首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Gap junctions in AII amacrine cells of mammalian retina participate in the coordination of the rod and cone signaling pathway involved in visual adaptation. Upon stimulation by light, released dopamine binds to D(1) receptors on AII amacrine cells leading to increased intracellular cAMP (cyclic adenosine monophosphate) levels. AII amacrine cells express the gap junctional protein connexin36 (Cx36). Phosphorylation of Cx36 has been hypothesized to regulate gap junctional activity of AII amacrine cells. However, until now in vivo phosphorylation of Cx36 has not been reported. Indeed, it had been concluded that Cx36 in bovine retina is not phosphorylated, but in vitro phosphorylation for Cx35, the bass ortholog of Cx36, had been shown. To clarify this experimental discrepancy, we examined protein kinase A (PKA)-induced phosphorylation of Cx36 in mouse retina as a possible mechanism to modulate the extent of gap junctional coupling. The cytoplasmic domains of Cx36 and the total Cx36 protein were phosphorylated in vitro by PKA. Mass spectroscopy revealed that all four possible PKA consensus motifs were phosphorylated; however, domains point mutated at the sites in question showed a prevalent usage of Ser-110 and Ser-293. Additionally, we demonstrated that Cx36 was phosphorylated in cultured mouse retina. Furthermore, activation of PKA increased the level of phosphorylation of Cx36. cAMP-stimulated, PKA-mediated phosphorylation of Cx36 protein was accompanied by a decrease of tracer coupling between AII amacrine cells. Our results link increased phosphorylation of Cx36 to down-regulation of permeability through gap junction channels mediating light adaptation in the retina.  相似文献   

2.
We have investigated and further characterized, in the rabbit retina, the synaptic connectivity of the ON-type cone bipolar cells that are immunoreactive for an antibody against the neurokinin-1 receptor (NK1R). NK1R-immunoreactive bipolar cell axons terminate in stratum 4 of the inner plexiform layer. The axons of NK1R-positive bipolar cells receive synaptic inputs from amacrine cells through conventional synapses and from putative AII amacrine cells via gap junctions. The major outputs from NK1R-positive bipolar cells make contacts with amacrine cell processes. The most frequent postsynaptic dyads comprise two amacrine cell processes. Double-labeling experiments with antibodies against NK1R and either calretinin or glycine have demonstrated that NK1R-immunoreactive bipolar cells form gap junctions with AII amacrine cells. Thus, NK1R-positive cone bipolar cells, together with calbindin-positive cone bipolar cells, may play an important role in transferring rod signals to the ON-type ganglion cells of the cone pathway in the rabbit retina.I.-B. Kim and M.R. Park contributed equally to this work.This work was supported by the Ministry of Science and Technology of Korea (grant no. M1-0108-00-0059; Neurobiology Support Grant).  相似文献   

3.
Summary Zinc is a modulator of glutamatergic inputs in the hippocampus. In the retina, however, we previously reported that endogenous zinc is present in the non-glutamatergic neural processes and earlier electrophysiological studies suggest that zinc is a modulator of inhibitory signaling pathways, which are mediated by glycine and GABA. AII amacrine cells, a subpopulation of glycinergic amacrine cells, are identified by selective immunoreactivity for parvalbumin in the rat retina. In the present study, therefore, we focused on whether zinc is present in AII amacrine cells using silver amplification combined with immunohistochemistry in the rat retina. We also examined whether zinc modulate glycine response in the rat retina by the patch clamp technique. Association of silver precipitates with the parvalbumin-immunoreactive neural processes was observed at the ultrastructural level. We also found that zinc existed in the neural processes which were not parvalbumin-immunoreactive. Glycine-induced responses were augmented when the concentration of Zn2+ was below 10 M, but inhibited at Zn2+ concentrations of 50 M or more. Our results suggest the notion that zinc in neural processes of retinal neurons modulates the inhibitory signaling pathway, particularly that mediated by glycine receptors in AII amacrine cells.  相似文献   

4.
The synaptic connectivity between rod bipolar cells and GABAergic neurons in the inner plexiform layer (IPL) of the rat retina was studied using two immunocytochemical markers. Rod bipolar cells were stained with an antibody specific for protein kinase C (PKC, α isoenzyme), and GABAergic neurons were stained with an antiserum specific for glutamic-acid decarboxylase (GAD). Some amacrine cells were also labeled with the anti-PKC antiserum. All PKC-labeled amacrine cells examined showed GABA immunoreactivity, indicating that PKC-labeled amacrine cells constitute a subpopulation of GABAergic amacrine cells in the rat retina. A total of 150 ribbon synapses established by rod bipolar cells were observed in the IPL. One member of the postsynaptic dyads was always an unlabeled AII amacrine cell process, and the other belonged to an amacrine-cell process showing GAD immunoreactivity. The majority (n=92) (61.3%) of these processes made reciprocal synapses back to the axon terminals of rod bipolar cells. In addition, 78 conventional synapses onto rod bipolar axons were observed, and among them 52 (66.7%) were GAD-immunoreactive. Thus GABA provides the major inhibitory input to rod bipolar cells.  相似文献   

5.
The FVB/N mouse is a model of retinitis pigmentosa which shows a rapid loss of photoreceptors during early postnatal (P) life. We investigated the cellular localization of glycine transporter 1 (GlyT-1) in the developing FVB/N mouse retina. In control retinas, the developmental pattern of GlyT-1-immunoreactive amacrine cells was well in accordance with a previous report. However, in the FVB/N mouse retina, some GlyT-1-labeled amacrine cells sent their processes into the outer plexiform layer (OPL) from P14 onward. From P21 onward, GlyT-1-labeled cells were visible in the OPL. These cells were further characterized by double-label immunofluorescence experiments with an antiserum against disabled 1 (Dab-1), and showed Dab-1 immunoreactivity, indicating that these cells are putative AII amacrine cells. These results clearly demonstrate that AII amacrine cells have the potential capacity to respond to photoreceptor degeneration by migrating or sprouting their processes into the OPL in the developing FVB/N mouse retina.This study was supported by a Korea Research Foundation Grant (2001, PF0005) from the Ministry of Education  相似文献   

6.
Cuenca  Nicolas  Deng  Ping  Linberg  Ken A.  Lewis  Geoffrey P.  Fisher  Steven K.  Kolb  Helga 《Brain Cell Biology》2002,31(8-9):649-666
Ground squirrel retinas were immunostained with antibodies against calcium binding proteins (CBPs) and classical neurotransmitters in order to describe neuronal phenotypes in a diurnal mammalian retina and to then compare these neurons with those of more commonly studied nocturnal retinas like cats' and rabbits'. Double immunostained tissue was examined by confocal microscopy using antibodies against the following: rhodopsin and the CBPs, calbindin, calretinin, parvalbumin, calmodulin and recoverin (CB, CR, PV, CM, RV), glycine, GABA, choline acetyltransferase (CHAT) and tyrosine hydroxylase (TOH). In ground squirrel retina, the traditional cholinergic mirror symmetric amacrine cells colocalize CHAT with PV and GABA and faintly with glycine. A second cholinergic amacrine cell type colocalizes glycine alone. CR is found in at least 3 different amacrine cell types. The CR-immunoreactive (IR) cell population is a mixture of glycinergic and GABAergic types. The dopamine cell type IR to tyrosine hydroxylase has the typical morphology of a wide field cell with dendrites in S1 but the “rings” seen in cat or rabbit retina are not as numerous. TOH-IR amacrine cells send large club-shaped processes to the outer plexiform layer. CB and CR are in bipolar cells, A- and B-type horizontal cells and several amacrine cell types. Anti-rhodopsin labels the low density rod photoreceptor population in this species. Anti-recoverin labels cones and some bipolar cells while PKC is found in several different bipolar cell types. One ganglion cell with dendritic branching in S3 is strongly CR-IR. We find no evidence for an AII amacrine cell in the ground squirrel, with either anti-CR or anti-PV. An amacrine cell with similarity to the DAP1-3 cell of rabbit is CR-IR and glycine-IR. We discuss this labeling pattern in relationship to other mammalian species. The differences in staining patterns and phenotypes revealed suggest a functional diversity in the populations of amacrine cells according to whether the retinas are rod or cone dominated.  相似文献   

7.
Dopaminergic cells in the retina express the receptor for brain-derived neurotrophic factor (BDNF), which is the neurotrophic factor that influences the plasticity of synapses in the central nervous system. We sought to determine whether BDNF influences the network of dopaminergic amacrine cells in the axotomized rat retina, by immunocytochemistry with an anti-tyrosine hydroxylase (TH) antiserum. In the control retina, we found two types of TH-immunoreactive amacrine cells, type I and type II, in the inner nuclear layer adjacent to the inner plexiform layer (IPL). The type I amacrine cell varicosities formed ring-like structures in contact with AII amacrine cell somata in stratum 1 of the IPL. In the axotomized retinas, TH-labeled processes formed loose networks of fibers, unlike the dense networks in the control retina, and the ring-like structures were disrupted. In the axotomized retinas treated with BDNF, strong TH-immunoreactive varicosities were present in stratum 1 of the IPL and formed ring-like structures. Our data suggest that BDNF affects the expression of TH immunoreactivity in the axotomized rat retina and may therefore influence the retinal dopaminergic system. E.-J. Lee and M.-C. Song contributed equally to this work. This work was supported by Korea Research Foundation (grant no. E00004, 2004).  相似文献   

8.
Cholinergic agents affect the light responses of many ganglion cells (GCs) in the mammalian retina by activating nicotinic acetylcholine receptors (nAChRs). Whereas retinal neurons that express beta2 subunit-containing nAChRs have been characterized in the rabbit retina, expression patterns of other nAChR subtypes remain unclear. Therefore, we evaluated the expression of alpha7 nAChRs in retinal neurons by means of single-, double-, and triple-label immunohistochemistry. Our data demonstrate that, in the rabbit retina, several types of bipolar cells, amacrine cells, and cells in the GC layer express alpha7 nAChRs. At least three different populations of cone bipolar cells exhibited alpha7 labeling, whereas glycine-immunoreactive amacrine cells comprised the majority of alpha7-positive amacrine cells. Some GABAergic amacrine cells also displayed alpha7 immunoreactivity; alpha7 labeling was never detected in rod bipolar cells or rod amacrine cells (AII amacrine cells). Our data suggest that activation of alpha7 nAChRs by acetylcholine (ACh) or choline may affect glutamate release from several types of cone bipolar cells, modulating GC responses. ACh-induced excitation of inhibitory amacrine cells might cause either inhibition or disinhibition of other amacrine and GC circuits. Finally, ACh may act on alpha7 nAChRs expressed by GCs themselves.  相似文献   

9.
To examine the functions of electrical synapses in the transmission of signals from rod photoreceptors to ganglion cells, we generated connexin36 knockout mice. Reporter expression indicated that connexin36 was present in multiple retinal neurons including rod photoreceptors, cone bipolar cells, and AII amacrine cells. Disruption of electrical synapses between adjacent AIIs and between AIIs and ON cone bipolars was demonstrated by intracellular injection of Neurobiotin. In addition, extracellular recording in the knockout revealed the complete elimination of rod-mediated, on-center responses at the ganglion cell level. These data represent direct proof that electrical synapses are critical for the propagation of rod signals across the mammalian retina, and they demonstrate the existence of multiple rod pathways, each of which is dependent on electrical synapses.  相似文献   

10.
Gap junctions are composed of connexin 36 (Cx36) and play a critical role in the rod photoreceptor signaling pathways of the vertebrate retina. Despite the fact that their connection and modulation in various rod pathways have been extensively studied in adult animals, little is known about the contribution and regulation of gap junctions to the development of the AII amacrine cell (AC)‐mediated rod pathway. Using immunohistochemistry and microinjection, this study demonstrates a steady increase in relative Cx36 protein expression in both plexiform layers of the rabbit retina at around the time of eye opening. However, immediately after eye opening, most Cx36 immunoreactive AII ACs show no gap junction coupling pattern to neighboring cells and it is not until the third postnatal week that AII cells begin to exhibit an adult‐like tracer‐coupling pattern. Moreover, studies using dark‐rearing and AMPA receptor blockade during postnatal development both revealed that relative levels of Cx36 immunoreactivity in AII ACs were increased when neural activity was inhibited . Our findings suggest that Cx36 expression in the AII‐mediated rod pathway is activity dependent in the developing rabbit retina . © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 473–486, 2016  相似文献   

11.
Recently, we reported the existence of AII "rod" amacrine cells in the retina of the greater horseshoe bat Rhinolophus ferrumequinum (Jeon et al., 2007). In order to enhance our understanding of bat vision, in the present study, we report on a quantitative analysis of cone and rod photoreceptors. The average cone density was 9,535 cells/mm2, giving a total number of cones of 33,538 cells/retina. The average rod density was 368,891 cells/mm2, giving a total number of rods of 1,303,517 cells. On average, the total populations of rods were 97.49%, and cones were 2.51% of all the photoreceptors. Rod: cone ratios ranged from 33.85:1 centrally to 42.26:1 peripherally, with a mean ratio of 38.96:1. The average regularity index of the cone mosaic in bat retina was 3.04. The present results confirm the greater horseshoe bat retina to be strongly rod-dominated. The rod-dominated retina, with the existence of AII cells discovered in our previous study, strongly suggests that the greater horseshoe bat retina has a functional scotopic property of vision. However, the existence of cone cells also suggests that the bat retina has a functional photopic property of vision.  相似文献   

12.
13.
The rodent retina undergoes considerable postnatal neurogenesis and phenotypic differentiation, and it is likely that diffusible neurotrophic factors contribute to this development and to the subsequent formation of functional retinal circuitry. Accordingly, perturbation of specific neurotrophin ligand-receptor interactions has provided valuable information as to the fundamental processes underlying this development. In the present studies we have built upon our previous observation that suppression of expression of trk(B), the high-affinity receptor for brain-derived neurotrophic factor (BDNF), in the postnatal rat retina results in the alteration of a specific interneuron in the rod pathway-the parvalbumin (PV)-immunoreactive AII amacrine cell. Here, we isolated retinas from newborn rats and maintained them in organotypic culture for up to 14 days (approximating the time of eye opening, in vivo) in the presence of individual neurotrophins [BDNF or nerve growth factor (NGF)]. We then examined histological sections of cultures for PV immunoreactivity. In control cultures, only sparse PV-immunostained cells were observed. In cultures supplemented with NGF, numerous lightly immunostained somata were present in the inner nuclear layer (INL) at the border of the inner plexiform layer (IPL). Many of these cells had rudimentary dendritic arborizations in the IPL. Cultures supplemented with BDNF displayed numerous well-immunostained somata at the INL/IPL border that gave rise to elaborate dendritic arborizations that approximated the morphology of mature AII amacrine cells in vivo. These observations indicate that neurotrophins have specific effects upon the neurochemical and, perhaps, morphological differentiation of an important interneuron in a specific functional retinal circuit.  相似文献   

14.
In the mammalian retina, information concerning various aspects of an image is transferred in parallel, and cone bipolar cells are thought to play a major role in this parallel processing. We have examined the synaptic connections of calbindin-immunoreactive (IR) ON cone bipolar cells in the inner plexiform layer (IPL) of rabbit retina and have compared these synaptic connections with those that we have previously described for neurokinin 1 (NK1) receptor-IR cone bipolar cells. A total of 325 synapses made by calbindin-IR bipolar axon terminals have been identified in sublamina b of the IPL. The axons of calbindin-IR bipolar cells receive synaptic inputs from amacrine cells through conventional synapses and are coupled to putative AII amacrine cells via gap junctions. The major output from calbindin-IR bipolar cells is to amacrine cell processes. These data resemble our findings for NK1 receptor-IR bipolar cells. However, the incidences of output synapses to ganglion cell dendrites of calbindin-IR bipolar cells are higher compared with the NK1-receptor-IR bipolar cells. On the basis of stratification level and synaptic connections, calbindin-IR ON cone bipolar cells might thus play an important role in the processing of various visual aspects, such as contrast, orientation, and approach sensing, and in transferring rod signals to the ON cone pathway.  相似文献   

15.
When cat retina is incubated in vitro with the fluorescent dye, 4',6-diamidino-2-phenyl-indole (DAPI), a uniform population of neurons is brightly labelled at the inner border of the inner nuclear layer. The dendritic morphology of the DAPI-labelled cells was defined by iontophoretic injection of Lucifer yellow under direct microscopic control: all the filled cells had the narrow-field bistratified morphology that is distinctive of the AII amacrine cells previously described from Golgi-stained retinae. Although the AII amacrines are principal interneurons in the rod-signal pathway, their density distribution does not follow the topography of the rod receptors, but peaks in the central area like the cone receptors and the ganglion cells. There are some 512 000 AII amacrines in the cat retina and their density ranges from 500 cells per square millimetre at the superior margin to 5300 cells per square millimetre in the centre (retinal area is 450 mm2). The isodensity contours are kite-shaped, particularly at intermediate densities, with a horizontal elongation towards nasal retina. The cell body size and the dendritic dimensions of AII amacrines increase with decreasing cell density. The lobular dendrites in sublamina a of the inner plexiform layer span a restricted field of 16-45 microns diameter, while the arboreal dendrites in sublamina b form a varicose tree of 18-95 microns diameter. The dendritic field coverage of the lobular appendages is close to 1.0 (+/- 0.2) at all eccentricities whereas the coverage of the arboreal dendrites doubles within the first 1.5 mm and then remains constant at 3.8 (+/- 0.7) throughout the periphery.  相似文献   

16.

Background

Seizure-related gene 6 (Sez-6) is expressed in neurons of the mouse brain, retina and spinal cord. In the cortex, Sez-6 plays a role in specifying dendritic branching patterns and excitatory synapse numbers during development.

Methodology/Principal Findings

The distribution pattern of Sez-6 in the retina was studied using a polyclonal antibody that detects the multiple isoforms of Sez-6. Prominent immunostaining was detected in GABAergic, but not in AII glycinergic, amacrine cell subpopulations of the rat and mouse retina. Amacrine cell somata displayed a distinct staining pattern with the Sez-6 antibody: a discrete, often roughly triangular-shaped bright spot positioned between the nucleus and the apical dendrite superimposed over weaker general cytoplasmic staining. Displaced amacrines in the ganglion cell layer were also positive for Sez-6 and weaker staining was occasionally observed in neurons with the morphology of alpha ganglion cells. Two distinct Sez-6 positive strata were present in the inner plexiform layer in addition to generalized punctate staining. Certain inner nuclear layer cells, including bipolar cells, stained more weakly and diffusely than amacrine cells, although some bipolar cells exhibited a perinuclear “bright spot” similar to amacrine cells. In order to assess the role of Sez-6 in the retina, we analyzed the morphology of the Sez-6 knockout mouse retina with immunohistochemical markers and compared ganglion cell dendritic arbor patterning in Sez-6 null retinae with controls. The functional importance of Sez-6 was assessed by dark-adapted paired-flash electroretinography (ERG).

Conclusions

In summary, we have reported the detailed expression pattern of a novel retinal marker with broad cell specificity, useful for retinal characterization in rodent experimental models. Retinal morphology, ganglion cell dendritic branching and ERG waveforms appeared normal in the Sez-6 knockout mouse suggesting that, in spite of widespread expression of Sez-6, retinal function in the absence of Sez-6 is not affected.  相似文献   

17.
Previous findings have shown that P2X-purinoceptor-mediated signaling pathways regulate the release of ACh in the retina. We previously reported the existence of immunoreactivity for P2X1-, P2X2-, P2X4-, and P2X7-purinoceptors in mouse retina and speculated that P2X2 and P2X7-purinoceptors may modulate the activity of cholinergic amacrine cells. In the present study, we used an immunohistochemical technique to examine whether P2X3-, P2X5, and P2X6-purinoceptors are also important for the modulation of cholinergic amacrine cells in mouse retina. Immunoreactivity for P2X3-, P2X5-, and P2X6-purinoceptors was observed in mouse retina. Immunoreactivity for P2X3- purinoceptors was observed in the dendrites of cholinergic amacrine cells. Immunoreactivity for P2X5-purinoceptors existed in the soma of cholinergic amacrine cells. P2X6-purinoceptor immunoreactivity was not colocalized with the cholinergic amacrine cells. We concluded that, among the three P2X-purinoceptors that were examined, P2X3-purinoceptors seem to affect the function of cholinergic amacrine cells in the mouse retina.  相似文献   

18.
The rodent retina undergoes considerable postnatal neurogenesis and phenotypic differentiation, and it is likely that diffusible neurotrophic factors contribute to this development and to the subsequent formation of functional retinal circuitry. Accordingly, perturbation of specific neurotrophin ligand–receptor interactions has provided valuable information as to the fundamental processes underlying this development. In the present studies we have built upon our previous observation that suppression of expression of trkB, the high‐affinity receptor for brain‐derived neurotrophic factor (BDNF), in the postnatal rat retina results in the alteration of a specific interneuron in the rod pathway—the parvalbumin (PV)‐immunoreactive AII amacrine cell. Here, we isolated retinas from newborn rats and maintained them in organotypic culture for up to 14 days (approximating the time of eye opening, in vivo) in the presence of individual neurotrophins [BDNF or nerve growth factor (NGF)]. We then examined histological sections of cultures for PV immunoreactivity. In control cultures, only sparse PV‐immunostained cells were observed. In cultures supplemented with NGF, numerous lightly immunostained somata were present in the inner nuclear layer (INL) at the border of the inner plexiform layer (IPL). Many of these cells had rudimentary dendritic arborizations in the IPL. Cultures supplemented with BDNF displayed numerous well‐immunostained somata at the INL/IPL border that gave rise to elaborate dendritic arborizations that approximated the morphology of mature AII amacrine cells in vivo. These observations indicate that neurotrophins have specific effects upon the neurochemical and, perhaps, morphological differentiation of an important interneuron in a specific functional retinal circuit. © 1999 John Wiley & Sons, Inc. J Neurobiol 41: 376–384, 1999  相似文献   

19.
Distribution of melatonin MT1 receptor immunoreactivity in human retina.   总被引:3,自引:0,他引:3  
Melatonin is synthesized in the pineal gland and retina during the night. Retinal melatonin is believed to be involved in local cellular modulation and in regulation of light-induced entrainment of circadian rhythms. The present study provides the first immunohistochemical evidence for the localization of melatonin 1a-receptor (MT1) in human retina of aged subjects. Ganglion, amacrine, and photoreceptor cells expressed MT1. In addition, MT1 immunoreactivity was localized to cell processes in the inner plexiform layer and to central vessels of the retina, as well as to retinal vessels but not to ciliary or choroidal vessels. These results support a variety of cellular and vascular effects of melatonin in the human retina. Preliminary evidence from patients with Alzheimer's disease (AD) revealed increased MT1 immunoreactivity in ganglion and amacrine cells, as well as in vessels. In AD cases photoreceptor cells were degenerated and showed low MT1 expression.  相似文献   

20.
Calaza  K. C.  de Mello  F. G.  Gardino  P. F. 《Brain Cell Biology》2001,30(3):181-193
Glutamate and GABA are the major excitatory and inhibitory neurotransmitters in the CNS, including the retina. In the chick retina, GABA is located in horizontal and amacrine cells and in some cells in the ganglion cell layer. It has been shown that glutamate and its agonists, NMDA, kainate, and aspartate, promote the release of GABA from isolated retina and from cultured retinal cells. Dopamine, the major catecholamine in the retina, inhibits the induction of GABA release by NMDA. Two to seven-day-old intact chicken retinas were stimulated with different glutamatergic agonists and the GABA remaining in the tissue was detected by immunohistochemical procedures. The exposure of retinas to 100 μ M NMDA for 30 minutes resulted in 50% reduction in the number of GABA-immunoreactive amacrine cells. Aspartate (100 μ M) treatment also resulted in 60% decrease in the number of GABA-immunoreactive amacrine cells. The number of GABA-immunoreactive horizontal cells was not affected by either NMDA or aspartate. In addition, dopamine reversed by 50% the reduction of the number of GABA-immunoreactive amacrine cells exposed to NMDA or aspartate. Kainate stimulation promoted a 50% reduction in the number of both GABA-immunoreactive amacrine and horizontal cells. Dopamine did not interfere with the kainate effect. While in control and in non-stimulated retinas a continuous and homogeneous immunolabeling was observed throughout the inner plexiform layer, retinas exposed to NMDA, kainate and aspartate displayed only a faint punctate labeling in the inner plexiform layer. It is concluded that, under our experimental conditions, both NMDA and aspartate induce the release of GABA exclusively from amacrine cells, and that the release is modulated by dopamine. On the other hand, kainate stimulates GABA release from both amacrine and horizontal cells with no interference of dopamine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号