首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
2.
Time and energy are the two most important currencies in animal bioenergetics. How much time animals spend engaged in different activities with specific energetic costs ultimately defines their likelihood of surviving and successfully reproducing. However, it is extremely difficult to determine the energetic costs of independent activities for free‐ranging animals. In this study, we developed a new method to calculate activity‐specific metabolic rates, and applied it to female fur seals. We attached biologgers (that recorded GPS locations, depth profiles, and triaxial acceleration) to 12 northern (Callorhinus ursinus) and 13 Antarctic fur seals (Arctocephalus gazella), and used a hierarchical decision tree algorithm to determine time allocation between diving, transiting, resting, and performing slow movements at the surface (grooming, etc.). We concomitantly measured the total energy expenditure using the doubly‐labelled water method. We used a general least‐square model to establish the relationship between time–activity budgets and the total energy spent by each individual during their foraging trip to predict activity‐specific metabolic rates. Results show that both species allocated similar time to diving (~29%), transiting to and from their foraging grounds (~26–30%), and resting (~8–11%). However, Antarctic fur seals spent significantly more time grooming and moving slowly at the surface than northern fur seals (36% vs. 29%). Diving was the most expensive activity (~30 MJ/day if done non‐stop for 24 hr), followed by transiting at the surface (~21 MJ/day). Interestingly, metabolic rates were similar between species while on land or while slowly moving at the surface (~13 MJ/day). Overall, the average field metabolic rate was ~20 MJ/day (for all activities combined). The method we developed to calculate activity‐specific metabolic rates can be applied to terrestrial and marine species to determine the energetic costs of daily activities, as well as to predict the energetic consequences for animals forced to change their time allocations in response to environmental shifts.  相似文献   

3.
Continued Arctic warming and sea‐ice loss will have important implications for the conservation of ringed seals, a highly ice‐dependent species. A better understanding of their spatial ecology will help characterize emerging ecological trends and inform management decisions. We deployed satellite transmitters on ringed seals in the summers of 2011, 2014, and 2016 near Utqia?vik (formerly Barrow), Alaska, to monitor their movements, diving, and haul‐out behavior. We present analyses of tracking and dive data provided by 17 seals that were tracked until at least January of the following year. Seals mostly ranged north of Utqia?vik in the Beaufort and Chukchi Seas during summer before moving into the southern Chukchi and Bering Seas during winter. In all seasons, ringed seals occupied a diversity of habitats and spatial distributions, from near shore and localized, to far offshore and wide‐ranging in drifting sea ice. Continental shelf waters were occupied for >96% of tracking days, during which repetitive diving (suggestive of foraging) primarily to the seafloor was the most frequent activity. From mid‐summer to early fall, 12 seals made ~1‐week forays off‐shelf to the deep Arctic Basin, most reaching the retreating pack‐ice, where they spent most of their time hauled out. Diel activity patterns suggested greater allocation of foraging efforts to midday hours. Haul‐out patterns were complementary, occurring mostly at night until April‐May when midday hours were preferred. Ringed seals captured in 2011—concurrent with an unusual mortality event that affected all ice‐seal species—differed morphologically and behaviorally from seals captured in other years. Speculations about the physiology of molting and its role in energetics, habitat use, and behavior are discussed; along with possible evidence of purported ringed seal ecotypes.  相似文献   

4.
Abstract: We describe a method to convert continuously collected time-depth data from archival time-depth recorders (TDRs) into activity budgets for a benthic-foraging marine mammal. We used data from 14 TDRs to estimate activity-specific time budgets in sea otters (Enhydra lutris) residing near Cross Sound, southeast Alaska, USA. From the TDRs we constructed a continuous record of behavior for each individual over 39-46 days during summer of 1999. Behaviors were classified as foraging (diving to the bottom), other diving (traveling, grooming, interacting), and nondiving (assumed resting). The overall average activity budget (proportion of 24-hr/d) was 0.37 foraging (8.9 hr/d), 0.11 in other diving (2.6 hr/d), and 0.52 nondiving time (12.5 hr/d). We detected significant differences in activity budgets among individuals and between groups within our sample. Historically, the sea otter population in our study area had been expanding and sequentially reoccupying vacant habitat since their reintroduction to the area in the 1960s, and our study animals resided in 2 adjacent yet distinct locations. Males (n = 5) and individuals residing in recently occupied habitat (n = 4) spent 0.28-0.30 of their time foraging (6.7-7.2 hr/d), 0.17-0.18 of their time in other diving behaviors (4.1-4.3 hr/d), and 0.53-0.54 of their time resting (12.7-13.0 hr/d). In contrast, females (n = 9) and individuals residing in longer occupied habitat (n = 10) spent 0.40 of their time foraging (9.6 hr/d), 0.08-0.09 of their time in other diving behaviors (1.9-2.2 hr/d), and 0.51-0.52 of their time resting (12.2-12.5 hr/d). Consistent with these differences, sea otters residing in more recently occupied habitat captured more and larger clams (Saxidomus spp., Protothaca spp., Macoma spp., Mya spp., Clinocardium spp.) and other prey, and intertidal clams were more abundant and larger in this area. We found that TDRs provided data useful for measuring activity time budgets and behavior patterns in a diving mammal over long and continuous time periods. Fortuitous contrasts in time budgets between areas where our study animals resided suggest that activity time budgets estimated from TDRs may be a sensitive indicator of population status, particularly in relation to prey availability.  相似文献   

5.
We describe the activity patterns and time budget of a feral group of lion-tailed macaques that were confined to a disturbed forest fragment of 65 ha and compare the results with those obtained for groups in protected forests. The degraded nature of the study site was reflected in low tree densities, low specific diversity, gaps in the girth distribution of trees, and frequent disturbance by humans. The study group of 43 subjects was twice as large as lion-tailed macaque groups in protected habitats. They spent the most time ranging (34.0%), followed by foraging (23.7%), feeding (17.9%), resting (16.0%), and other activities such as social interactions (8.4%). Monthly variations are significant for all activity categories except ranging. Times spent resting and foraging are negatively correlated (r = −0.5) and show significant seasonal differences. Foraging time was highest from September to November, when key food sources such asCullenia andArtocarpus were absent or marginally available. The study group spent most time (40.4%) at canopy levels between 21 and 30 m. They spent more time each day ranging than resting or feeding and more time terrestrially compared with groups in protected forests. Large group size, poor habitat quality, and seasonal variation in food availability were the major variables affecting their time budget, and these variables accounted for differences from the time budgets of groups in protected forests.  相似文献   

6.
This study presents the first abundance estimate for the world’s northernmost harbour seal (Phoca vitulina) population, which resides in Svalbard, Norway, based on three digital stereoscopic photographic surveys conducted in 2009 and 2010. The counts from these high resolution 3D images were combined with a novel method for estimating correction factors for animals that were in the water at the time of the surveys, in which extensive behavioural data from radio-tagged harbour seals were used together with age distribution data to estimate the proportion of seals of various age and sex classes hauled out at the times of the surveys. To detect possible seasonal shifts in age distribution between surveys, lengths of hauled out seals were measured from the stereoscopic images. No body-length differences were detected between the surveys; but, this may be due to a high degree of sexual dimorphism exhibited in this population. Applying the modelled correction factors, a total of 1888 (95% CI: 1660–3023), 1742 (1381–3549) and 1812 (1656–4418) harbour seals were estimated for the surveys flown on 01 August 2009, 01 August 2010 and 19 August 2010, respectively. The similarity between the three survey estimates (despite significant differences in the number of animals actually counted on the photos from each survey effort) suggests that the variation in numbers of hauled out seals is reasonably accurately adjusted for by the haul-out probability model. The low population size, the limited spatial distribution of the population and its reduced genetic diversity make this population vulnerable to chance events, such as disease epidemics.  相似文献   

7.
Time budgets are a powerful but hitherto seldom used way to study how migrants organise their bi‐annual travels. We studied daily time budgets of travelling Montagu's harriers Circus pygargus, based on GPS tracking data, in which we were particularly interested in how time budgets differ between regions and seasons, and are affected by wind. We found that Montagu's harriers used a relatively broad daily time window for travelling by starting daily travels just after sunrise and ending daily travels just before sunset. Occasionally, flights were extended into the night. Montagu's harriers frequently interrupted their daily flights for on average 1.5 h d–1. These interruptions occurred in all regions and seasons. The tracking data during interruptions suggested two different behaviours: in 41% of all interruptions the birds were moving (presumed foraging,) and in 32% they were stationary (presumed resting; the remaining interruptions could not be classified). The interruptions for foraging indicate that Montagu's harriers have a fly‐and‐forage migration strategy (i.e. combine travelling and foraging on the same day), but the interruptions for resting illustrate that their travels comprise of more than fly‐and‐forage behaviour alone. The large number of interruptions for foraging in the Sahara Desert indicates that this region is less hostile for a migrating raptor than presumed previously. Importantly, harriers spent more time on interruptions for resting on days with stronger headwinds, suggesting that interruptions for resting serve a function of waiting for more favourable weather conditions. Daily variation in time budgets was largely explained by wind; harriers flew more hours per day, and interrupted their flights fewer hours per day, on days they experienced stronger tailwinds. In contrast, time budgets were similar between regions and seasons, suggesting that wind rather than landscape and season shape travel routines of Montagu's harriers.  相似文献   

8.
Climatic conditions can significantly affect the behavior of animals and constrain their activity or geographic distribution. Barbary macaques (Macaca sylvanus) are one of the few primates that live outside the tropics. Here we analyze if and how the activity budgets of Barbary macaques are affected by climatic variables, i.e., air temperature, relative humidity, rainfall, and snow coverage. We collected scan sampling data on the activity budgets of four groups of macaques living in the Middle Atlas Mountains of Morocco from June 2008 to January 2011. This habitat is characterized by extreme seasonal changes, from cold and snowy winters to hot and dry summers. The activity budgets of the macaques differed across months but not across the time of day (with the exception of time spent feeding). The monkeys spent significantly more time feeding or foraging when there was no snow than when snow coverage was moderate or major. Daily rainfall was positively related to resting time and negatively to time spent moving or in social behavior. Air temperature was negatively related to time spent feeding or foraging. Finally, time spent on social behavior was significantly lower when relative humidity was high. These data indicate that environmental factors significantly affect the time budgets of endangered Barbary macaques, a species that has been little studied in the wild. Our findings support previous studies on temperate primates in showing that snow coverage can have negative consequences on the feeding ecology and survival of these species.  相似文献   

9.
The focus of this study was the distribution of adult female Weddell seals during winter at the Vestfold Hills. Satellite tracking of Weddell seals had never been done before at this location. Hence, this was a pilot study to evaluate the following methods. We attached satellite transmitters to the lower back, where there was least potential to change the seals’ behaviour or to damage instruments on the ice. Location data were obtained only where the seals hauled out, not necessarily where they were feeding. All locations were within the area of fast-ice that was associated with the Vestfold Hills. There were gaps of up to 30 days in the location data sets. Each instrument (n=3) remained attached and functioning for ca. 6 months. During that time, two of the three seals hauled out within small areas adjacent to, or nearby, open water. The same seals hauled out sporadically. We inferred that these seals foraged offshore whilst returning to fast-ice to rest. If Weddell seals forage beneath dynamic ice but return to stable ice as their preferred resting substrate, then evidence of haulout sites will always be a biased measure of foraging range. Tracking seals in the water may be possible using alternative placement of transmitters. However, there is potential for instruments to interfere with movement (breathing and prey capture). For this reason, we recommend a combination of sensors, diet and tracking haulout sites to research winter foraging.  相似文献   

10.
Habitat Quality and Activity Budgets of White-Headed Langurs in Fusui,China   总被引:1,自引:0,他引:1  
Within a species, habitat quality may be a factor causing different activity budgets between populations. The habitat of white-headed langurs (Trachypithecus leucocephalus) has been seriously disturbed in Fusui Rare and Precious Animal Nature Reserve, China, where we carried out a study of their socioecology from September 1997 to September 1998. We collected data on langur activity budgets from the main population located in the central part of a group of limestone hills. We classified habitat quality into 4 grades according to the extent of human disturbance. We showed that the two main study groups of white-headed langurs spent on average 50% of time resting, 13% feeding, 18% moving (including foraging), 11% grooming, and 7% playing. Langur time budgets showed no significant seasonal change, but they differed among different sex-age classes. Infants and juveniles spent about 20.3% of time playing, whereas adults spent only 0.2% playing. The group in high quality habitat engaged less in feeding and more in playing than the group in low quality habitat did. Habitat quality influenced the playing time of young white-headed langurs and may be vital to their successful maturation.  相似文献   

11.
Animals often have a limited time to perform different fitness‐enhancing activities, such as the trade‐off between socializing versus foraging in group‐living species. Many previous studies have focused on how ecological and social factors influence activity budget at the individual or group level in various species. However, few primate studies have focused on multiple study groups living within a similar habitat. Here, we analyse group, season and sex effects on the individual activity budget of wild vervet monkeys (Chlorocebus pygerythrus) living in four groups with overlapping home ranges. Generally, our findings support previous studies on primates. Our results indicate that intragroup competition may force larger groups to spend more time feeding and less time resting. We also found that seasonal variation, and therefore food availability, has a strong influence on the monkeys’ activity budget. Females, which are the philopatric sex in vervet monkeys, spent more time socializing while, in general, males spent more time resting. However, we did not find any difference on the time spent socializing between groups. Since there is evidence that not only time constraints and habitat quality but also group size influence individual behaviours and ultimately group living, we advise that future studies should focus on multiple groups of the same species living in the same habitat in order to better understand how all these variables are interlinked.  相似文献   

12.
The most important environmental factor explaining interspecies variation in ecology and sociality of the great apes is likely to be variation in resource availability. Relatively little is known about the activity patterns of western lowland gorillas (Gorilla gorilla gorilla), which inhabit a dramatically different environment from the well‐studied mountain gorillas (G. beringei beringei). This study aims to provide a detailed quantification of western lowland gorillas' activity budgets using direct observations on one habituated group in Bai Hokou, Central African Republic. We examined how activity patterns of both sexes are shaped by seasonal frugivory. Activity was recorded with 5‐min instantaneous sampling between December 2004 and December 2005. During the high‐frugivory period the gorillas spent less time feeding and more time traveling than during the low‐frugivory period. The silverback spent less time feeding but more time resting than both females and immatures, which likely results from a combination of social and physiological factors. When compared with mountain gorillas, western lowland gorillas spend more time feeding (67 vs. 55%) and traveling (12 vs. 6.5%), but less time resting (21 vs. 34%) and engaging in social/other activities (0.5 vs. 3.6%). This disparity in activity budgets of western lowland gorillas and mountain gorillas may be explained by the more frugivorous diet and the greater dispersion of food resources experienced by western lowland gorillas. Like other apes, western lowland gorillas change their activity patterns in response to changes in the diet. Am. J. Primatol. 71:91–100, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

13.
Per Lundberg 《Oecologia》1985,67(3):331-337
Summary In seasonal environments, time often constrains the timing and duration of processes in annual cycles of animals both on the diel and annual basis. Therefore, the allocation of time e.g. to foraging, resting and breeding behaviours should be true adaptations to the particular circumstances the animals experience.In the present study, time budgets were established for two North Scandinavian starling (Sturnus vulgaris) populations (Andøya, Norway and Umeå, Sweden) with fundamentally different annual cycles. The major components of the time budgets of both populations were foraging and resting. There was also a pronounced seasonal shift in the relationship between these activities. As expected, starlings from both populations increased foraging time during the breeding period. However, contrary to the predictions foraging time was shortest in mid-winter for the sedentary northernmost population at Andøya. Moreover, females from both populations generally allocated more time to foraging than males.These findings are discussed in relation to the energy maximizing-time minimizing concept. It is concluded that these foraging strategies are not as generally valid as previously assumed, especially not in highly seasonal environments.  相似文献   

14.
Barbary macaques, like other non-human primates living in highly seasonal temperate environments, display high monthly variations in their diet. In addition, their diet changes according to the habitat type they colonize and to the degree of habitat degradation due to resource exploitation by local people, in particular through pastoralism. We studied the time-budget adjustments of wild Barbary macaques in three cedar–oak forests impacted by different intensities of grazing pressure from goats and sheep. We examined how diet variations influenced the time monkeys spent in their activities and their day range lengths (i.e. their energy costs). At three studied sites, diet composition and time budgets showed marked seasonal variations. Diet composition had a strong influence on monkeys’ time budget. In the forest where pastoralism was the highest, diet included a greater proportion of underground resources, shrub fruit and acorns, which led to an increase in the time spent foraging and moving, as well as an important increase in day range lengths. Energy costs were therefore higher in a degraded environment than in a suitable habitat. The monkeys living in forests subjected to pastoralism took advantage of increased day lengths to spend more time searching for food. However, in the forest with the highest pastoralism pressure, although monkeys spent more time foraging, they spent less time feeding than monkeys at the other sites. In addition, they appeared to have reached the limits of the available time they could devote to these activities, as their diurnal resting time was at its lowest level over several months. Temperature variations did not appear to modify monkeys’ time budgets. In the least favourable habitat, saving time from resting activity allowed monkeys to maintain a relatively high level of social activity, partly linked to rearing constraints.  相似文献   

15.
Density dependent processes affecting foraging strategies may in turn influence vital rates and population regulation in large herbivores. Increased competition may lower both forage availability and quality, but whether the main activity constraint at high density is increased searching time or increased digestion time is poorly investigated. In a fully replicated landscape‐scale experiment, we used long‐term data (2003–2009) from domestic sheep grazing at high and low density (80 and 25 sheep km–2, respectively) on alpine summer ranges to test density dependence in allocation of time to feeding (moving) vs digestion (resting) activities and how this in turn affected body growth. Sheep at high density spent more time actively feeding than sheep at low density, but sheep moved shorter distances while foraging at high density. Increased activity levels at high density suggest that the main activity constraint at high density was availability of high‐quality food increasing searching time and possibly reducing intake rates. Increased movement distances at low density is consistent with a higher selection for more productive vegetation types since high‐quality patches are dispersed in the landscape. The alternative hypothesis, that food processing time increased at high density was not supported as it would have reduced overall activity levels. Individual activity levels increased body growth, but this was not sufficient to fully compensate for lower habitat quality leading to an overall reduced body growth at high density. Our experiment clearly documents changes in activity budgets and movement distances of a large herbivore at high population density, providing one potential behavioural mechanism of density dependent responses observed in vital rates.  相似文献   

16.
We developed an automated method using depth and one axis of body acceleration data recorded by animal-borne data loggers to identify activities of penguins over long-term deployments. Using this technique, we evaluated the activity time budget of emperor penguins (n = 10) both in water and on sea ice during foraging trips in chick-rearing season. During the foraging trips, emperor penguins alternated dive bouts (4.8±4.5 h) and rest periods on sea ice (2.5±2.3 h). After recorder deployment and release near the colony, the birds spent 17.9±8.4% of their time traveling until they reached the ice edge. Once at the ice edge, they stayed there more than 4 hours before the first dive. After the first dive, the mean proportions of time spent on the ice and in water were 30.8±7.4% and 69.2±7.4%, respectively. When in the water, they spent 67.9±3.1% of time making dives deeper than 5 m. Dive activity had no typical diurnal pattern for individual birds. While in the water between dives, the birds had short resting periods (1.2±1.7 min) and periods of swimming at depths shallower than 5 m (0.25±0.38 min). When the birds were on the ice, they primarily used time for resting (90.3±4.1% of time) and spent only 9.7±4.1% of time traveling. Thus, it appears that, during foraging trips at sea, emperor penguins traveled during dives >5 m depth, and that sea ice was primarily used for resting. Sea ice probably provides refuge from natural predators such as leopard seals. We also suggest that 24 hours of sunlight and the cycling of dive bouts with short rest periods on sea ice allow emperor penguins to dive continuously throughout the day during foraging trips to sea.  相似文献   

17.
Activity budget data are essential for determining behavioral responses to physiological and ecological variables. Yet, few studies are available to investigate the robustness, accuracy, and biases of the methods used to estimate activity budgets for cetaceans. In this study, we compare activity budgets of 55 adult female bottlenose dolphins in Shark Bay, Australia derived from two methods: surveys (n = 6,903) and focal follows (n = 1,185, totaling 2,721 h of observation). Activity budgets estimated from survey data differed in all behavioral states compared to focal follow data. However, when controlling for temporal autocorrelation, only time spent socializing and time spent traveling remained disparate between the methods. To control for biases associated with assigning group‐level behavior to individuals, we also compared survey and focal follow activity budgets for lone females. Here we found differences between methods in time spent foraging and traveling regardless of whether we controlled for temporal autocorrelation, which suggests detection biases likely play a role in explaining differences in activity budget estimates between the two methodologies. Our results suggest that surveys are less representative of individual‐level activity budgets, and thus, when individual‐level knowledge about behavior is needed, focal follows are preferred.  相似文献   

18.
Members of a single group of green monkeys spent, on average, 44.8% of their waking time foraging, 46.7% resting, and 8.5% in social activities, over 1 year. There was significant variation in activity budgets over months (ranging from 35 to 55% of the time spent feeding). Diurnal rhythms of feeding and ranging were influenced by the daily cycle of temperature in predictable ways in different seasons: in the dry season, activity was reduced if it was too hot or too cold, while the temperature in the wet season did not affect activities. Feeding was also synchronized among individuals on a finer time scale, irrespective of the time of day. There was closer synchrony when feeding on less common foods. An ecological model of foraging time and energetics was tested, using estimates of the costs and benefits of foraging and predicting how these are optimally balanced in relation to the food density. Both feeding time and distance traveled increased as food availability increased. Costs and benefits were balanced over several days. Comparisons between populations of Cercopithecus aethiopswere made; differences in time budgets were compared with differences in the availability and quality of food. Insufficient comparative data are available for firm conclusions about the role of different energetic and nutritive strategies in population differences.  相似文献   

19.
We examined the effects of extreme seasonality on the activity budget and diet of wild chacma baboons with access to a high‐quality, human‐derived food source. The Cape Peninsula of South Africa is unusual among nonhuman primate habitats due to its seasonal extremes in day length and climate. Winter days are markedly shorter and colder than summer days but have higher rainfall and higher primary production of annually flowering plants. This combination of fewer daylight hours but higher rainfall is substantially different from the ecological constraints faced by both equatorial baboon populations and those living in temperate climates with summer rainfall. We sought to understand how these seasonal differences affect time budgets of food‐enhanced troops in comparison to both other food‐enhanced troops and wild foraging troops at similar latitudes. Our results revealed significant seasonal differences in activity budget and diet, a finding that contrasts with other baboon populations with access to high‐return anthropogenic foods. Similar to nonprovisioned troops at similar latitudes, troop members spent more time feeding, socializing, and traveling during the long summer days compared to the short winter days, and proportionately more time feeding and less time resting in summer compared to winter. Summer diets consisted mainly of fynbos and nonindigenous foods, whereas winter diets were dominated by annually flowering plants (mainly grasses) and ostrich pellets raided from a nearby ostrich farm. In this case, food enhancement may have effectively exaggerated seasonal differences in activity budgets by providing access to a high‐return food (ostrich pellets) that was spatially and temporally coincident with abundant winter fallback foods (grasses). The frequent use of both alien vegetation and high‐return, human‐derived foods highlights the dietary flexibility of baboons as a key element of their overall success in rapidly transforming environments such as the South African Cape Peninsula. Am. J. Primatol. 72:104–112, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号