首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ability of nest predation to influence habitat settlement decisions in birds is widely debated, despite its importance in limiting fitness. Here, we experimentally manipulated nest predation risk across a landscape and asked the question, do migratory birds assess and respond to variation in nest predation risk when choosing breeding habitats? We examined habitat preference by quantifying the density and settlement date of eight species of migratory passerines breeding in areas with and without intact nest predator communities. We found consistently more individuals nesting in areas with reduced nest predation than in areas with intact predator assemblages, although predation risk had no influence on settlement or breeding phenology. Additionally, those individuals occupying safer nesting habitats exhibited increased singing activity. These findings support a causal relationship between habitat choice and nest predation risk and suggest the importance of nest predation risk in shaping avian community structure and breeding activity.  相似文献   

2.
Eva Banda  Guillermo Blanco 《Oikos》2009,118(7):991-1000
Nest‐site limitation may have different implications in the spatial distribution of breeding pairs depending on the availability of suitable habitat and the types of nest‐sites. Distribution of cavities suitable as nest sites may allow circumstantial aggregation or active choice of colonial nesting, which may have different implications on breeding performance through effects on breeding density, with variable costs and benefits depending on the consequences of intraspecific competition, social interactions and predation. We evaluated the effects of breeding density derived from nesting site limitation on breeding performance and predation at different spatial scales and considering multiple social, population and environmental limiting factors in the red‐billed chough Pyrrhocorax pyrrhocorax. The results indicate that variable breeding density may arise within the population depending on the availability and spatial distribution of nest‐sites. Nest‐site availability and distribution may also determine social breeding systems (isolated or aggregated) at variable densities, thus resembling differences found at different spatially distant populations under contrasting environmental conditions. Breeding performance was related to density‐dependent processes of population regulation, especially density‐dependent nest predation due to predator attraction to nest clusters. Results also indicate that predation pressure depend on density patterns at large scales. This suggest that predation may have important consequences on population dynamics of spatially structured populations depending on the strength of this kind of density dependence, which in turn may depend on habitat features affecting the prey but also the spatially variable guild of predators. Because habitat and nesting site availability may vary spatially depending on multiple human influences, understanding the strength and form in which breeding density and nest predation at different spatial scales may influence the size and persistence of populations can help to manage them more adequately.  相似文献   

3.
Jean-Louis  Martin  Mathieu  Joron 《Oikos》2003,102(3):641-653
We used the introduction of a generalist nest predator, the red squirrel Tamiasciurus hudsonicus, and of a large herbivore, the Sitka black-tailed deer Odocoileus hemionus sitkensis, to the islands of Haida Gwaii (Queen Charlotte Islands, British Columbia, Canada) to study how predator assemblage and habitat quality and structure influenced nest predation in forest birds. We compared losses of natural nests to predators on islands with and without squirrels. We selected nine islands with or without squirrel or deer and used 506 artificial nests put on the ground or in shrubs to further analyse variation of nest predation with predator assemblage and habitat quality for the predators. For both natural and artificial nests predation risk was higher in presence of squirrels. But predation risk varied within island categories. In presence of squirrels it was highest in stands with mature conifers where it fluctuated from year to year, in response to fluctuations in squirrel abundance. Vegetation cover around the nest had little effect on nest predation by squirrels. Where squirrels were absent, nest predation concentrated near predictable food sources for corvids, the main native predators, and increased with decreasing vegetation cover, suggesting that removal of the vegetation by deer increased the risk of predation by native avian nest predators that use visual cues. Predation risk in these forests therefore varies in space and time with predator composition and with quality of the habitat from the predators' perspective. This temporal and spatial variation in predation risk should promote trade-offs in the response of birds to nest predation, rather than fine-tuned adaptations to a given predation pattern.  相似文献   

4.
In avian systems, nest predation is one of the most significant influences on reproductive success. Selection for mechanisms and behaviours to minimise predation rates should be favoured. To avoid predation, breeding birds can often deter predators through active nest defence or by modifying behaviours around the nest (e.g. reducing feeding rates and vocalisations). Birds might also benefit from concealing nests or placing them in inaccessible locations. The relative importance of these strategies (behaviour vs. site selection) can be difficult to disentangle and may differ according to life history. Tropical birds are thought to experience higher rates of predation than temperate birds and invest less energy in nest defence. We monitored a population of crimson finches (Neochmia phaeton), in the Australian tropics, over two breeding seasons. We found no relationship between adult nest defence behaviour (towards a model reptile predator) and the likelihood of nest success. However, nest success was strongly related to the visibility of the nest and the structure of the vegetation. We found no evidence that adult nest building decisions were influenced by predation risk; individuals that re‐nested after a predation event did not build their nest in a more concealed location. Therefore, predator avoidance, and hence nest success, appears to be largely due to chance rather than due to the behaviour of the birds or their choice of nesting sites. To escape high predation pressures, multiple nesting attempts both within and between seasons may be necessary to increase reproductive success. Alternatively, birds may be limited in their nest‐site options; that is, high‐quality individuals dominate quality nest sites.  相似文献   

5.
Factors affecting nest predation on forest songbirds in North America   总被引:2,自引:1,他引:1  
FRANK R. THOMPSON  III 《Ibis》2007,149(S2):98-109
Nest predation is an important factor in the ecology of passerines and can be a large source of mortality for birds. I provide an overview of factors affecting nest predation of passerines in North America with the goal that it may provide some insight into the ecology and management of woodland birds in the United Kingdom. Although several factors influence productivity, nest success is perhaps the most widely measured demographic characteristic of open-cup-nesting birds, and nest predation is usually the largest cause of nest failure. The identity of predator species, and how their importance varies with habitat and landscape factors, must be known for managers and scientists to design effective conservation plans and place research on nest predation in the appropriate context. Recent studies using video surveillance have made significant contributions to our understanding of the relative importance of different predator taxa in North America. Spatial and temporal variation in nest predation can be better understood when landscapes are placed in a biogeographical context and local habitat and nest-site effects are placed in a landscape context. Low productivity resulting from high nest predation is one of several potential causes of bird population declines in North America and the UK. Although the 'forest fragmentation paradigm' from the eastern US may not apply directly to the UK, thinking about avian demographics from a multiscale perspective, and consideration of factors affecting nest predation with knowledge of the dominant predator species, may provide insight into population declines.  相似文献   

6.
Passerines are especially vulnerable to predation at the pre-independence stage. Although the role of nest success in British farmland passerine declines is contentious, improvement in nest success through sympathetic management could play a role in their reversal. Because habitat is known to interact with predation, management options for mitigation will need to consider effects of nest predation. We present results from an observational study of a population of Common Blackbird Turdus merula on a farm which has experienced a range of agri-environment and game-management options, including a period with nest predator control, as a case study to address some of these issues. We used an information theoretic model comparison procedure to look for evidence of interactions between habitat and nest predation, and then asked whether habitat management and nest predator abundances could explain population trends at the site through their effects on nest success. Interactions were detected between measures of predator abundance and habitat variables, and these varied with nest stage – habitat within the vicinity of the nest appeared to be important at the egg stage, and nest-placement characteristics were important at the nestling stage. Although predator control appeared to have a positive influence on Blackbird breeding population size, the non-experimental set-up meant we could not eliminate other potential explanations. Variation in breeding population size did not appear to be influenced by variation in nest success alone. Our study demonstrates that observational data can only go so far in detection of such effects, and we discuss how it might be taken further. Agri-environment and game-management techniques are likely to influence nest predation pressure on farmland passerines, but the patterns, mechanisms and importance to population processes remain not wholly understood.  相似文献   

7.
Koivula  K.  Rönkä  A. 《Oecologia》1998,116(3):348-355
Many populations of waders breeding on open shores and shores with short vegetation especially on the Baltic coasts have recently become endangered. The declines have taken place simultaneously with human-induced loss and deterioration of habitats due to eutrophication and overgrowth. To investigate mechanisms by which habitat changes could affect breeding success and ultimately population dynamics, we studied an endangered coastal population of Temminck's stint. We hypothesized that the rate of nest predation has become higher because the nest defence strategy (early detection of predator and early departure from the nest), which originally evolved in open habitats, is less effective on shores with reduced visibility. As predicted, nests survived better on wide than on narrow shores. Predation made a major contribution to this trend, although successful and predated nests did not differ in concealment at a microhabitat scale. The better the visibility from the nest, the longer was the flushing distance, but only in response to alarm calls or behaviour of other species, not when they were absent. Temminck's stints seem to obtain information about an approaching predator visually from sentinels. Therefore, it is essential that there is at least moderate visibility around the nest. We conclude that habitat characteristics – visibility from the nest and sentinel birds – affect the effectiveness of the nest defence strategy of Temminck's stint. These should be taken into account when seeking causes and mechanisms for declines of Temminck's stint and other waders of open and shortly vegetated shores. Received: 5 January 1998 / Accepted: 20 April 1998  相似文献   

8.
ABSTRACT.   Nest predation is the primary cause of nest failure in most passerine birds, and increases in nest predation associated with anthropogenic habitat disturbance are invoked as explanations for population declines of some bird species. In most cases, however, the identity of the nest predators is not known with certainty. We monitored active bird nests with infrared time-lapse video cameras to determine which nest predators were responsible for depredating bird nests in northern New Hampshire. We monitored 64 nests of 11 bird species during three breeding seasons, and identified seven species of predators during 14 predation events. In addition, we recorded two instances of birds defending nests from predators and, in both cases, these nests were ultimately lost to predation. These results contrast with other studies in terms of the relatively high proportion of nests depredated by raptors and mice, as well as the absence of any predation by snakes. The diverse suite of predators in this and other studies is likely to confound our understanding of patterns of nest predation relative to fragmentation and habitat structure.  相似文献   

9.
Contrary to assumptions of habitat selection theory, field studies frequently detect ‘ecological traps’, where animals prefer habitats conferring lower fitness than available alternatives. Evidence for traps includes cases where birds prefer breeding habitats associated with relatively high nest predation rates despite the importance of nest survival to avian fitness. Because birds select breeding habitat at multiple spatial scales, the processes underlying traps for birds are likely scale‐dependent. We studied a potential ecological trap for a population of yellow warblers Dendroica petechia while paying specific attention to spatial scale. We quantified nest microhabitat preference by comparing nest‐ versus random‐site microhabitat structure and related preferred microhabitat features with nest survival. Over a nine‐year study period and three study sites, we found a consistently negative relationship between preferred microhabitat patches and nest survival rates. Data from experimental nests described a similar relationship, corroborating the apparent positive relationship between preferred microhabitat and nest predation. As do other songbirds, yellow warblers select breeding habitat in at least two steps at two spatial scales; (1) they select territories at a coarser spatial scale and (2) nest microhabitats at a finer scale from within individual territories. By comparing nest versus random sites within territories, we showed that maladaptive nest microhabitat preferences arose during within‐territory nest site selection (step 2). Furthermore, nest predation rates varied at a fine enough scale to provide individual yellow warblers with lower‐predation alternatives to preferred microhabitats. Given these results, tradeoffs between nest survival and other fitness components are unlikely since fitness components other than nest survival are probably more relevant to territory‐scale habitat selection. Instead, exchanges of individuals among populations facing different predation regimes, the recent proliferation of the parasitic brown‐headed cowbird Molothrus ater, and/or anthropogenic changes to riparian vegetation structure are more likely explanations.  相似文献   

10.
Human activities impact upon natural habitats used by birds for breeding and foraging, and lead to changes in the composition and spatial distribution of predator communities, mainly through loss, fragmentation and disturbance of formerly pristine habitat. Yet possible fitness consequences of such changes through impacts on bird nest-site selection remain poorly known. Here we study nest-site selection and reproductive success of Placid Greenbuls Phyllastrephus placidus in the Taita Hills, southeast Kenya. We show that habitat features associated with nest-site selection by this insectivorous, open-cup-nesting bird species vary among forest fragments that are exposed to different levels of habitat disturbance. Such differences in sites selected for breeding result from a plastic response to fragment-specific conditions or may be driven by fragment-specific variation in the distribution and availability of certain habitat features. Given the overall high nest predation rates in our study area, we expected variation in nest-site selection to correlate with reproductive success and nestling condition, but detected no such relationship. Because predator density and nest predation rates may vary strongly in space and time, a better understanding of spatio-temporal variation in predator communities is needed to assess the possible adaptive value of nest-site selection strategies for reducing the high predation rates that are typical for this and many other open-cup-nesting tropical passerines.  相似文献   

11.
In human-modified environments, ecological traps may result from a preference for low-quality habitat where survival or reproductive success is lower than in high-quality habitat. It has often been shown that low reproductive success for birds in preferred habitat types was due to higher nest predator abundance. However, between-habitat differences in nest predation may only weakly correlate with differences in nest predator abundance. An ecological trap is at work in a farmland bird (Lanius collurio) that recently expanded its breeding habitat into open areas in plantation forests. This passerine bird shows a strong preference for forest habitat, but it has a higher nest success in farmland. We tested whether higher abundance of nest predators in the preferred habitat or, alternatively, a decoupling of nest predator abundance and nest predation explained this observed pattern of maladaptive habitat selection. More than 90% of brood failures were attributed to nest predation. Nest predator abundance was more than 50% higher in farmland, but nest predation was 17% higher in forest. Differences between nest predation on actual shrike nests and on artificial nests suggested that parent shrikes may facilitate nest disclosure for predators in forest more than they do in farmland. The level of caution by parent shrikes when visiting their nest during a simulated nest predator intrusion was the same in the two habitats, but nest concealment was considerably lower in forest, which contributes to explaining the higher nest predation in this habitat. We conclude that a decoupling of nest predator abundance and nest predation may create ecological traps in human-modified environments.  相似文献   

12.
ABSTRACT.   Population declines among birds are often linked to habitat change and associated increases in nest predation rates. In species of conservation concern identifying nest predators is an important first step in developing management strategies to mitigate low nesting success caused by depredation. Because predator composition varies geographically and with landscape factors habitat restoration may need to be tailored to reduce locally important predators. We used miniature video cameras to identify nest predators in a population of Florida Scrub-Jays ( Aphelocoma coerulescens ) significant to conservation. At 22 nests we observed 25 predation events; 22 (88%) of these events were nocturnal. Yellow rat snakes ( Elaphe obsoleta ) had the highest daily predation rate and accounted for 76% of egg and nestling losses. Florida Scrub-Jays are vulnerable to nocturnal nest predation because their vigilance behavior is ineffective against nocturnal predators, breeders cannot defend against nocturnal predators, and brooding females are at risk of being killed by nocturnal predators. If current habitat restoration efforts do not reduce numbers of yellow rat snakes and improve scrub-jay nesting success, management actions to reduce populations of nocturnal snakes may need to be considered.  相似文献   

13.
Predation risk effects on fitness related measures in a resident bird   总被引:1,自引:0,他引:1  
Predation risk is thought to be highly variable in space and time. However, breeding avian predators may create locally fixed and spatially fairly predictable predation risk determined by the distance to their nest. From the prey perspective, this creates predation risk gradients that potentially have an effect on fitness and behavioural decisions of prey. We studied how breeding avian predators affect habitat selection (nest location) and the resulting fitness consequences in a northern population of resident willow tit ( Parus montanus ). Data included 429 willow tit nests over a four year period in a landscape containing a total of 33 avian predator nests. Willow tit nests were located randomly in the landscape and no predator avoidance in habitat selection or emptying of territories in proximity to predators was observed. Nestling size, however, was positively associated with distance from predator nests (n=252). Nestling mass and wing length were about 4.5% smaller close to predator nests compared to nestlings raised far from predator nests. Tarsus length also exhibited a positive relationship with increasing distance from predator nest but this was limited to habitats of young forests and pine bogs or dense mixed forests (4% increase). It is likely that habitat structural complexity influenced the perception of predation risk in different habitats. Our results indicate that willow tits do not provide reliable cues of predator free habitats for settling migrants. Nonetheless, breeding avian predators may create predictable predation risk in the landscape which is an important factor affecting reproductive success and potentially the demography of prey populations.  相似文献   

14.
As saltmarsh habitat continues to disappear, understanding the factors that influence the population dynamics of saltmarsh breeding birds is an important step in the conservation of these declining species. Using 5 yrs (2011–2015) of demographic data, we evaluated and compared apparent adult survival and nest survival of Seaside (Ammodramus maritimus) and Saltmarsh (A. caudacutus) sparrows at the Edwin B. Forsythe National Wildlife Refuge in New Jersey, USA. We determined the effect of site management history (unditched vs. ditched marshes) on adult and nest survival to aid in prioritizing future management or restoration actions. Apparent adult survival (61.6%, 95% CI: 52.5–70.0%) of Seaside Sparrows averaged > 1.5 times greater than that of Saltmarsh Sparrows (39.9%, 95% CI: 34.0–46.2%). Nest survival and predation and flooding rates did not differ between species, and predation was the primary cause of nest failure for both species. Apparent adult survival and nest survival did not differ between unditched and ditched marshes for either species, indicating that marsh ditching history may not affect the quality of breeding habitat for these species. Because predation was the primary cause of nest failure for both species in New Jersey, we suggest that future studies should focus on identifying predator communities in salt marshes and the potential for implementing predator‐control programs to limit population declines.  相似文献   

15.
Nest survival is critical to breeding in birds and plays an important role in life‐history evolution and population dynamics. Studies evaluating the proximate factors involved in explaining nest survival and the resulting temporal patterns are biased in favor of temperate regions. Yet, such studies are especially pertinent to the tropics, where nest predation rates are typically high and environmental conditions often allow for year‐round breeding. To tease apart the effects of calendar month and year, population‐level breeding activity and environmental conditions, we studied nest survival over a 64‐month period in equatorial, year‐round breeding red‐capped larks Calandrella cinerea in Kenya. We show that daily nest survival rates varied with time, but not in a predictable seasonal fashion among months or consistently among years. We found negative influences of flying invertebrate biomass and rain on nest survival and higher survival of nests when nests were more abundant, which suggests that nest predation resulted from incidental predation. Although an increase in nest predation is often attributed to an increase in nest predators, we suggest that in our study, it may be caused by altered predator activity resulting from increased activity of the primary prey, invertebrates, rather than activity of the red‐capped larks. Our results emphasize the need to conduct more studies in Afro‐tropical regions because proximate mechanisms explaining nest predation can be different in the unpredictable and highly variable environments of the tropics compared with the relatively predictable seasonal changes found in temperate regions. Such studies will aid in better understanding of the environmental influences on life‐history variation and population dynamics in birds.  相似文献   

16.
Predation by introduced mammals is decimating New Zealand's indigenous fauna. Understanding factors that influence this process allows resources for predator control to be applied with maximum effect. This study examines how predation of a secondary prey species (a relatively common but declining native plover, the banded dotterel Charadrius bicinctus ) varied with reductions in abundance of a major prey source (rabbits), kill-trapping of predators, nest density and habitat complexity. Banded dotterels mostly nest in open braided riverbeds alongside a number of endemic threatened species. We measured the fate of 753 dotterel clutches exposed to predation by cats, ferrets and hedgehogs. We found key times and places of high predation risk. Immediately after widespread reduction in rabbit populations by rabbit haemorrhagic disease (RHD), clutch predation rates were almost as high (mean, 50%) as those recorded during past rabbit poisoning programmes (mean, 57%). Both rates were significantly higher than the mean predation rate of 22% without rabbit control, suggesting a shift in predator diet immediately after rabbit population declines. Unlike after rabbit poisoning, clutch predation rate remained high in the years after RHD. Other patterns observed included higher clutch predation rate where nest density was lower, suggesting that predation can potentially cause local extinction. Clutch predation was also higher along riverbed margins where vegetation was dense. There was equivocal evidence for an effect of predator kill-trapping on clutch predation rate. Management strategies that could potentially reduce clutch predation risks include focusing predator mitigation measures during periods of rabbit decline, maintaining them for more than one breeding season if the rabbit declines are widespread (e.g. RHD epidemics), and applying greater effort at sites with relatively low nest density and along riverbed margins where predator use is more frequent.  相似文献   

17.
Nest predation is widely regarded as a major driver underlying the population dynamics of small forest birds. Following forest fragmentation and the subsequent invasion by species from non-forested landscape matrices, shifts in predator communities may increase nest predation near forest edges. However, effects of human-driven habitat change on nest predation have mainly been inferred from studies with artificial nests, despite being regarded as poor surrogates for natural ones. We studied variation in predation rates, and relationships with timing of breeding and characteristics of microhabitats and fragments, on natural white-starred robin Pogonocichla stellata nests during three consecutive breeding seasons (2004–2007) in a Kenyan fragmented cloud forest. More than 70% of all initiated nests were predated during each breeding season. Predation rates nearly quadrupled between the earliest and the latest nests within a single breeding season, increased with distance to the forest edge, and decreased with the edge-to-area ratio of forest fragments. These spatial relationships oppose the traditional perception of edge and fragmentation effects on nest predation, but are in line with results from artificial nest experiments in other East African forests. In case of inverse edge and fragmentation effects on nest predation, such as shown in this study, species that tolerate edges for breeding may be affected positively, rather than negatively, by forest fragmentation, while the opposite can be expected for species restricted to the forest interior. The possibility of inverse edge effects, and its conservation implications, should therefore be taken into account when drafting habitat restoration plans.  相似文献   

18.
Predation on wader nests in Europe   总被引:1,自引:1,他引:0  
The population declines of waders in Europe are widely considered to have resulted from habitat loss and degradation due to agricultural changes. However, recent empirical evidence suggests that levels of predation on wader nests are unsustainably high in many cases, even in some situations where breeding habitat is otherwise favourable. We review the published and 'grey' literature on nest predation on waders in Europe and quantify the relative importance of the major predators. Nest cameras offer the least biased method of identifying and quantifying nest predators. A small number of camera studies, in combination with others utilizing nest temperature loggers, indicate that nocturnal/mammalian predators make the largest contribution to wader nest predation. More than half of site-years or studies reviewed reported clutch failure rates of over 50% attributable to predation alone, a rate that is likely to be associated with declining populations, although parameters such as chick and adult survival will also affect population trends. Correlates of wader nest predation are documented, with time of season, field type and management, distance to habitat/field edge, wader nest density, and abundance of mammalian predators being most consistently identified. Future directions of research into wader productivity are discussed, and we suggest that studies quantify additional life-history parameters such as chick survival, as well as examining the predator community, wherever possible.  相似文献   

19.
Annual Finnish breeding duck surveys over the last 30 years show declining abundance among several species and greater declines on eutrophic waters than oligotrophic lakes. It has been suggested that habitat-related differences in the rate of increase in predation pressure is a potential explanation for contrasting duck population trajectories between habitats. We assessed potential duck nest predation risk and predator presence in various duck breeding habitats in Finland and Denmark by monitoring 333 artificial duck nests with wildlife cameras during 2017–2019. Predation rates differed between landscapes and habitats: nest predation rate and predator diversity were lowest in forested and highest in agricultural landscapes. Forest nests further from water bodies survived better than nests around shorelines of permanent lakes. Of the 16 different predator species detected, the most common were Eurasian magpie (Picapica), hooded crow (Corvus corone) and raccoon dog (Nyctereutes procyonoides). While predation by specific native predator species was typically associated with particular habitats and landscapes, the alien raccoon dog appeared to be a true habitat generalist, ubiquitous and common across all habitats and landscapes. Based on these results, the higher duck nest predation pressure along shorelines, especially in agricultural landscape lakes, due to increased diversity and abundance within the predator community, may contribute to the declining population trends of ducks.  相似文献   

20.
Nest predation is the leading cause of reproductive failure for grassland birds of conservation concern. Understanding variation in nest predation rates is complicated by the diverse assemblage of species known to prey on nests. As part of a long‐term study of grassland bird ecology, we monitored populations of predators known to prey on grassland bird nests. We used information theoretic approach to examine the predator community's association with habitat at multiple scales, including local vegetation structure of grassland patches, spatial attributes of grassland patches (size and shape), and landscape composition surrounding grassland patches (land cover within 400 and 1600 m). Our results confirmed that nest predators respond to habitat at multiple scales and different predator species respond to habitat in different ways. The most informative habitat models we selected included variability in local vegetation (CV in the density of forbs), local patch (area and edge‐to‐interior ratio), and landscape within a 1600 m buffer around grasslands (percent of land covered by human structures and development). As a separate question, we asked if models that incorporated information from multiple scales simultaneously might improve the ability to explain variation in the predator community. Multi‐ scale models were not consistently superior to models derived from variables focused at a single spatial scale. Our results suggest that minimizing human development on and surrounding conservation land and the management of the vegetation structure on grassland fragments both may benefit grassland birds by decreasing the risk of nest predation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号