首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Welle S  Tawil R  Thornton CA 《PloS one》2008,3(1):e1385
There is sexual dimorphism of skeletal muscle, the most obvious feature being the larger muscle mass of men. The molecular basis for this difference has not been clearly defined. To identify genes that might contribute to the relatively greater muscularity of men, we compared skeletal muscle gene expression profiles of 15 normal men and 15 normal women by using comprehensive oligonucleotide microarrays. Although there were sex-related differences in expression of several hundred genes, very few of the differentially expressed genes have functions that are obvious candidates for explaining the larger muscle mass of men. The men tended to have higher expression of genes encoding mitochondrial proteins, ribosomal proteins, and a few translation initiation factors. The women had >2-fold greater expression than the men (P<0.0001) of two genes that encode proteins in growth factor pathways known to be important in regulating muscle mass: growth factor receptor-bound 10 (GRB10) and activin A receptor IIB (ACVR2B). GRB10 encodes a protein that inhibits insulin-like growth factor-1 (IGF-1) signaling. ACVR2B encodes a myostatin receptor. Quantitative RT-PCR confirmed higher expression of GRB10 and ACVR2B genes in these women. In an independent microarray study of 10 men and 9 women with facioscapulohumeral dystrophy, women had higher expression of GRB10 (2.7-fold, P<0.001) and ACVR2B (1.7-fold, P<0.03). If these sex-related differences in mRNA expression lead to reduced IGF-1 activity and increased myostatin activity, they could contribute to the sex difference in muscle size.  相似文献   

2.
Cachexia, progressive loss of fat and muscle mass despite adequate nutrition, is a devastating complication of cancer associated with poor quality of life and increased mortality. Myostatin is a potent tonic muscle growth inhibitor. We tested how myostatin inhibition might influence cancer cachexia using genetic and pharmacological approaches. First, hypermuscular myostatin null mice were injected with Lewis lung carcinoma or B16F10 melanoma cells. Myostatin null mice were more sensitive to tumor-induced cachexia, losing more absolute mass and proportionately more muscle mass than wild-type mice. Because myostatin null mice lack expression from development, however, we also sought to manipulate myostatin acutely. The histone deacetylase inhibitor Trichostatin A has been shown to increase muscle mass in normal and dystrophic mice by inducing the myostatin inhibitor, follistatin. Although Trichostatin A administration induced muscle growth in normal mice, it failed to preserve muscle in colon-26 cancer cachexia. Finally we sought to inhibit myostatin and related ligands by administration of the Activin receptor extracellular domain/Fc fusion protein, ACVR2B-Fc. Systemic administration of ACVR2B-Fc potently inhibited muscle wasting and protected adipose stores in both colon-26 and Lewis lung carcinoma cachexia, without affecting tumor growth. Enhanced cachexia in myostatin knockouts indicates that host-derived myostatin is not the sole mediator of muscle wasting in cancer. More importantly, skeletal muscle preservation with ACVR2B-Fc establishes that targeting myostatin-family ligands using ACVR2B-Fc or related molecules is an important and potent therapeutic avenue in cancer cachexia.  相似文献   

3.
4.
Sarcopenia is a notable and debilitating age-associated condition. Flavonoids are known for their healthy effects and limited toxicity. The flavanol (−)-epicatechin (Epi) enhances exercise capacity in mice, and Epi-rich cocoa improves skeletal muscle structure in heart failure patients. (−)-Epicatechin may thus hold promise as treatment for sarcopenia.We examined changes in protein levels of molecular modulators of growth and differentiation in young vs. old, human and mouse skeletal muscle. We report the effects of Epi in mice and the results of an initial proof-of-concept trial in humans, where muscle strength and levels of modulators of muscle growth were measured. In mice, myostatin and senescence-associated β-galactosidase levels increase with aging, while those of follistatin and Myf5 decrease. (−)-Epicatechin decreases myostatin and β-galactosidase and increases levels of markers of muscle growth. In humans, myostatin and β-galactosidase increase with aging while follistatin, MyoD and myogenin decrease. Treatment for 7 days with (−)-epicatechin increases hand grip strength and the ratio of plasma follistatin/myostatin.In conclusion, aging has deleterious effects on modulators of muscle growth/differentiation, and the consumption of modest amounts of the flavanol (−)-epicatechin can partially reverse these changes. This flavanol warrants its comprehensive evaluation for the treatment of sarcopenia.  相似文献   

5.
Although loss of muscle mass is considered a cause of diminished muscle strength with aging, little is known regarding whether composition of aging muscle affects strength. The skeletal muscle attenuation coefficient, as determined by computed tomography, is a noninvasive measure of muscle density, and lower values reflect increased muscle lipid content. This investigation examined the hypothesis that lower values for muscle attenuation are associated with lower voluntary isokinetic knee extensor strength at 60 degrees/s in 2,627 men and women aged 70-79 yr participating in baseline studies of the Health ABC Study, a longitudinal study of health, aging, and body composition. Strength was higher in men than in women (132.3 +/- 34.5 vs. 81.4 +/- 22.0 N x m, P < 0.01). Men had greater muscle attenuation values (37.3 +/- 6.5 vs. 34.7 +/- 7.0 Hounsfield units) and muscle cross-sectional area (CSA) at the midthigh than women (132.7 +/- 22.4 vs. 93.3 +/- 17.5 cm(2), P < 0.01 for both). The strength per muscle CSA (specific force) was also higher in men (1.00 +/- 0.21 vs. 0.88 +/- 0.21 N x m x cm(-2)). The attenuation coefficient was significantly lower for hamstrings than for quadriceps (28.7 +/- 8.7 vs. 41.1 +/- 6.9 Hounsfield units, P < 0.01). Midthigh muscle attenuation values were lowest (P < 0.01) in the eldest men and women and were negatively associated with total body fat (r = -0.53, P < 0.01). Higher muscle attenuation values were also associated with greater specific force production (r = 0.26, P < 0.01). Multivariate regression analysis revealed that the attenuation coefficient of muscle was independently associated with muscle strength after adjustment for muscle CSA and midthigh adipose tissue in men and women. These results demonstrate that the attenuation values of muscle on computed tomography in older persons can account for differences in muscle strength not attributed to muscle quantity.  相似文献   

6.
Lee SJ 《PloS one》2007,2(8):e789
Myostatin is a transforming growth factor-beta family member that normally acts to limit skeletal muscle growth. Mice genetically engineered to lack myostatin activity have about twice the amount of muscle mass throughout the body, and similar effects are seen in cattle, sheep, dogs, and a human with naturally occurring loss-of-function mutations in the myostatin gene. Hence, there is considerable interest in developing agents capable of inhibiting myostatin activity for both agricultural and human therapeutic applications. We previously showed that the myostatin binding protein, follistatin, can induce dramatic increases in muscle mass when overexpressed as a transgene in mice. In order to determine whether this effect of follistatin results solely from inhibition of myostatin activity, I analyzed the effect of this transgene in myostatin-null mice. Mstn(-/-) mice carrying a follistatin transgene had about four times the muscle mass of wild type mice, demonstrating the existence of other regulators of muscle mass with similar activity to myostatin. The greatest effect on muscle mass was observed in offspring of mothers homozygous for the Mstn mutation, raising the possibility that either myostatin itself or a downstream regulator may normally be transferred from the maternal to fetal circulations. These findings demonstrate that the capacity for increasing muscle growth by manipulating TGF-beta signaling pathways is much more extensive than previously appreciated and suggest that muscle mass may be controlled at least in part by a systemic mode of action of myostatin.  相似文献   

7.
Myostatin, a member of the transforming growth factor (TGF)-β superfamily, plays a potent inhibitory role in regulating skeletal muscle mass. Inhibition of myostatin by gene disruption, transgenic (Tg) expression of myostatin propeptide, or injection of propeptide or myostatin antibodies causes a widespread increase in skeletal muscle mass. Several peptides, in addition to myostatin propeptide and myostatin antibodies, can bind directly to and neutralize the activity of myostatin. These include follistatin and follistatin-related gene. Overexpression of follistatin or follistatin-related gene in mice increased the muscle mass as in myostatin knockout mice. Follistatin binds to myostatin but also binds to and inhibits other members of the TGF-β superfamily, notably activins. Therefore, follistatin regulates both myostatin and activins in vivo. We previously reported the development and characterization of several follistatin-derived peptides, including FS I-I (Nakatani M, Takehara Y, Sugino H, Matsumoto M, Hashimoto O, Hasegawa Y, Murakami T, Uezumi A, Takeda S, Noji S, Sunada Y, Tsuchida K. FASEB J 22: 477-487, 2008). FS I-I retained myostatin-inhibitory activity without affecting the bioactivity of activins. Here, we found that inhibition of myostatin increases skeletal muscle mass and decreases fat accumulation in FS I-I Tg mice. FS I-I Tg mice also showed decreased fat accumulation even on a control diet. Interestingly, the adipocytes in FS I-I Tg mice were much smaller than those of wild-type mice. Furthermore, FS I-I Tg mice were resistant to high-fat diet-induced obesity and hepatic steatosis and had lower hepatic fatty acid levels and altered fatty acid composition compared with control mice. FS I-I Tg mice have improved glucose tolerance when placed on a high-fat diet. These data indicate that inhibiting myostatin with a follistatin-derived peptide provides a novel therapeutic option to decrease adipocyte size, prevent obesity and hepatic steatosis, and improve glucose tolerance.  相似文献   

8.
Smoking causes multiple organ dysfunction. The effect of smoking on skeletal muscle protein metabolism is unknown. We hypothesized that the rate of skeletal muscle protein synthesis is depressed in smokers compared with non-smokers. We studied eight smokers (> or =20 cigarettes/day for > or =20 years) and eight non-smokers matched for sex (4 men and 4 women per group), age (65 +/- 3 and 63 +/- 3 yr, respectively; means +/- SEM) and body mass index (25.9 +/- 0.9 and 25.1 +/- 1.2 kg/m(2), respectively). Each subject underwent an intravenous infusion of stable isotope-labeled leucine in conjunction with blood and muscle tissue sampling to measure the mixed muscle protein fractional synthesis rate (FSR) and whole body leucine rate of appearance (Ra) in plasma (an index of whole body proteolysis), the expression of genes involved in the regulation of muscle mass (myostatin, a muscle growth inhibitor, and MAFBx and MuRF-1, which encode E3 ubiquitin ligases in the proteasome proteolytic pathway) and that for the inflammatory cytokine TNF-alpha in muscle, and the concentration of inflammatory markers in plasma (C-reactive protein, TNF-alpha, interleukin-6) which are associated with muscle wasting in other conditions. There were no differences between nonsmokers and smokers in plasma leucine concentration, leucine rate of appearance, and plasma concentrations of inflammatory markers, or TNF-alpha mRNA in muscle, but muscle protein FSR was much less (0.037 +/- 0.005 vs. 0.059 +/- 0.005%/h, respectively, P = 0.004), and myostatin and MAFBx (but not MuRF-1) expression were much greater (by approximately 33 and 45%, respectivley, P < 0.05) in the muscle of smokers than of nonsmokers. We conclude that smoking impairs the muscle protein synthesis process and increases the expression of genes associated with impaired muscle maintenance; smoking therefore likely increases the risk of sarcopenia.  相似文献   

9.
Accumulating evidence suggests that athletic performance is strongly influenced by genetic variation. One such locus of influence is the gene for angiotensin-I converting enzyme (ACE), which exhibits a common variant [ACE insertion (I)/deletion (D)]. ACE can drive formation of vasoconstrictor ANG II but preferentially degrades vasodilator bradykinin. The ACE I allele is associated with higher kinin activity. A common gene variant in the kinin beta(2) receptor (B(2)R) exists: the -9 as opposed to +9 allele is associated with higher receptor mRNA expression. We tested whether this variant was associated with the efficiency of muscular contraction [delta efficiency (DE)] in 115 healthy men and women, or with running distance among 81 Olympic standard track athletes. We further sought evidence of biological interaction with ACE I/D genotype. DE was highly significantly associated with B(2)R genotype (23.84 +/- 2.41 vs. 24.25 +/- 2.81 vs. 26.05 +/- 2.26% for those of +9/+9 vs. +9/-9 vs. -9/-9 genotype; n = 25, 61, and 29, respectively; P = 0.0008 for ANOVA adjusted for sex). There was evidence for interaction with ACE I/D genotype, with individuals who were ACE II, with B(2)R -9/-9 having the highest DE at baseline. The ACE I/B(2)R -9 "high kinin receptor activity" haplotype was significantly associated with endurance (predominantly aerobic) event among elite athletes (P = 0.003). These data suggest that common genetic variation in the B(2)R is associated with efficiency of skeletal muscle contraction and with distance event of elite track athletes and that at least part of the associations of ACE and fitness phenotypes is through elevation of kinin activity.  相似文献   

10.
Type 1 diabetes mellitus (T1DM), or insulin dependent DM, is accompanied by decreased muscle mass. The growth factor myostatin (MSTN) is a negative regulator of muscle growth, and a loss of MSTN signaling has been shown to increase muscle mass and prevent the development of obesity, insulin resistance and lipodystrophic diabetes in mice. The effects of MSTN inhibition in a T1DM model on muscle mass and blood glucose are unknown. We asked whether MSTN inhibition would increase muscle mass and decrease hyperglycemia in mice treated with streptozotocin (STZ) to destroy pancreatic beta cells. After diabetes developed, mice were treated with a soluble MSTN/activin receptor fused to Fc (ACVR2B:Fc). ACVR2B:Fc increased body weight and muscle mass compared to vehicle treated mice. Unexpectedly, ACVR2B:Fc reproducibly exacerbated hyperglycemia within approximately one week of administration. ACVR2B:Fc treatment also elevated serum levels of the glucocorticoid corticosterone. These results suggest that although MSTN/activin inhibitors increased muscle mass, they may be counterproductive in improving health in patients with T1DM.  相似文献   

11.
This study examined changes in myostatin gene expression in response to strength training (ST). Fifteen young and older men (n = 7) and women (n = 8) completed a 9-week heavy-resistance unilateral knee extension ST program. Muscle biopsies were obtained from the dominant vastus lateralis before and after ST. In addition to myostatin mRNA levels, muscle volume and strength were measured. Total RNA was reverse transcribed into cDNA, and myostatin mRNA was quantified using quantitative PCR by standard fluorescent chemistries and was normalized to 18S rRNA levels. A 37% decrease in myostatin expression was observed in response to ST in all subjects combined (2.70 +/- 0.36 vs 1.69 +/- 0.18 U, arbitrary units; P < 0.05). Though the decline in myostatin expression was similar regardless of age or gender, the small number of subjects in these subgroups suggests that this observation needs to be confirmed. No significant correlations were observed between myostatin expression and any muscle strength or volume measure. Although further work is necessary to clarify the findings, these data demonstrate that myostatin mRNA levels are reduced in response to heavy-resistance ST in humans.  相似文献   

12.
Fatty acid transporter protein (FATP)-1 mRNA expression was investigated in skeletal muscle and in subcutaneous abdominal adipose tissue of 17 healthy lean, 13 nondiabetic obese, and 16 obese type 2 diabetic subjects. In muscle, FATP-1 mRNA levels were higher in lean women than in lean men (2.2 +/- 0.1 vs. 0.6 +/- 0.2 amol/microg total RNA, P < 0.01). FATP-1 mRNA expression was decreased in skeletal muscle in obese women both in nondiabetic and in type 2 diabetic patients (P < 0.02 vs. lean women in both groups), and in all women there was a negative correlation with basal FATP-1 mRNA level and body mass index (r = -0.74, P < 0.02). In men, FATP-1 mRNA was expressed at similar levels in the three groups both in skeletal muscle (0.6 +/- 0.2, 0.6 +/- 0.2, and 0.8 +/- 0.2 amol/microg total RNA in lean, obese, and type 2 diabetic male subjects) and in adipose tissue (0.9 +/- 0.2 amol/microg total RNA in the 3 groups). Insulin infusion (3 h) reduced FATP-1 mRNA levels in muscle in lean women but not in lean men. Insulin did not affect FATP-1 mRNA expression in skeletal muscle in obese nondiabetic or in type 2 diabetic subjects nor in subcutaneous adipose tissue in any of the three groups. These data show a gender-related difference in the expression of the fatty acid transporter FATP-1 in skeletal muscle of lean individuals and suggest that changes in FATP-1 expression may not contribute to a large extent to the alterations in fatty acid uptake in obesity and/or type 2 diabetes.  相似文献   

13.
Myostatin, a member of the transforming growth factor-beta superfamily, is a negative regulator of skeletal muscle growth. Cattle with mutations that inactivate myostatin exhibit a remarkable increase in mass of skeletal muscle called double muscling that is accompanied by an equally remarkable decrease in carcass fat. Although a mouse knockout model has been created which results in mice with a 200% increase in skeletal muscle mass, molecular mechanisms whereby myostatin regulates skeletal muscle and fat mass are not fully understood. Using suppressive subtractive hybridization, genes that were differentially expressed in double-muscled vs. normal-muscled cattle embryos were identified. Genetic variation at other loci was minimized by using embryonic samples collected from related Piedmontese x Angus dams or Belgian Blue x Hereford dams bred to a single sire of the same breed composition. Embryos were collected at 31-33 days of gestation, which is 2-4 days after high-level expression of myostatin in the developing bovine embryo. The suppressive subtraction resulted in 30 clones that were potentially differentially expressed, 19 of which were confirmed by macroarray analysis. Several of these genes have biological functions that suggest that they are directly involved in myostatin's regulation of skeletal muscle development. Furthermore, several of these genes map to quantitative trait loci known to interact with variation in the myostatin gene.  相似文献   

14.
Follistatin is essential for skeletal muscle development and growth, but the intracellular signaling networks that regulate follistatin-mediated effects are not well defined. We show here that the administration of an adeno-associated viral vector expressing follistatin-288aa (rAAV6:Fst-288) markedly increased muscle mass and force-producing capacity concomitant with increased protein synthesis and mammalian target of rapamycin (mTOR) activation. These effects were attenuated by inhibition of mTOR or deletion of S6K1/2. Furthermore, we identify Smad3 as the critical intracellular link that mediates the effects of follistatin on mTOR signaling. Expression of constitutively active Smad3 not only markedly prevented skeletal muscle growth induced by follistatin but also potently suppressed follistatin-induced Akt/mTOR/S6K signaling. Importantly, the regulation of Smad3- and mTOR-dependent events by follistatin occurred independently of overexpression or knockout of myostatin, a key repressor of muscle development that can regulate Smad3 and mTOR signaling and that is itself inhibited by follistatin. These findings identify a critical role of Smad3/Akt/mTOR/S6K/S6RP signaling in follistatin-mediated muscle growth that operates independently of myostatin-driven mechanisms.  相似文献   

15.
The existence of skeletal muscle-derived stem cells (MDSCs) has been suggested in mammals; however, the signaling pathways controlling MDSC proliferation remain largely unknown. Here we report the isolation of myosphere-derived progenitor cells (MDPCs) that can give rise to beating cardiomyocytes from adult skeletal muscle. We identified that follistatin, an antagonist of TGF-β family members, was predominantly expressed in MDPCs, whereas myostatin was mainly expressed in myogenic cells and mature skeletal muscle. Although follistatin enhanced the replicative growth of MDPCs through Smad2/3 inactivation and cell cycle progression, disruption of myostatin did not increase the MDPC proliferation. By contrast, inhibition of activin A (ActA) or growth differentiation factor 11 (GDF11) signaling dramatically increased MDPC proliferation via down-regulation of p21 and increases in the levels of cdk2/4 and cyclin D1. Thus, follistatin may be an effective progenitor-enhancing agent neutralizing ActA and GDF11 signaling to regulate the growth of MDPCs in skeletal muscle.  相似文献   

16.
Myostatin is a negative regulator of muscle mass and has been reported to be upregulated in several conditions characterized by muscle atrophy. The influence of sepsis on myostatin expression and activity is poorly understood. Here, we tested the hypothesis that sepsis upregulates the expression and downstream signaling of myostatin in skeletal muscle. Because sepsis‐induced muscle wasting is at least in part regulated by glucocorticoids, we also determined the influence of glucocorticoids on myostatin expression. Sepsis was induced in rats by cecal ligation and puncture and control rats were sham‐operated. In other experiments, rats were injected intraperitoneally with dexamethasone (10 mg/kg) or corresponding volume of vehicle. Surprisingly, myostatin mRNA levels were reduced and myostatin protein levels were unchanged in muscles from septic rats. Muscle levels of activin A, follistatin, and total and phosphorylated Smad2 (p‐Smad2) were not influenced by sepsis, suggesting that myostatin downstream signaling was not altered during sepsis. Interestingly, total and p‐Smad3 levels were increased in septic muscle, possibly reflecting altered signaling through pathways other than myostatin. Similar to sepsis, treatment of rats with dexamethasone reduced myostatin mRNA levels and did not alter myostatin protein levels. Fasting, an additional condition characterized by muscle wasting, reduced myostatin mRNA and activin A protein levels, increased myostatin protein, and did not influence follistatin and p‐Smad2 levels. Of note, total and p‐Smad3 levels were reduced in muscle during fasting. The results suggest that sepsis and glucocorticoids do not upregulate the expression and activity of myostatin in skeletal muscle. The role of myostatin may vary between different conditions characterized by muscle wasting. Downstream signaling through Smad2 and 3 is probably regulated not only by myostatin but by other mechanisms as well. J. Cell. Biochem. 111: 1059–1073, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

17.
Follistatin is well known as an inhibitor of transforming growth factor (TGF)-β superfamily ligands including myostatin and activin A. Myostatin, a negative regulator of muscle growth, is a promising target with which to treat muscle atrophic diseases. Here, we focused on the N-terminal domain (ND) of follistatin (Fst) that interacts with the type I receptor binding site of myostatin. Through bioassay of synthetic ND-derived fragment peptides, we identified DF-3, a new myostatin inhibitory 14-mer peptide which effectively inhibits myostatin, but fails to inhibit activin A or TGF-β1, in an in vitro luciferase reporter assay. Injected intramuscularly, DF-3 significantly increases skeletal muscle mass in mice and consequently, it can serve as a platform for development of muscle enhancement based on myostatin inhibition.  相似文献   

18.
The purpose of this study was to investigate mRNA expression of several key skeletal muscle myogenic controllers; myogenic differentiation factor (MyoD), muscle regulatory factor 4 (MRF4), myogenic factor 5 (Myf5), myogenin, myostatin, and myocyte enhancer factor 2 (MEF2) at rest and 4 h after a single bout of resistance exercise (RE) in young and old women. Eight young women (YW; 23 +/- 2 yr, 67 +/- 5 kg) and six old women (OW; 85 +/- 1 yr, 67 +/- 4 kg) performed 3 sets of 10 repetitions of bilateral knee extensions at 70% of one repetition maximum. Muscle biopsies were taken from the vastus lateralis before and 4 h after RE. Using real-time RT PCR, mRNA from the muscle samples was amplified and normalized to GAPDH. At rest, OW expressed higher (P < 0.05) levels of MyoD, MRF4, Myf5, myogenin, and myostatin compared with YW. In response to RE, there was a main time effect (P < 0.05) for the YW and OW combined in the upregulation of MyoD (2.0-fold) and MRF4 (1.4-fold) and in the downregulation of myostatin (2.2-fold). There was a trend (P = 0.08) for time x age interaction in MRF4. These data show that old women express higher myogenic mRNA levels at rest. The higher resting myogenic mRNA levels in old women may reflect an attempt to preserve muscle mass and function. When challenged with RE, old women appear to respond in a similar manner as young women.  相似文献   

19.
We performed gene screening of the ciliary neurotrophic factor receptor (CNTFR) gene and genotyped three newly identified polymorphisms: C-1703T in the 5' promoter region, T1069A in intron 5, and C174T in exon 9. We studied the association of these CNTFR variants with muscle strength, mass, and body composition in 465 men and women (20-90 yr) from the Baltimore Longitudinal Study of Aging. Only the C174T variant was significantly associated with muscle-related phenotypes. In the entire cohort, when corrected for age, sex, race, physical activity, and height, homozygotes for the common C allele at C174T (CC) exhibited lower total body mass and body mass index than carriers of the rare T allele, which appeared to be due to significant differences in total nonosseous fat-free mass (FFM) (48.0 +/- 0.4 vs. 50.0 +/- 0.7 kg; P = 0.011) and lower limb FFM (16.5 +/- 0.1 vs. 17.2 +/- 0.2 kg; P = 0.002). The CC group also exhibited significantly lower quadriceps concentric and eccentric isokinetic strength values at both 30 and 180 degrees /s than the T allele carriers (all P < 0.04), but these differences were no longer significant after adjustment for lower limb FFM. There were no significant sex-by-genotype interactions. The results indicate that the C174T polymorphism in exon 9 of CNTFR is significantly associated with FFM in men and women, with concomitant differences in muscular strength.  相似文献   

20.
Skeletal muscle loss or sarcopenia in aging has been suggested in cross-sectional studies but has not been shown in elderly subjects using appropriate measurement techniques combined with a longitudinal study design. Longitudinal skeletal muscle mass changes after age 60 yr were investigated in independently living, healthy men (n = 24) and women (n = 54; mean age 73 yr) with a mean +/- SD follow-up time of 4.7 +/- 2.3 yr. Measurements included regional skeletal muscle mass, four additional lean components (fat-free body mass, body cell mass, total body water, and bone mineral), and total body fat. Total appendicular skeletal muscle (TSM) mass decreased in men (-0.8 +/- 1.2 kg, P = 0.002), consisting of leg skeletal muscle (LSM) loss (-0.7 +/- 0.8 kg, P = 0.001) and a trend toward loss of arm skeletal muscle (ASM; -0.2 +/- 0.4 kg, P = 0.06). In women, TSM mass decreased (-0.4 +/- 1.2 kg, P = 0.006) and consisted of LSM loss (-0.3 +/- 0.8 kg, P = 0.005) and a tendency for a loss of ASM (-0.1 +/- 0.6 kg, P = 0.20). Multiple regression modeling indicates greater rates of LSM loss in men. Body weight in men at follow-up did not change significantly (-0.5 +/- 3.0 kg, P = 0.44) and fat mass increased (+1.2 +/- 2.4 kg, P = 0.03). Body weight and fat mass in women were nonsignificantly reduced (-0.8 +/- 3.9 kg, P = 0.15 and -0.8 +/- 3.5 kg, P = 0.12). These observations suggest that sarcopenia is a progressive process, particularly in elderly men, and occurs even in healthy independently living older adults who may not manifest weight loss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号