首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 Following predictions from climatic general circulation models, the effects of perturbations in global climate are expected to be most pronounced in the Northern Hemisphere. Elaborating on a recently developed plant–herbivore–climate model, we explore statistically how different winter climate regimes and density-dependent processes during the past century have affected population dynamics of two arctic ungulate species. Our analyses were performed on the dynamics of six muskox and six caribou populations. In muskoxen, variation in winter climate, mediated through the North Atlantic Oscillation (NAO), explained up to 24% of the variation in interannual abundance, whereas in caribou up to 16% was explained by the NAO. Muskoxen responded negatively following warm and snowy winters, whereas caribou responded negatively to dry winters. Direct and delayed density dependence was recorded in most populations and explained up to 32% and 90% of variations in abundance of muskoxen and caribou, respectively. Received: November 19, 2001 / Accepted: May 28, 2002  相似文献   

2.
1. Increases in global temperatures have created concern about effects of climatic variability on populations, and climate has been shown to affect population dynamics in an increasing number of species. Testing for effects of climate on population densities across a species' distribution allows for elucidation of effects of climate that would not be apparent at smaller spatial scales. 2. Using autoregressive population models, we tested for effects of the North Atlantic Oscillation (NAO) and the El Ni?o Southern Oscillation (ENSO) on annual population densities of a North American migratory landbird, the yellow-billed cuckoo Coccyzus americanus, across the species' breeding distribution over a 37-year period (1966-2002). 3. Our results indicate that both the NAO and ENSO have affected population densities of C. americanus across much of the species' breeding range, with the strongest effects of climate in regions in which these climate systems have the strongest effects on local temperatures. Analyses also indicate that the strength of the effect of local temperatures on C. americanus populations was predictive of long-term population decline, with populations that were more negatively affected by warm temperatures experiencing steeper declines. 4. Results of this study highlight the importance of distribution-wide analyses of climatic effects and demonstrate that increases in global temperatures have the potential to lead to additional population declines.  相似文献   

3.
The role of climatic fluctuations in determining the dynamics of insect populations has been a classical problem in population ecology. Here, we use long-term annual data on green spruce aphid populations at nine localities in the UK for determining the importance of endogenous processes, local weather and large-scale climatic factors. We rely on diagnostic and modelling tools from population dynamic theory to analyse these long-term data and to determine the role of the North Atlantic Oscillation (NAO) and local weather as exogenous factors influencing aphid dynamics. Our modelling suggests that the key elements determining population fluctuations in green spruce aphid populations in the UK are the strong non-linear feedback structure, the high potential for population growth and the effects of winter and spring weather. The results indicate that the main effect of the NAO on green spruce aphid populations is operating through the effect of winter temperatures on the maximum per capita growth rate (Rm). In particular, we can predict quite accurately the occurrence of an outbreak by using a simple logistic model with weather as a perturbation effect. However, model predictions using different climatic variables showed a clear geographical signature. The NAO and winter temperature were best for predicting observed dynamics toward the southern localities, while spring temperature was a much better predictor of aphid dynamics at northern localities. Although aphid species are characterized by complex life-cycles, we emphasize the value of simple and general population dynamic models in predicting their dynamics.  相似文献   

4.
Latitudinal gradients in population dynamics can arise through regional variation in the deterministic components of the population dynamics and the stochastic factors. Here, we demonstrate an increase with latitude in the contribution of a large-scale climate pattern, the North Atlantic Oscillation (NAO), to the fluctuations in size of populations of two European hole-nesting passerine species. However, this influence of climate induced different latitudinal gradients in the population dynamics of the two species. In the great tit the proportion of the variability in the population fluctuations explained by the NAO increased with latitude, showing a larger impact of climate on the population fluctuations of this species at higher latitudes. In contrast, no latitudinal gradient was found in the relative contribution of climate to the variability of the pied flycatcher populations because the total environmental stochasticity increased with latitude. This shows that the population ecological consequences of an expected climate change will depend on how climate affects the environmental stochasticity in the population process. In both species, the effects will be larger in those parts of Europe where large changes in climate are expected.  相似文献   

5.
1. The role of climate variability in determining the spatial and temporal patterns of numerical fluctuations is a central problem in ecology. The influence of the North Atlantic Oscillation (NAO) index on the population dynamics and spatial synchrony of the green spruce aphid Elatobium abietinum across the UK was shown. 2. Fifteen overlapping time series within the UK were analysed; we used nonparametric models for determining the feedback nonlinear structure and the climatic effects. The spatial synchrony of these populations and the relationship between synchrony and NAO was estimated. 3. From the 15 time series across the UK, 11 showed positive and significant NAO effects. In most of the cases the NAO effects were nonlinear showing strong negative effects of low values. The NAO variation improve the explained variance of the first-order feedback models in 14.5%; ranging from 0% to 48%. All data showed strong-nonlinear (concave) feedback structure. In most of the localities the explained variance by the first-order feedback was about 50-60%. 4. The spatial synchrony of the per capita growth rates and residuals is high across long distances for those populations affected by NAO. The correlation function predicts a spatial scale of synchrony of about 350-400 km for NAO influenced populations. 5. We think that simple population theoretical models describing the link between NAO fluctuations and green spruce aphid dynamics may be fundamental for predicting and simulating the consequences of different climatic scenarios of the future.  相似文献   

6.
For an understanding of the effect of climate change on animal population dynamics, it is crucial to be able to identify which climatologic parameters affect which demographic rate, and what the underlying mechanistic links are. An important reason for why the interactions between demography and climate still are poorly understood is that the effects of climate vary both geographically and taxonomically. Here, we analyse interspecifically how different climate variables affect the breeding success of North Atlantic seabird species along latitudinal and longitudinal gradients. By approaching the problem comparatively, we are able to generalize across populations and species. We find a strong interactive effect of climate and latitude on breeding success. Of the climatic variables considered, local sea surface temperatures during the breeding season tend to be more relevant than the North Atlantic Oscillation (NAO). However, the effect of NAO on breeding success shows a clear geographic pattern, changing in sign from positive in the south to negative in the north. If this interaction is taken account of, the model explains more variation than any model with sea surface temperature. This superiority of the NAO index is due to its ability to capture effects of more than one season in a single parameter. Mechanistically, however, several lines of evidence suggest that sea surface temperature is the biologically most relevant explanatory variable.  相似文献   

7.
Recent climate reconstructions are analyzed specifically for insights into those patterns of climate variability in past centuries with greatest impact on the North American region. Regional variability, largely associated with the El Nino/Southern Oscillation (ENSO) phenomenon, the North Atlantic Oscillation (NAO), and multidecadal patterns of natural variability, are found to mask the emergence of an anthropogenic temperature signal in North America. Substantial recent temperature anomalies may however indicate a possible recent emergence of this signal in the region. Multidecadal North Atlantic variability is likely to positively reinforce any anthropogenic warming over substantial parts of North America in coming decades. The recent magnitudes of El Nino events appear to be unprecedented over the past several centuries. These recent changes, if anthropogenic in nature, may outweigh the projection of larger-scale climate change patterns onto the region in a climate change scenario. The implications of such changes for North America, however, are not yet clear. These observations suggest caution in assessing regional climate change scenarios in North America without a detailed consideration of possible anthropogenic changes in climate patterns influencing the region.  相似文献   

8.
Weather and climatic conditions may impact on the phenology and morphology of birds, and thereby affect their survival rate and population dynamics. We examined the North Atlantic Oscillation (NAO), precipitation in the Sahel zone, temperatures in the wintering grounds, on the migration route, and in the breeding area in relation to arrival dates and six morphological measures (wing, tarsus, bill, and tail lengths, body mass, body condition) in a Slovak population of the River Warbler Locustella fluviatilis. Arrival dates did not change significantly over the study period, but were significantly positively correlated with NAO, although not with temperatures in wintering areas, migration route or breeding area, nor with Sahel precipitation. Four of the six morphological traits changed during the study period and part of the change in condition index can be attributed to climatic variables. We suggest changes in birds phenotype vary with food availability, which fluctuate according to climate events.  相似文献   

9.
Links between climatic conditions in the eastern equatorial Pacific and extratropical ecological processes remain unexplored. The analysis of a 20‐year time series of spatial and numeric dynamics of a threatened Mediterranean bird suggests, however, that such couplings can be remarkably complex. By providing a new ecological time‐series modelling approach, we were able to dissect the joint effects of the El Niño/Southern Oscillation (ENSO), the North Atlantic Oscillation (NAO), regional weather, population density and stochastic variability on the expansion dynamics of the White‐headed duck (Oxyura leococephala) in Spain. Our results suggest that the spatial and numeric dynamics of ducks between peak brood emergence and wintering were simultaneously affected by different climatic phenomena during different phases of their global cycles, involving time lags in the numeric dynamics. Strikingly, our results point to both the NAO and the ENSO as potentially major factors simultaneously forcing ecological processes in the Northern Hemisphere, and suggest a new pathway for non‐additive effects of climate in ecology.  相似文献   

10.
To model the effects of global climate phenomena on avian population dynamics, we must identify and quantify the spatial and temporal relationships between climate, weather and bird populations. Previous studies show that in Europe, the North Atlantic Oscillation (NAO) influences winter and spring weather that in turn affects resident and migratory landbird species. Similarly, in North America, the El Niño/Southern Oscillation (ENSO) of the Pacific Ocean reportedly drives weather patterns that affect prey availability and population dynamics of landbird species which winter in the Caribbean. Here we show that ENSO‐ and NAO‐induced seasonal weather conditions differentially affect neotropical‐ and temperate‐wintering landbird species that breed in Pacific North‐west forests of North America. For neotropical species wintering in western Mexico, El Niño conditions correlate with cooler, wetter conditions prior to spring migration, and with high reproductive success the following summer. For temperate wintering species, springtime NAO indices correlate strongly with levels of forest defoliation by the larvae of two moth species and also with annual reproductive success, especially among species known to prey upon those larvae. Generalized linear models incorporating NAO indices and ENSO precipitation indices explain 50–90% of the annual variation in productivity reported for 10 landbird species. These results represent an important step towards spatially explicit modelling of avian population dynamics at regional scales.  相似文献   

11.
Anthropogenically driven climatic change is expected to reshape global patterns of species distribution and abundance. Given recent links between genetic variation and environmental patterns, climate change may similarly impact genetic population structure, but we lack information on the spatial and mechanistic underpinnings of genetic–climate associations. Here, we show that current genetic variability of Canada lynx (Lynx canadensis) is strongly correlated with a winter climate gradient (i.e. increasing snow depth and winter precipitation from west‐to‐east) across the Pacific‐North American (PNO) to North Atlantic Oscillation (NAO) climatic systems. This relationship was stronger than isolation by distance and not explained by landscape variables or changes in abundance. Thus, these patterns suggest that individuals restricted dispersal across the climate boundary, likely in the absence of changes in habitat quality. We propose habitat imprinting on snow conditions as one possible explanation for this unusual phenomenon. Coupling historical climate data with future projections, we also found increasingly diverging snow conditions between the two climate systems. Based on genetic simulations using projected climate data (2041–2070), we predicted that this divergence could lead to a threefold increase in genetic differentiation, potentially leading to isolated east–west populations of lynx in North America. Our results imply that subtle genetic structure can be governed by current climate and that substantive genetic differentiation and related ecological divergence may arise from changing climate patterns.  相似文献   

12.
1. Global climate change is predicted to raise water temperatures and alter flow regimes in northern river systems. Climate‐related factors might have profound impacts on survival, reproduction and distribution of freshwater species such as red‐listed noble crayfish (Astacus astacus) in its northern limit of distribution. 2. In this study, noble crayfish capture data over 27 years from the River Ljungan, Sweden, were examined. Time series of catch per unit effort (CPUE) were analysed in relation to the North Atlantic Oscillation (NAO) index, regional weather factors and water flow. CPUE was assumed to reflect differences in population size. Two models were constructed to explore the relative impact of different climate factors and density dependence on variability of catch sizes. 3. The most parsimonious model for CPUE time series, explaining 72% of the variance in CPUE, included density‐dependent population dynamics of the crayfish and climate or weather factors. The specific effect from density dependence in the model was 37%, while climate/weather factors contributed with 35% of the variation. The most important climate/weather factors are variations in NAO index and water flow. Temperature did not improve the model fit to capture data. 4. The best model was evaluated using independent data sets that gave correlations between model predictions and data ranging from 0.44 to 0.53. The density dependence shows a time lag of 1 year, while climate variables show time lags from 2 to 6 years in relation to CPUE, indicating effects on different cohorts of the crayfish population. 5. Both density dependence and climatic factors play a significant role in population fluctuations of noble crayfish. A 6‐year time lag for NAO index is puzzling but indicates that some as yet unidentified factors related to NAO might act on the juvenile stages of the population. Water flow shows a 2‐year lag to the CPUE, and high flow in the river may affect adult survival. The reasons for fluctuation of crayfish catches in response to climate need to be identified, and fishing quotas should consider the different cohort sizes because of variation in environment. Reintroduction programmes for crayfish need to consider effects of climate change when designing management strategies.  相似文献   

13.
Climate-related changes associated with the California marine ecosystem have been documented; however, there are no studies assessing changes in terrestrial vertebrate phenology on the Pacific coast of western North America. We analyze the spring phenology of 21 Nearctic-Neotropical migratory songbird species in central and northern CA. Using observational and banding data at multiple sites, we evaluate evidence for a change in arrival timing being linked to either nonclimatic or multiscalar climatic explanations. Using correlation analysis, of the 13 species with a significant ( P <0.10) change in arrival, the arrival timing of 10 species (77%) is associated with both temperature and a large-scale climate oscillation index (El Niño Southern Oscillation, ENSO; North Atlantic Oscillation, NAO; and/or Pacific Decadal Oscillation, PDO) at least at one location. Eight of the 13 species (62%) are advancing their migratory timing. All species for which spring arrival is associated with climate at multiple locations are exhibiting changes ( n =5) and all species lacking evidence for association between migration phenology and climate ( n =3) exhibit no change. Migrants tend to arrive earlier in association with warmer temperatures, positive NAO indices, and stronger ENSO indices. Twelve species negatively correlate ( P ≤0.05) with local or regional temperature at least at one location; five species negatively correlate with ENSO. Eleven species' arrival is correlated ( P ≤0.05) with NAO; 10 are negatively associated. After an exhaustive literature search, this is apparently the first documentation of an association between NAO and migratory phenology in western North America.  相似文献   

14.
Poleward declines in species diversity [latitudinal diversity gradients (LDG)] remain among the oldest and most widespread of macroecological patterns. However, their contemporary dynamics remain largely unexplored even though changing ecological conditions, including global change, may modify LDG and their respective ecosystems. Here, we examine temporal variation within a temperate Northwest Atlantic LDG using 31 years of annual fisheries-independent surveys and explore its dynamics in relation to a dominant climate signal [the wintertime North Atlantic Oscillation (NAO)] that varies interannually and alters the latitudinal gradient of Northwest Atlantic continental shelf bottom water temperatures. We found that the slopes of the annual LDG vary dramatically due to changes in geographic distributions of 100+ species, variations that are concealed within the cumulative, static LDG. These changes are strongly associated with changes in NAO sign and strength. This is the first illustration of temporal dynamics in a contemporary LDG and the first demonstration of the speed at which local environmental variations can alter an LDG. Our findings underscore the need to investigate factors that modify LDG separately from those that contribute to their origins.  相似文献   

15.
D. Straile 《Oecologia》2000,122(1):44-50
The timing of various plankton successional events in Lake Constance was tightly coupled to a large-scale meteorological phenomenon, the North Atlantic Oscillation (NAO). A causal chain of meteorological, hydrological, and ecological processes connected the NAO as well as winter and early spring meteorological conditions to planktonic events in summer leading to a remarkable memory of climatic effects lasting over almost half a year. The response of Daphnia to meteorological forcing was most probably a direct effect of altered water temperatures on daphnid growth and was not mediated by changes in phytoplankton concentrations. High spring water temperatures during ”high-NAO years” enabled high population growth rates, resulting in a high daphnid biomass as early as May. Hence, a critical Daphnia biomass to suppress phytoplankton was reached earlier in high-NAO years yielding an early and longer-lasting clear-water phase. Finally, an earlier summer decline of Daphnia produced in a negative relationship between Daphnia biomass in July and the NAO. Meteorological forcing of the seasonal plankton dynamics in Lake Constance included simple temporal shifts of processes and successional events, but also complex changes in the relative importance of different mechanisms. Since Daphnia plays an important role in plankton succession, a thorough understanding of the regulation of its population dynamics provides the key for predictions of the response of freshwater planktonic food webs to global climate change. Received: 15 February 1999 / Accepted: 23 August 1999  相似文献   

16.
Global climate change may impact wildlife populations by affecting local weather patterns, which, in turn, can impact a variety of ecological processes. However, it is not clear that local variations in ecological processes can be explained by large-scale patterns of climate. The North Atlantic oscillation (NAO) is a large-scale climate phenomenon that has been shown to influence the population dynamics of some animals. Although effects of the NAO on vertebrate population dynamics have been studied, it remains uncertain whether it broadly predicts the impact of weather on species. We examined the ability of local weather data and the NAO to explain the annual variation in population dynamics of white-tailed ptarmigan ( Lagopus leucurus) in Rocky Mountain National Park, USA. We performed canonical correlation analysis on the demographic subspace of ptarmigan and local-climate subspace defined by the empirical orthogonal function (EOF) using data from 1975 to 1999. We found that two subspaces were significantly correlated on the first canonical variable. The Pearson correlation coefficient of the first EOF values of the demographic and local-climate subspaces was significant. The population density and the first EOF of local-climate subspace influenced the ptarmigan population with 1-year lags in the Gompertz model. However, the NAO index was neither related to the first two EOF of local-climate subspace nor to the first EOF of the demographic subspace of ptarmigan. Moreover, the NAO index was not a significant term in the Gompertz model for the ptarmigan population. Therefore, local climate had stronger signature on the demography of ptarmigan than did a large-scale index, i.e., the NAO index. We conclude that local responses of wildlife populations to changing climate may not be adequately explained by models that project large-scale climatic patterns.  相似文献   

17.
We present a model on plant-deer climate interactions developed for improving our understanding of the temporal dynamics of deer abundance and, in particular, how intrinsic (density-dependent) and extrinsic (plants, climate) factors influence these dynamics. The model was tested statistically by analysing the dynamics of five Norwegian red deer populations between 1964 and 1993. Direct and delayed density-dependence significantly influenced the development of the populations: delayed density-dependence primarily operated through female density, whereas direct density-dependence acted through both female and male densities. Furthermore, population dynamics of Norwegian red deer were significantly affected by climate (as measured by the global weather phenomenon, the North Atlantic Oscillation: NAO). Warm, snowy winters (high NAO) were associated with decreased deer abundance, whereas the delayed (two-year) effect of warm, snowy winters had a positive effect on deer abundance. Our analyses are argued to have profound implications for the general understanding of climate change and terrestrial ecosystem functioning.  相似文献   

18.
We present an integrated modeling study designed to investigate changes in ecosystem level phenology over Europe associated with changes in climate pattern, by the North Atlantic Oscillation (NAO). We derived onset dates from processed NDVI data sets and used growing degree day (GDD) summations from the NCEP re‐analysis to calibrate and validate a phenology model to predict the onset of the growing season over Europe. In a cross‐validation hindcast, the model (PHENOM) is able to explain 63% of the variance in onset date for grid cells containing at least 50% mixed and boreal forest. Using a model developed from previous work we performed climate change scenarios, generating synthetic temperature and GDD distributions under a hypothetically increasing NAO. These new distributions were used to drive PHENOM and project changes in the timing of onset for forested cells over Europe. Results from the climate change scenarios indicate that, if the current trend in the NAO continues, there is the potential for a continued advance to the start of the growing season by as much as 13 days in some areas.  相似文献   

19.
Climatic variation associated with the North Atlantic Oscillation (NAO) and El Niño‐Southern Oscillation (ENSO) has a widespread influence on the population dynamics of many organisms worldwide. While previous analyses have related the dynamics of northern ungulates to the NAO, there has been no comparable assessment for the species rich assemblages of tropical and subtropical Africa. Census records for 11 ungulate species in South Africa's Kruger National Park over 1977–96 reveal severe population declines by seven species, which were inadequately explained by indices of ENSO or its effects on annual rainfall totals. An additional influence was an extreme reduction in dry season rainfall, concurrent with and perhaps related to a regional temperature rise, possibly a signal of global warming. Boundary fencing now restricts range shifts by such large mammals in response to climatic variation. Our models project near extirpation of three ungulate species from the park's fauna should these climatic conditions recur.  相似文献   

20.
Doi H  Yurlova NI 《Parasitology》2011,138(8):1022-1028
It is suspected that host-parasite interactions are influenced by climatic oscillations such as the North Atlantic Oscillation (NAO). However, the effects of climatic oscillations on host-parasite interactions have never been investigated. A long-term (1982-1999) dataset of the host snail Lymnaea stagnalis and trematode metacercariae infection has been collected for Lake Chany in Western Siberia. Using this dataset, we estimated the impact of the NAO on the population dynamics of hosts and parasites as well as their interactions. The results of general linear models showed that the abundance of dominant parasite species and the total parasite abundance significantly increased with NAO, with the exception of Moliniella anceps. Other climatic and biological factors were relatively weak to explain the abundance. There was no significant relationship between NAO and the population density of host snails. The prevalence of infection was related to the total abundance of parasites, but not to the NAO. Thus, the responses to the NAO differed between the host and parasites, indicating mismatching in host-parasite interactions. Therefore, climatic oscillations, such as the NAO, influence common parasitism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号