首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
In bovine protein C normal activation by the thrombin-thrombomodulin complex requires binding of calcium to one high affinity binding site, contained in a protein fragment that lacks the gamma-carboxyglutamic acid (Gla) region (Esmon, N. L., De Bault, L. E., and Esmon, C. T. (1983) J. Biol. Chem. 258, 5548-5553). In this work, the calcium binding to and the conformational change induced by calcium in the corresponding Gla-domainless fragment of bovine factor X, prepared by limited proteolysis by chymotrypsin, were compared with the calcium-binding properties of Gla-domainless protein C. Equilibrium dialysis experiments demonstrated that the proteolytically modified factor X has one high affinity calcium ion-binding site with Kd = 180 microM, a value almost identical to the Kd for the binding of calcium to proteolytically modified protein C. Measurements of the rate of disulfide bond reduction by thioredoxin showed that the disulfide bonds of both factor X and protein C lacking the Gla domains were more rapidly reduced in the absence than in the presence of calcium. Thus, calcium binding induces a conformational change in both proteolytically modified proteins. Calcium binding to Gla-domainless protein C is accompanied by a quenching of the intrinsic tryptophan fluorescence and by changes in the CD spectrum, indicative of perturbation of the environment of aromatic amino acids by the metal ion. However, no such changes were observed with the proteolytically modified factor X. This difference may be due to the fact that one tryptophan residue (in position 84) is present in the light chain of the proteolytically modified protein C but none in the light chain of the modified factor X. The light chain of factor X has beta-hydroxyaspartic acid in position 64 which is homologous to the beta-hydroxyaspartic acid in position 71 in the light chain of protein C. Our results are compatible with the hypothesis that beta-hydroxyaspartic acid is involved in the Ca2+ ion binding.  相似文献   

2.
A K Ohlin  I Bj?rk  J Stenflo 《Biochemistry》1990,29(3):644-651
The function of the epidermal growth factor (EGF) like domains in the vitamin K dependent plasma proteins is largely unknown. In order to elucidate the function of these domains in protein C, we have devised a method to isolate the EGF-like region from the light chain connected to the NH2-terminal region, containing the gamma-carboxyglutamic acid (Gla) residues. This was accomplished by tryptic cleavage of protein C that had been reversibly modified with citraconic anhydride to prevent cleavage at the lysine residue (in position 43) that is located between the two regions. The isolated fragment consists of residues 1-143 from the light chain of protein C connected by a disulfide bond to residues 108-131 from the heavy chain. Upon Ca2+ binding to the isolated Gla-EGF fragment from bovine protein C, the tryptophan fluorescence emission was quenched in a manner indicating binding to at least two classes of binding sites. These were presumably the Gla-independent Ca2(+)-binding site located in the EGF-like region and the lower affinity sites in the Gla region. A comparison with the tryptophan fluorescence quenching that occurred upon Ca2+ binding to the separately isolated EGF-like and Gla regions suggested that the EGF-like region influenced the structure and Ca2+ binding of the Gla region. The isolated Gla-EGF fragment functioned as an inhibitor of the anticoagulant effect of activated protein C in a clotting assay, whereas no inhibition was observed with either the Gla region or the EGF-like region.  相似文献   

3.
Protein C, like the other vitamin K-dependent plasma proteins that participate in blood coagulation, except prothrombin, has at least one high affinity calcium-binding site that is independent of gamma-carboxyglutamic acid. Calcium binding to this site is required for activation of protein C by the thrombin-thrombomodulin complex. In an attempt to localize this calcium-binding site, we subjected protein C to limited tryptic digestion. A monoclonal antibody that recognizes a calcium-dependent epitope both in intact protein C, in gamma-carboxyglutamic acid-domainless protein C, and in activated protein C, was used to isolate a fragment from the tryptic digest. The fragment was derived from the light chain of protein C and consisted of the two domains that are homologous to the epidermal growth factor precursor. Half-maximal binding of the intact protein and of the isolated fragment by the antibody occurred at 100-200 microM Ca2+. The results suggest the presence of a Ca2+-binding site in the epidermal growth factor homology region of protein C.  相似文献   

4.
The binding isotherms of Mn2+ to bovine plasma protein C (PC), des(1-41)-light chain protein C (GDPC), and activated GDPC (GDAPC) have been measured. PC contains 14-16 total Mn2+ binding sites, a value that is reduced to approximately 7-8 in the presence of NaCl. The average Kd of the latter sites is 230 +/- 30 microM. Upon removal of a 41-residue peptide from the amino terminus of the light chain of PC, and, concomitantly, all of the gamma-carboxyglutamic acid residues, the resulting protein, GDPC, possesses a single Mn2+ site of Kd = 120 +/- 20 microM. Activation of GDPC to GDAPC results in a slight lowering of the Kd for the single Mn2+ binding site to 53 +/- 8 microM, a value that is essentially unchanged in the presence of monovalent cations, a competitive inhibitor of the enzyme, or an active site directed affinity label. The Mn2+ on GDAPC is displaced by Ca2+, suggesting that the protein binding site for these two divalent cations is the same. These studies establish that Mn2+ is a suitable spectroscopic probe for the Ca2+ binding site of GDAPC, and that the divalent cation site is separate from the monovalent cation site(s) and the active site of the enzyme.  相似文献   

5.
Three monoclonal antibodies have been produced that are specific for the activation peptide region in human protein C. These antibodies inhibited the activation of protein C by thrombin and by the thrombin-thrombomodulin complex. A fourth monoclonal antibody specifically recognized the Ca2+-stabilized conformation in protein C. This antibody bound both intact protein C and protein C from which the gamma-carboxyglutamic acid-containing region had been removed by limited proteolysis. These results indicate that this antibody recognizes the conformation in protein C stabilized by Ca2+ bound to the single binding site that is independent of gamma-carboxyglutamic acid.  相似文献   

6.
Monoclonal antibodies to various domains of human protein C were characterized, and the cross-reactivity of these antibodies with other vitamin K-dependent proteins was explored. Three antibodies, JTC-1, -2, and -3 reacted with protein C only in the presence of Ca2+ and were shown to bind to the light chain of protein C. It is suggested that these antibodies recognize a gamma-carboxyglutamic acid domain-related conformational change induced by metal ions, evidenced by the fact that half-maximal binding was observed at calcium concentration of 0.5, 0.6, and 0.7 mM, respectively, by the fact that these antibodies, even in the presence of Ca2+, do not react with gamma-carboxyglutamic acid domainless protein C, and by the fact that Zn2+ and Tb3+ support binding in essentially the same way. Each cell line was stabilized by recloning five times. In addition each antibody had a single isoelectric point and was of the IgG1 kappa class. The interaction of antibodies JTC-1, -2; and -3 with protein C-Ca2+ was characterized by a single class of binding sites with Kd of 3.98 X 10(-9) M, 4.01 X 10(-9) M, and 6.76 X 10(-9) M, respectively. However, antibodies JTC-1, -2, and -3 bound to prothrombin-Ca2+ with Kd of 7.81 X 10(-9) M, 2.0 X 10(-7) M, and higher than 1.0 X 10(-5) M, respectively. In addition they had weak affinity for factor X in the presence of Ca2+. The results indicate that the antibodies JTC-1, -2, and -3 are conformation-specific monoclonal antibodies directed against an at least partially common metal ion-induced three-dimensional structure in protein C, prothrombin, and factor X.  相似文献   

7.
8.
Ca2+ or Cd2+ binding and the conformational change induced by the metal binding in two frog bone Gla-proteins (BGP, termed BGP-1 and BGP-2) were studied by equilibrium dialysis and CD measurement. By CD measurement in the far-ultraviolet region, the alpha-helix content of both apoBGPs was found to be 8%. Binding of both Ca2+ and Cd2+ was accompanied with a change in the CD spectrum, and the alpha-helix content increased to 15 and 25% for BGP-1 and BGP-2, respectively. CD measurement in the near-ultraviolet region indicated that the environment of aromatic amino acid residues in the protein molecule was changed by metal binding. Equilibrium dialysis experiments indicated that each of these two protein binds specifically 2 mol of Ca2+, and nonspecifically an additional 3-4 mol of Ca2+ in 0.02 M Tris-HCl/0.15 M NaCl (pH 7.4), at 4 degrees C. According to the two separate binding sites model, BGP-1 has 1 high-affinity Ca2+ binding site (Kd1 = 0.17 mM) and 1 low-affinity site (Kd2 = 0.29 mM), and BGP-2 contains 1 high-affinity site (Kd1 = 0.14 mM) and 1 low-affinity site (Kd2 = 0.67 mM). In addition, 2 Cd2+ bound to a high-affinity binding site on BGP-1 with Kd1 of 10.4 microM, and 1 Cd2+ bound to a low-affinity binding site with Kd2 of 41.5 microM. On the other hand, BGP-2 had three classes of binding sites and 1 Cd2+ bound to each binding site with Kd1 = 3.6 microM, Kd2 = 16.3 microM, Kd3 = 51.7 microM, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The metal binding sites of a gamma-carboxyglutamic acid-rich fragment derived from bovine prothrombin were examined using paramagnetic lanthanide ions to evaluate the role of gamma-carboxyglutamic acid resideus in metal binding. A gamma-carboxyglutamic acid-rich peptide, fragment 12-44, was isolated from a tryptic digest of prothrombin. Using 153Gd(III), fragment 12-44 was found to contain one high affinity metal binding site (KD = 0.55 microM) and four to six lower affinity metal binding sites (KD approximately 4 to 8 microM). The S-carboxymethyl derivative of fragment 12-44, in which the disulfide bond in fragment 12-44 was reduced and alkylated, contained no high affinity metal binding site and four or five lower affinity sites (KD = 8 microM). The effects of paramagnetic lanthanide ions on fragment 12-44 and its S-carboxymethyl derivative were studied by natural abundance 13C NMR spectroscopy. The 13C NMR spectrum of fragment 12-44 was recorded at 67.88 MHz and the resonances were assigned by comparison to the chemical shift of carbon resonances of amino acids and peptides previously studied. The proximity between bound metal ions and carbon atoms in fragment 12-44 was estimated using Gd(III), based upon the strategy that the magnitude of the change in the transverse relaxation rate of resonances of carbon nuclei induced by bound metal ions is related in part to the interatomic distances between bound metal and carbon nuclei. Titration of fragment 12-44 with Gd(III) resulted in the selective broadening of the gamma-carboxyl carbon, C gamma, C beta, and C alpha resonances of gamma-carboxyglutamic acid, and the C epsilon of the arginines. S-Carboxymethyl fragment 12-44, which lacked the high affinity metal binding site, showed markedly decreased perturbation of the C epsilon of the arginine residues upon titration with Gd(III). These studies indicate that gamma-carboxyglutamic acid residues in prothrombin fragment 12-44 participate in metal liganding. A high affinity metal binding site in fragment 12-44 is in close proximity of Arg 16 and Arg 25 and is stabilized by the disulfide bond. On the basis of these data, a model of the metal binding sites is proposed in which the high affinity site is composed of two gamma-carboxyglutamic acid residues which participate in intramolecular metal-dependent bridging of two regions of the polypeptide chain. The lower affinity metal binding sites, formed by single or paired adjacent gamma-carboxyglutamic acid residues, then may participate in intermolecular metal-dependent protein . protein or protein . membrane complex formation.  相似文献   

10.
Changes in the affinity of the heavy subunit of blood coagulation factor Va (Vh) for prothrombin are thought to be important in regulating the rate of thrombin production. Using analytical ultracentrifugation, we have measured the affinity of bovine Vh for prothrombin and for the prethrombin 1 fragment of prothrombin at 23.3 degrees C, pH 7.65, in 50 mM tris(hydroxymethyl)aminomethane, 0.1 M NaCl, 0.1 mM benzamidine, and either 2 mM Ca2+ or 2 mM ethylenediaminetetraacetate (EDTA). Under these conditions a 1:1 complex of Vh with prothrombin is formed that is governed by a dissociation constant (Kd) of 10 microM, regardless of whether the buffer contains Ca2+ or EDTA. An identical Kd is observed when prethrombin 1 is substituted for prothrombin. This indicates that the fragment 1 portion of prothrombin, containing the gamma-carboxyglutamic acid residues, does not influence the association. Substitution of human prethrombin 1 for the bovine molecule also results in a 1:1 Vh-prethrombin 1 complex governed by a slightly weaker Kd (27 microM). Discrete proteolysis of bovine Vh by the anticoagulant activated protein C converts the Vh to a form with little or no affinity for prethrombin 1 (Kd greater than 1 mM), without detectable change in the mass of the Vh.  相似文献   

11.
R E Reid 《Biochemistry》1987,26(19):6070-6073
The sequential solid-phase synthesis of a peptide analogue of bovine brain calmodulin calcium binding site III covering residues 81-113 of the natural sequence is described. Methionine-109 is replaced by a leucine residue to avoid complications in the synthesis and purification. In an attempt to relate the structure of the calcium binding sites in the naturally occurring calcium binding protein to the calcium affinity of these sites, the synthetic analogue is examined for calcium binding by circular dichroism spectroscopy. The calcium binding characteristics are compared to those of a synthetic analogue of the homologous calcium binding site III in rabbit skeletal troponin C. The Kd of the calmodulin site III fragment for Ca2+ is determined as 878 microM whereas the Kd of the troponin C fragment is 30 times smaller at 28 microM. Structural changes induced in the peptides by Ca2+ and trifluoroethanol are similar. This study supports our contention that the single synthetic calcium binding site is a reasonable model for the study of the structure-activity relationships of the calcium binding sites in calcium-regulated proteins such as calmodulin and troponin C.  相似文献   

12.
The two-way and three-way interactions among active-site-blocked bovine thrombin, bovine protein C, and the elastase fragment of rabbit thrombomodulin (elTM) were examined by analytical ultracentrifugation at 23.3 degrees C in 100 mM NaCl, 50 mM Tris (pH 7.65), and 1 mM benzamidine, in the presence of 0 to 5 mM calcium chloride. Thrombin and elTM form a tight (Kd less than 10(-8) M) 1:1 complex in the absence of Ca2+ that weakens with the addition of Ca2+ (Kd approximately 4 microM in 5 mM Ca2+). Without Ca2+, thrombin and protein C form a 1:1 complex (Kd approximately 1 microM) and what appears to be a 1:2 thrombin-protein C complex. The Kd for the 1:1 complex weakens over 100-fold in 5 mM CaCl2. Protein C and elTM form a Ca(2+)-independent 1:1 complex (Kd approximately 80 microM). Nearly identical binding to thrombin and elTM is observed when active-site-blocked activated bovine protein C is substituted for protein C. Thrombin inhibited by diisopropyl fluorophosphate and thrombin inhibited by a tripeptide chloromethyl ketone exhibited identical behavior in binding experiments, suggesting that the accessibility of protein C to the substrate recognition cleft of these two forms of thrombin is nearly equal. Human protein C binds with lower affinity than bovine protein C. Ternary mixtures also were examined. Protein C, elTM, and thrombin form a 1:1:1 complex which dissociates with increasing [Ca2+]. In the absence of Ca2+, protein C binds to the elTM-thrombin complex with an apparent Kd approximately 1 microM.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Thrombin cleaves protein S at arginine residues 52 and 70 resulting in loss of cofactor activity and reduced Ca2+ ion binding. After thrombin cleavage the NH2-terminal region containing gamma-carboxyglutamic acid (Gla) is linked to the large COOH-terminal fragment by a disulfide bond. Measurements of the rate of disulfide bond reduction by thioredoxin in intact protein S showed that the disulfide bonds are largely inaccessible to thioredoxin in the presence of Ca2+ ions, whereas in the presence of EDTA apparently all of the disulfide bonds are rapidly reduced. Probing the reactivity of the disulfide bonds in thrombin-modified proteins indicated that the thrombin cleavage induces a conformational change in the protein. After thrombin cleavage of protein S, the domain containing gamma-carboxyglutamic acid could be removed by selective reduction with thioredoxin followed by alkylation of the sulfhydryl groups. Ca2+ ion binding was compared in intact protein S, thrombin-modified protein S, and Gla domainless protein S. The intact protein S bound several Ca2+ ions, and the binding was not saturable. Thrombin-modified protein S, whether intact or with the Gla domain removed by selective reduction, bound two to three Ca2+ ions with a KD of 15-20 microM. The Gla domain in thrombin-modified protein S thus does not contribute significantly to the high affinity Ca2+ ion binding. Thrombin cleavage of protein S may be of physiological importance in the regulation of blood coagulation.  相似文献   

14.
We isolated protein C from a barium citrate-adsorbed fresh plasma and human factor IX concentrate by immunoaffinity chromatography on a column of Sepharose coupled with monoclonal antibodies to protein C. The antibodies used were conformation-specific monoclonal antibodies to the calcium-induced structure of protein C. Protein C was bound to antibodies coupled with Sepharose in the presence of calcium ions and was eluted with EDTA. This immunopurification resulted in a 13,000-fold purification of the fully functional zymogen from plasma. The immunoaffinity-isolated protein C was found to have higher amounts of single-chain protein C than conventionally isolated protein C when analyzed by sodium dodecyl sulfate-polyacrylamide gels under reduced conditions. The factor IX concentrate was applied to this Ca2+-dependent antibody JTC-3-immobilized Sepharose in the presence of 5 mM CaCl2, and protein C with its gamma-carboxyglutamic acid (Gla) domain intact was firstly bound to this column and then eluted by metal chelation with EDTA. When flow-through fractions were applied again in the presence of Ca2+ to this column, modified protein C which had lost its N-terminal 42-residue peptide was weakly bound to this column. It was eluted in the absence of Ca2+. However, only a low percentage of modified protein C was detectable by an enzyme-linked immunosorbent assay using Ca2+-dependent monoclonal antibody JTC-3 and peroxidase-labeled immunopurified polyclonal antibody. These results indicate that factor IX concentrate has both Gla-domain-intact and Gla-domainless protein C. Moreover, it suggests that Ca2+-dependent monoclonal antibody JTC-3 may recognize the coupled conformational change of protein C induced by the combined effect of Ca2+ binding to the Gla domain and to other parts of protein C.  相似文献   

15.
Murine monoclonal antibodies, developed following immunization with human protein C, were characterized for their ability to bind antigen in the presence of either CaCl2 or excess EDTA. Three stable clones were obtained which produced antibodies that bound to protein C only in the presence of EDTA. All three antibodies bound to the light chain of protein C on immunoblots and also bound to the homologous proteins factor X and prothrombin in solid-phase radioimmunoassays. One antibody, 7D7B10 was purified and studied further. The binding of 7D7B10 to human protein C was characterized by a KD of 1.4 nM. In competition studies, it was found that the relative affinity of the antibody for protein C was 20-40-fold higher than for prothrombin, fragment 1 of prothrombin, or factor X. In contrast, 7D7B10 was unable to bind to factor IX or bovine protein C. The effect of varying Ca2+ concentration on the interaction of the antibody with protein C was complex. Low concentrations of Ca2+ enhanced the formation of the protein C-antibody complex with half-maximal effect occurring at approximately 60 microM metal ion. However, higher concentrations of Ca2+ completely inhibited 7D7B10 binding to protein C with a K0.5 of 1.1 mM. Furthermore, millimolar concentrations of Mn2+, Ba2+, or Mg2+ also completely abolished antibody binding to protein C. The location of the epitope was delineated by immunoblotting and peptide studies and found to be present in the NH2-terminal 15 residues of protein C. Although residues corresponding to positions 10-13 of human protein C were necessary for maximal binding of the antibody, they were not sufficient. No evidence could be found for involvement of the epitope in metal binding per se. Therefore, the effect of Ca2+ on antibody binding is thought to be due to metal-dependent conformational changes in protein C. It seems likely that Ca2+ occupation of a high affinity site, shown by others to be located in the epidermal growth factor-like domain, causes a conformational change in the NH2-terminal region of protein C which is favorable for antibody interaction, whereas Ca2+ binding to the low affinity site(s), known to be present in the gamma-carboxyglutamic acid domain, causes an unfavorable conformational change.  相似文献   

16.
We have examined the calcium-binding properties and metal ion-dependent conformational changes of proteolytically modified derivatives of factor IX that lack gamma-carboxyglutamic acid (Gla) residues. Equilibrium dialysis experiments demonstrated that a Gla-domainless factor IX species retained a single high affinity calcium ion-binding site (Kd = 85 +/- 5 microM). Ca2+ binding to this site was accompanied by a decrease in intrinsic fluorescence emission intensity (Kd = 63 +/- 15 microM). These spectral changes were reversed upon the addition of EDTA. Titration with Sr2+ resulted in little change in fluorescence intensity below 1 mM, while titration with Tb3+ caused fluorescence changes similar to those observed with Ca2+. Tb3+ and Ca2+ appear to bind to the same site because tryptophan-dependent terbium emission was reduced by the addition of Ca2+. Similar results were obtained with a Gla-domainless factor IX species lacking the activation peptide. Gla domain-containing factor IX species exhibited fluorescence changes similar to those of the Gla-domainless proteins at low Ca2+, but an additional structural transition was found at higher Ca2+ concentrations (apparent Kd greater than 0.8 mM). Thus, the conformations of factor IX proteins are nucleated and/or stabilized by calcium binding to a high affinity site which does not contain Gla residues. The binding of Ca2+ to lower affinity Gla domain-dependent metal ion-binding sites elicits an additional conformational change. The strong similarities between these results and those obtained with protein C (Johnson, A. E., Esmon, N. L., Laue, T. M. & Esmon, C. T. (1983) J. Biol. Chem. 258, 5554-5560), coupled with the remarkable sequence homologies of the vitamin K-dependent proteins, suggest that the high affinity Gla-independent Ca2+-binding site may be a common feature of vitamin K-dependent proteins.  相似文献   

17.
Two gamma-carboxyglutamic acid-containing proteins were purified from neutral (pH 7.5) EDTA-extract of frog, Rana catesbiana, cortical bone by Sephadex G-75 gel filtration, DEAE-Sephadex A-25 chromatography and successive hydroxyapatite column chromatography. These two bone gamma-carboxyglutamic acid-containing proteins, termed osteocalcin, P-1 and P-2, had molecular weights of about 5100 and 4900, respectively, based on their amino-acid composition. Both species of osteocalcin have two gamma-carboxyglutamic acid residues, one disulfide bond, but there was no 4-hydroxyproline in either molecule. Each N-terminus of both proteins was acetylated and each C-terminal amino acid was lysine. The isoelectric points of P-1 and P-2 are 4.02 and 3.91, respectively, and their pI values shifted to more neutral pH in the presence of calcium ions. Equilibrium dialysis has indicated that each of these two proteins binds specifically 2 mol Ca2+, and nonspecifically more, 4-5 mol, Ca2+ in 0.02 M Tris-HCl/0.15 M NaCl (pH 7.4), at 4 degrees C. By the best-fitted calculation, P-1 had one high affinity Ca2+-binding site (Kd1 = 0.17 mM) and one lower affinity site (Kd2 = 0.29 mM), and P-2 contained one high affinity site (Kd1 = 0.154 mM) and one lower affinity site (Kd2 = 0.67 mM).  相似文献   

18.
Protein C undergoes Ca2+-induced conformational changes required for activation by the thrombin-thrombomodulin complex. A Ca2+-dependent monoclonal antibody (HPC4) that blocks protein C activation was used to study conformational changes near the activation site in protein C. The half-maximal Ca2+ dependence was similar for protein C and gamma-carboxy-glutamic acid-domainless protein C for binding to HPC4 (205 +/- 23 and 110 +/- 29 microM Ca2+, respectively), activation rates (214 +/- 22 and 210 +/- 37 microM), and intrinsic fluorescence of gamma-carboxyglutamic acid-domainless protein C (176 +/- 34 microM). Protein C heavy chain binding to HPC4 was half-maximal at 36 microM Ca2+, although neither the heavy chain nor HPC4 separately bound Ca2+ with high affinity. The epitope was lost when the activation peptide was released. A synthetic peptide, P (6-17), which spans the activation site, exhibited Ca2+-dependent binding to HPC4 (half-maximal binding = 6 microM Ca2+). Thus, each decrease in antigen structure resulted in a reduced Ca2+ requirement for binding to HPC4. Tb3+ and Ca2+ binding studies demonstrated a Ca2+-binding site in HPC4 required for high affinity antigen binding. These studies provide the first direct evidence for a Ca2+-induced conformational change in the activation region of a vitamin K-dependent zymogen. Furthermore, Ca2+ binding to HPC4 is required for antigen binding. The multiple roles of Ca2+ described may be useful in interpretation of other metal-dependent antibody/antigen interactions.  相似文献   

19.
In order to identify calcium (Ca2+)-binding proteins in the parathyroid gland, we used electrophoretic blots of proteins separated by a two-dimensional nondenaturing/denaturing gel system and incubated them with 45Ca2+. Parathyroid secretory protein (PSP) and proteins with approximate molecular weights of 98,000, 88,000, 58,000, and 30,000 were noted to bind Ca2+ in cytosolic fractions from bovine parathyroid, adrenal, and pituitary glands. However, differences in the binding affinity and capacity of the various proteins were observed. PSP displayed a low affinity and high binding capacity for Ca2+. In the presence of 5 mM MgCl2 and 60 mM KCl, native PSP (immobilized on nitrocellulose filters) bound 7.5 mol of Ca2+/mol of protein monomer with an apparent Kd of 1.1 mM. Immunoblotting identified the association of PSP with parathyroid cell membranes in a Ca2+-dependent manner. This property, together with its heat stability, distinguished PSP from other cytosolic Ca2+-binding proteins which were identified. There was also evidence for a Ca2+-dependent protein-protein interaction (aggregation) of PSP present in a Nonidet P-40 extract of cell membranes. The high Ca2+ binding capacity of PSP and its Ca2+-dependent membrane association may be features that make PSP a potentially important protein in secretory cells.  相似文献   

20.
The calcium-stabilized antigenic determinants on bovine prothrombin were localized to the NH2-terminal 1-42 residues using conformation-specific antibodies. Polyclonal antibodies to the bovine prothrombin-Ca(II) complex were raised in rabbits, and purified antibody subpopulations were isolated by sequential immunoabsorption and affinity chromatography. Anti-prothrombin-Ca(II) antibodies, characterized by their absolute specificity for the prothrombin-metal complex (Tai, M. M., Furie, B. C., and Furie, B. (1980) J. Biol. Chem. 255, 2790-2795), bound to prothrombin, fragment 1, reduced and carboxymethylated fragment 1, and CNBr fragment (1-72) in solution. However, these antibodies do not bind significantly to the gamma-carboxyglutamic acid-rich fragment (1-39), CNBr fragment (73-156), or prethrombin 1. To obviate the complex analysis of possible reasons for the lack of antibody binding to small peptides in solution, conformation-specific antibodies directed against defined regions of the whole prothrombin molecule were isolated. The influence of calcium ions on the binding of these site-specific antibody subpopulations to 125I-labeled prothrombin fragment 1 was evaluated. Anti-(1-39)N, anti-(1-42)N, anti-(1-72)N, and anti-(reduced and carboxymethylated fragment 1)N showed enhanced binding to prothrombin fragment 1 in the presence of Ca(II), indicating the presence of calcium-stabilized antigenic determinants within each of these regions on fragment 1. In contrast, calcium ions had no effect on the interaction of anti-des-(1-42)prothrombin, anti-prethrombin 1, anti-(43-72)N, and anti-(73-156)N antibodies with prothrombin fragment 1. These results indicate that the metal-induced conformational transition, monitored immunochemically, is localized to the NH2-terminal, gamma-carboxyglutamic acid-rich region of prothrombin between residues 1-42.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号