rapidly from the cell surface. Ligand then accumulates intracellularly. Thereafter, the intracellular concentration of ligand declines simultaneously with the release of ligand degradation products into the media. In the continued presence of 125I-t-PA at 37 degrees C the concentration of cell-associated ligand plateaus after 30 min with the concomitant appearance of low molecular weight 125I-labeled fragments in the media. Cumulative degradation then increases linearly with time. Under steady state conditions half-maximal ligand uptake and degradation is 26.6 nM and maximal rate of catabolism is 1.2 pmol/10(6) cells/h. At saturating ligand concentrations uptake and degradation by Hep G2 cells continue linearly for at least 6 h even in the absence of protein synthesis. During this period the cumulative ligand uptake exceeds the total cellular capacity of binding sites, consistent with receptor recycling. We conclude that t-PA clearance in human Hep G2 cells involves ligand binding, uptake, and degradation mediated by a novel high-capacity, high-affinity specific receptor system.  相似文献   

20.
High affinity binding of human interleukin 4 to cell lines   总被引:5,自引:0,他引:5  
Purified human recombinant interleukin 4 (IL-4) was radio iodinated to high specific radioactivity without loss of biological activity. 125I-IL-4 bound specifically to the Burkitt lymphoma Jijoye cells and other cell lines. Jijoye cells showed a high affinity for 125I-IL-4 (Kd approximately equal to 7 10(-11) M) and displayed 1200-1400 specific receptors per cell at 4 degrees C or 37 degrees C. The equilibrium dissociation constant (Kd) corresponds to the IL-4 concentration which induces 50% maximal expression of the low affinity IgE receptor (Fc epsilon RL/CD23) on Jijoye cells. At 4 degrees C the rate constant of association K1 is 1.7 x 10(6) M-1 s-1 and the rate contant of dissociation k -1 is 1.3 x 10(-4) s-1 (t 1/2 = 91 min.) No human recombinant lymphokines other than IL-4 were able to compete for the binding of 125I-IL-4 to its receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号