首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Species richness of migratory birds is influenced by global climate change   总被引:2,自引:2,他引:0  
Aim  Global climate change is increasingly influencing ecosystems. Long-term effects on the species richness and composition of ecological communities have been predicted using modelling approaches but, so far, hardly demonstrated in the field. Here, we test whether changes in the composition of bird communities have been influenced by recent climate change.
Location  Europe.
Methods  We focus on the proportion of migratory and resident bird species because these groups are expected to respond differently to climatic change. We used the spatial relationship between climatic factors and bird communities in Europe to predict changes in 21 European bird communities under recent climate change.
Results  Observed changes corresponded significantly to predicted changes and could not be explained by the effects of spatial autocorrelation. Alternative factors such as changes in land use were tested in a first approximation as well but no effects were found.
Main conclusions  This study demonstrates that global climate change has already influenced the species richness and composition of European bird communities.  相似文献   

2.
3.
Whether sexual selection acts as an "engine of speciation" is controversial. Some studies suggest that it promotes the evolution of reproductive isolation, while others find no relationship between sexual selection and species richness. However, the explanatory power of previous models may have been constrained because they employed coarse-scale, between-family comparisons and used mating systems and morphological cues as surrogates for sexual selection. In birds, an obvious missing predictor is song, a sexually selected trait that functions in mate choice and reproductive isolation. We investigated the extent to which plumage dichromatism and song structure predicted species richness in a diverse family of Neotropical suboscine birds, the antbirds (Thamnophilidae). These analyses revealed a positive relationship between the intensity of sexual selection and diversity: genera with higher levels of dichromatism and lower-pitched, more complex songs contained greater numbers of species. This relationship held when controlling for phylogeny and was strengthened by the inclusion of subspecies, suggesting that sexual selection has played a role in the diversification of antbirds. This is the first study to reveal correlations between song structure and species diversity, emphasizing the importance of acoustic signals, and within-family analyses, in comparative studies of sexual selection.  相似文献   

4.
Nematodes are usually divided into two major groups, the Adenophora which are common in water and the Secernentea largely from soil. Most research on moulting has been done with the Secernentea, which include the majority of the parasitic forms. Cuticle composition and morphology is discussed in relation to the physiology and possible reasons for moulting in the Nematoda.  相似文献   

5.
6.
Neurobiology of plant parasitic nematodes   总被引:1,自引:0,他引:1  
The regulatory constraints imposed on use of chemical control agents in agriculture are rendering crops increasingly vulnerable to plant parasitic nematodes. Thus, it is important that new control strategies which meet requirements for low toxicity to non-target species, vertebrates and the environment are pursued. This would be greatly facilitated by an improved understanding of the physiology and pharmacology of these nematodes, but to date, these microscopic species of the Phylum Nematoda have attracted little attention in this regard. In this review, the current information available for neurotransmitters and neuromodulator in the plant parasitic nematodes is discussed in the context of the more extensive literature for other species in the phylum, most notably Caenorhabditis elegans and Ascaris suum. Areas of commonality and distinctiveness in terms of neurotransmitter profile and function between these species are highlighted with a view to improving understanding of to what extent, and with what level of confidence, this information may be extrapolated to the plant parasitic nematodes.  相似文献   

7.
Killing ticks with parasitic nematodes of insects.   总被引:5,自引:0,他引:5  
  相似文献   

8.
9.
Avian migration, which involves billions of birds flying vast distances, is known to influence all aspects of avian life. Here we investigate how birds fit moult into an annual cycle determined by the need to migrate. Large variation exists in moulting patterns in relation to migration: for instance, moult can occur after breeding in the summer or after arrival in the wintering quarters. Here we use an optimal annual routine model to investigate why this variation exists. The modelled bird's decisions depend on the time of year, its energy reserves, breeding status, experience, flight feather quality and location. Our results suggest that the temporal and spatial variations in food are an important influence on a migratory bird's annual cycle. Summer moult occurs when food has a high peak on the breeding site in the summer, but it is less seasonal elsewhere. Winter moult occurs if there is a short period of high food availability in summer and a strong winter peak at different locations (i.e. the food is very seasonal but in opposite phase on these areas). This finding might explain why only long-distance migrants have a winter moult.  相似文献   

10.
11.
The scheduling of molt in migratory birds   总被引:2,自引:0,他引:2  
Summary We model the yearly cycle of small migratory birds to explain the variation in scheduling of complete molt, in particular why some birds molt immediately after breeding on the breeding grounds (summer molt) whereas others migrate to their wintering grounds before molt is initiated (winter molt). We employ the method of dynamic programming, because of its suitability for modelling life history traits. Feather quality and latitude entered the model as state variables and were assumed to affect survival rate and reproductive success. Migration and molt were assumed to be associated with increased mortality risks. By changing the parameters in the model we were able to generate most existing molt patterns, including summer and winter molt, biannual (summer and winter) molt, and molt migration. Our model suggests that the scheduling of molt is basically a result of a trade-off between having a high feather quality during breeding versus during the non-breeding period. A high impact of feather quality on survival rate in combination with low costs of molt resulted in biannual molt. Winter molt became more likely as the survival rateper se increased. A low seasonal amplitude in survival rate is a prerequisite for the occurrence of molt migration. Molt duration, migration costs and reproductive successper se were found to have no impact on the timing of molt. We also investigated the effect of benefits from prior occupancy at breeding and winter grounds.  相似文献   

12.
Although it has long been suspected that biannual migration in birds has a direct genetic basis, only in the last decade have details of the inheritance of behavioural traits such as migratory activity and directional preferences been demonstrated. A model has now been developed to estimate how inexperienced first-time migrants manage to reach their unknown winter quarters on the basis of inherited spatio-temporal programs. Furthermore, in obligate partial migrants the decision to migrate or not has been shown to have a strong genetic base. Migratoriness and sedentariness in partial migrants have been shown to have a high potential for rapid evolution. A recent set of results has suggested that novel migratory habits can evolve in less than 25 years. A possible consequence is that environmental changes, including 'greenhouse' effects, might considerably alter avian migration systems by acting on genetic variation for migratory tendencies.  相似文献   

13.
Thorup K  Tøttrup AP  Rahbek C 《Oecologia》2007,151(4):697-703
The phenology of avian migration appears to be changing in response to climate change. Seemingly contradictory differences in the timing of these annual cycles have been reported in published studies. We show that differences between studies in the choice of songbird species, as well as in the measurements of migration phenology, can explain most of the reported differences. Furthermore, while earlier spring arrival is evident across these studies, trends in timing of departure show large variation between species and according to individual timing of migration (early-arriving vs. late-departing individuals). Much of the variation in departure between species could be explained by each species’ migratory status. We present a detailed analysis of migrants recorded at a Danish migration site, and reveal that although shifts in migration timing can be demonstrated for almost all species, these shifts are either most pronounced in the early arriving/late departing individuals or the changes are similar. Thus most individuals do not seem to change their breeding-area residence time (BART). As BART is likely to reflect ecologically important factors, e.g. number of clutches, we expect that only small effects have been exerted on the breeding ecology of the studied species in the time period investigated. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

14.
Our knowledge of many aspects of the molecular biology of animal parasitic nematodes has rapidly expanded in recent years but the classical genetic analysis of this group of organisms has yet to emerge as a viable discipline. For example, it is not possible to routinely perform crosses between single males and females to examine the genetic basis of even simple phenotypes such as anthelmintic resistance. This has meant that the function of many cloned parasite genes can only be inferred from sequence comparison with genes from other organisms where the function is known, or by correlation of DNA polymorphisms linked to the gene with phenotypic differences between strains or individuals. In the absence of classical genetic techniques, a molecular solution is to transform a suitable host with the gene of interest, but what defines a suitable host? Here, Warwick Grant describes recent work that aims to provide such a host.  相似文献   

15.
Excretion of DDT by migratory birds   总被引:1,自引:0,他引:1  
  相似文献   

16.
17.
Genes and genomes of parasitic nematodes   总被引:10,自引:0,他引:10  
Our knowledge of gene and genome organization in nematodes is growing rapidly, partly as a result of the Caenorhabditis elegans genome project. Here Martin Hammond and Ted Bianco review what is known about the organization of genes and genomes in parasitic nematode species, using information gained from molecular and cytological approaches. They suggest that there are implications not only for a wide range of problems in parasitology but also for our understanding of genome evolution in eukaryotes.  相似文献   

18.
As in many invertebrates, female oxyurids are larger than male. Sexual size dimorphism (SSD) of oxyurid nematodes (the hosts of which are both invertebrate and vertebrate), is investigated regarding body size of both host and parasite. SSD of parasites appeared to be weakly, but not significandy, correlated with invertebrate and vertebrate host body size. However, this study reveals a different pattern for SSD with respect to either type of host. SSD does not increase in tandem with body size in vertebrate parasites either at the level of species or genus. SSD is much more pronounced in Syphaciidae than in Heteroxynematidae, two families of vertebrate parasites exhibiting different modes of transmission (members of the Syphaciidae are transmitted through perianal contamination). SSD is investigated in one monophyletic group of parasites of primates, for which a phylogeny is known. Independent comparisons method is used and we find that the body size of female parasite is strongly correlated with that of the male. The hypoallometry (slope<1) of the relationship suggests that the SSD is not linked to an increase of parasite body size. Moreover, there is no influence of host body size on parasite SSD. The pattern in parasites of invertebrates is different. First, SSD has been found to increase with parasite body size in two groups of invertebrate parasites: the oxyurids of Dictyoptera and Coleoptera. Second, female body size of invertebrate parasites is not correlated with male body size either at genus or species level. Finally, the evolution of SSD is discussed in relation to the demographic patterns of invertebrate parasites and the haplodiploid mode of reproduction of these parasitic nematodes.  相似文献   

19.
Competition for early arrival in migratory birds   总被引:24,自引:2,他引:22  
  相似文献   

20.
Migratory birds occupy different geographical areas during breeding and non-breeding periods, and thus different factors may determine their range limits depending on each season. One such factor is the spatial climatic component of the niche, which is widely used to model species distributions, yet the temporal component is often neglected and is generally assumed to be constant. We tested the hypothesis that the climatic niche is conserved between breeding and non-breeding areas in 355 bird species migrating through Eurasian–African flyways. For this, we performed niche overlap analyses and compared niche differences between sister or phylogenetically closely related species, as well as linking the differences to migratory distances. For more than 80% of the species, there was no or very little overlap between their breeding and non-breeding climatic niches. For most closely related species, the degree of overlap of their breeding climatic niches was larger than the overlap observed within each species, but not for their wintering climatic niches, suggesting a phylogenetic conservation of breeding climatic niches. Finally, there was a clear negative relationship between migratory distances and climatic niche overlap within each species. Our results confirmed that the climatic niche of most Eurasian–African migratory species differs between both breeding and non-breeding ranges, suggesting distinctive seasonal climatic requirements. Given these results and the geographically uneven effects of climate change, the impact of global change is likely to have different effects in each seasonal range. Hence, both breeding and non-breeding climatic data need to be considered when using species distribution models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号