首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
While both predator body size and prey refuge provided by habitat structure have been established as major factors influencing the functional response (per capita consumption rate as a function of prey density), potential interactions between these factors have rarely been explored. Using a crab predator (Panopeus herbstii) – mussel prey (Brachidontes exustus) system, we examined the allometric scaling of the functional response in oyster (Crassostrea virginica) reef habitat, where crevices within oyster clusters provide mussels refuge from predation. A field survey of mussel distribution showed that mussels attach closer to the cluster periphery at high mussel density, indicating the potential for saturation of the refuge. In functional response experiments, the consumption rate of large crabs was depressed at low prey density relative to small crabs, while at high prey density the reverse was true. Specifically, the attack rate coefficient and handling time both decreased non‐linearly with crab size. An additional manipulation revealed that at low prey densities, the ability of large crabs to maneuver their claws and bodies to extract mussels from crevices was inhibited relative to small crabs by the structured habitat, reducing their attack rate. At high prey densities, crevices were saturated, forcing mussels to the edge of clusters where crabs were only limited by handling time. Our study illuminates a potentially general mechanism where the quality of the prey refuge provided by habitat structure is dependent on the relative size of the predator. Thus anthropogenic influences that alter the natural crab size distribution or degrade reef habitat structure could threaten the long‐term stability of the crab –mussel interaction in reefs.  相似文献   

2.
Over the last decade, the non-native, filter-feeding crab Petrolisthes armatus invaded oyster reefs of the South Atlantic Bight at densities of thousands m−2. Mesocosm and field experiments demonstrated that P. armatus at ∼10–75% of mean summer densities: (1) suppressed growth of small oysters, biomass of benthic microalgae, and recruitment of native mud crabs, (2) enhanced oyster, mussel, and total bivalve recruitment, macroalgal cover, and survivorship of predatory oyster drills, but (3) did not affect native taxonomic richness. Laboratory feeding assays, field tethering experiments, and population changes in field and mesocosm experiments suggest that P. armatus is a preferred prey for native mud crabs and other consumers, thus relieving predation on native species and enhancing recruitment or survival of bivalves and oyster drills. In contrast, the invasive crab can consume crustacean larvae and via this feeding may suppress recruitment of native mud crabs. Our findings should be conservative given the low densities of P. armatus seeded into experimental plots and our inability to run longer-term experiments due to controls rapidly being colonized by non-native crabs recruiting from the plankton. Invasive crabs commonly impact native communities via predation, but community impacts of this invasive crab may be as much due to its role as a preferred prey of native consumers as to its predation on native prey. Given that oysters are foundation species for shallow reefs in the South Atlantic Bight, the long-term effects of this invasion could be considerable.  相似文献   

3.

The European green crab (Carcinus maenas) is invasive on the West coast of North America, but the ecological consequences of this invasion remain poorly understood. Comparative functional response analysis has arisen as a method of elucidating ecological consequences of invasive species by comparing the impact of these species to native analogues. Through comparative functional response experiments of green crabs and native red rock crabs (Cancer productus) we found that green crab predation increased asymptotically (Type II functional response) when fed increasing densities of Pacific oysters (Magallana gigas), while red rock crab predation displayed a sigmoidal (Type III) response. At high oyster densities red rock crabs consume more Pacific oysters than green crabs do, due to their reduced handling time, though green crabs consume more Pacific oysters relative to their size than red rock crabs. However, compared to red rock crabs, green crabs consume more oysters at low prey densities, which implies that they have a larger, potentially destabilizing impact on low densities of Pacific oysters. As green crabs continue to spread across the West coast of North America, Pacific oysters will face increased predation pressure. Our results show the advantage of using functional response analysis to compare density dependent predation between an invasive species and a native species to predict the ecological consequences of invasions.

  相似文献   

4.
Summary We conducted a series of field experiments to examine the roles of refuge and food availability in explaining the distribution and abundance of fish in tidal freshwater marsh creeks. Two hypotheses were tested: (1) relative predation pressure is less in SAV than in unvegetated areas and (2) fish food availability is greater in SAV than in nearby unvegetated areas. Tethering experiments using mummichogs (Fundulus heteroclitus) in vegetated and unvegetated areas revealed that relative predation pressure was significantly less in areas with SAV. Banded killifish (Fundulus diaphanus) maintained in vegetated enclosures consumed prey associated with SAV, whereas those held in unvegetated pens had empty stomachs. No differences were found in the number of prey eaten by bluespotted sunfish (Enneacanthus gloriosus) or mummichogs when confined in vegetated or unvegetated enclosures. However, larger prey were consumed by bluespotted sunfish and mummichogs maintained in vegetated enclosures. These data suggest that foraging profitability is significantly enhanced by feeding in the SAV. Submerged plant beds in tidal freshwater marsh creeks not only afford protection from predators, but also provide a rich foraging habitat. By foraging in SAV, fish consume larger prey and may have higher growth rates, lower mortality, and higher fecundity.  相似文献   

5.
It is believed that habitat heterogeneity can change the extent of predator-prey interactions. Therefore, in this study we examined the effect of habitat heterogeneity (characterized here as an addition of refuge) on D. ater predation on M. domestica. Predation of D. ater on M. domestica larvae was carried out in experimental habitats with and without refuge, and examined at different prey densities. The number of prey eaten by beetles over 24 h of predator-prey interaction was recorded, and we investigated the strength of interaction between prey and predator in both experimental habitats by determining predator functional response. The mean number of prey eaten by beetles in the presence of refuge was significantly higher than in the absence of refuge. Females had greater weight gains than males. Logistic regression analyses revealed the type II functional response for both experimental habitats, even though data did not fit well into the random predator model. Results suggest that the addition of refuge in fact enhanced predation, as prey consumption increased in the presence of refuge. Predators kept in the presence of refuge also consumed more prey at high prey densities. Thus, we concluded that the addition of refuge was an important component mediating D. ater-M. domestica population interactions. Refuge actually acted as a refuge for predators from prey, since prey behaviors detrimental to predators were reduced in this case.  相似文献   

6.
To manage the impacts of biological invasions, it is important to determine the mechanisms responsible for the effects invasive species have on native populations. When predation by an invader is the mechanism causing declines in a native population, protecting the native species will involve elucidating the factors that affect native vulnerability. To examine those factors, this study measured how a native species responded to an introduced predator, and whether the native response could result in a refuge from predation. Predation by the green crab, Carcinus maenas, has contributed to the decline in numbers of native soft-shell clams, Mya arenaria, and efforts to eradicate crabs have proven futile. We tested how crab foraging affected clam burrowing, and how depth in the sediment affected clam survival. Clams responded to crab foraging by burrowing deeper in the sediment. Clams at shallow depths were more vulnerable to predation by crabs. Results suggest soft-shell clam burrowing is an inducible defense in response to green crab predation because burrowing deeper results in a potential refuge from predation by crabs. For restoring the native clam populations, tents could exclude crabs and protect clams, but when tents must be removed, exposing the clams to cues from foraging crabs should induce the clams to burrow deeper and decrease vulnerability. In general, by exposing potential native prey to cues from introduced predators, we can test how the natives respond, identify whether the response results in a potential refuge, and evaluate the risks to native species survival in invaded communities.  相似文献   

7.
Predation can have strong direct and indirect effects on the behavior of prey. We investigated whether predation by chain pickerel (Esox niger) caused adult eastern mosquitofish (Gambusia holbrooki) to alter their habitat use and whether pickerel predation influenced survival of adult and neonate mosquitofish. The number of adult mosquitofish using the riskier of three habitats was lowest when two predators occupied the risky habitat, intermediate in the treatment with one predator, and highest when no predators occurred there. More mosquitofish neonates survived high predation treatments than treatments lacking pickerel. We conclude that pickerel predation causes adult mosquitofish to shift to refuge habitats. The pattern of neonate survival suggests that adult habitat use may create a refuge from cannibalism for neonate mosquitofish, resulting in higher neonate survival in treatments with more pickerel. Hence, pickerel predation has a direct effect on adult mosquitofish behavior and a strong indirect effect on neonate survival. Both interspecific and intraspecific predation can effect prey populations and can interact to produce important indirect effects.  相似文献   

8.
There should be intense selection for predation avoidance mechanisms when prey live in close proximity to their predators. Prey individuals that can learn to associate habitat features with high levels of predation risk should experience increased survival if they subsequently avoid those habitats. We tested whether or not habitat learning occurred in a benthic stream community consisting of adult Oklahoma salamander (Eurycea tynerensis) prey and a syntopic predatory fish, the banded sculpin (Cottus carolinae). We exposed individual salamanders to chemical stimuli from sculpin, non‐predatory tadpoles, or a blank control in training tanks containing either rocks or grass. Two days later, the salamanders were tested in tanks that offered a choice of rocks or grass. Salamanders showed significant avoidance of the habitat where they had previously encountered chemical cues from sculpin in comparison to the non‐predatory controls. Learning to avoid dangerous habitats may be particularly important for prey whose predators are visually cryptic ambush foragers, such as sculpin.  相似文献   

9.
The risk of predation can drive trophic cascades by causing prey to engage in antipredator behavior (e.g. reduced feeding), but these behaviors can be energetically costly for prey. The effects of predation risk on prey (nonconsumptive effects, NCEs) and emergent indirect effects on basal resources should therefore depend on the ecological context (e.g. resource abundance, prey state) in which prey manage growth/predation risk tradeoffs. Despite an abundance of behavioral research and theory examining state‐dependent responses to risk, there is a lack of empirical data on state‐dependent NCEs and their impact on community‐level processes. We used a rocky intertidal food chain to test model predictions for how resources levels and prey state (age/size) shape the magnitude of NCEs. Risk cues from predatory crabs Carcinus maenas caused juvenile and sub‐adult snails Nucella lapillus to increase their use of refuge habitats and decrease their growth and per capita foraging rates on barnacles Semibalanus balanoides. Increasing resource levels (high barnacle density) and prey state (sub‐adults) enhanced the strength of NCEs. Our results support predictions that NCEs will be stronger in resource‐rich systems that enhance prey state and suggest that the demographic composition of prey populations will influence the role of NCEs in trophic cascades. Contrary to theory, however, we found that resources and prey state had little to no effect on snails in the presence of predation risk. Rather, increases in NCE strength arose because of the strong positive effects of resources and prey state on prey foraging rates in the absence of risk. Hence, a common approach to estimating NCE strength – integrating measurements of prey traits with and without predation risk into a single metric – may mask the underlying mechanisms driving variation in the strength and relative importance of NCEs in ecological communities.  相似文献   

10.
Metzeling  Leon  Miller  Jessica 《Hydrobiologia》2001,449(1-3):159-170
Experiments were designed to investigate selective predation by medium (40–55 mm carapace width: CW) and large (55–70 mm CW) Carcinus maenas when feeding on four bivalves of contrasting shell morphology. Size-selection was examined by presenting individual crabs with a wide size range of Mytilus edulis, Ostrea edulis, Crassostrea gigas and Cerastoderma edule. Medium-sized crabs preferred mussels 5–15 mm shell length (maximum shell dimension: SL) and cockles 5–10 mm SL, whereas large crabs preferred mussels 15–25 mm and cockles 10–20 mm SL. Crabs generally showed no preference for any particular size of either oyster species. Species-selection was examined by presenting individual crabs with paired combinations of the four bivalves in various proportions. When offered mussels and oysters simultaneously, both size categories of crabs consistently selected mussels, and food choice was independent of prey relative abundance. By contrast, C. maenas selected mussels and cockles as expected by the frequency in which each size category of crab encountered the preferred size ranges of prey. Crab preference clearly paralleled the rank order of prey profitability, which in turn was mainly determined by prey biomass, suggesting that active selection takes place at some point of the predation cycle. Experiments with epoxy resin models showed that initial reluctance of crabs to attack oysters was not associated with the ultimate energy reward. Moreover, they suggest that foraging decisions are partly based on evaluations of overall prey shape and volume, and that the minimum dimension of the shell constitutes an important feature which crabs recognise and associate with prey value.  相似文献   

11.
How, and where, a prey species survives predation by a specialist predator during low phases of population fluctuations or a cycle, and how the increase phase of prey population is initiated, are much-debated questions in population and theoretical ecology. The persistence of the prey species could be due mainly to habitats that act as refuges from predation and/or due to anti-predatory behaviour of individuals. We present models for the former conjecture in two (and three) habitat systems with a specialist predator and its favoured prey. The model is based on dispersal of prey between habitats with high reproductive output but high risk of predation, and less productive habitats with relatively low risk of predation. We illustrate the predictions of our model using parameters from one of the most intriguing vertebrate predator–prey systems, the multi-annual population cycles of boreal voles and their predators. We suggest that cyclic population dynamics could result from a sequence of extinction and re–colonization events. Field voles (Microtus agrestis), a key vole species in the system, can be hunted to extinction in their preferred meadow habitat, but persist in sub-optimal wet habitats where their main predator, the least weasel (Mustela nivalis nivalis) has a low hunting efficiency. Re–colonization of favourable habitats would occur after the predator population crashes. At the local scale, the model suggests that the periodicity and amplitude of population cycles can be strongly influenced by the relative availability of risky and safe habitats for the prey. Furthermore, factors like intra-guild predation may lead to reduced predation pressure on field voles in sub-optimal habitats, which would act as a refuge for voles during the low phase of their population cycles. Elasticity analysis suggested that our model is quite robust to changes in most parameters but sensitive to changes in the population dynamics of field voles in the optimal grassland habitat, and to the maximum predation rate of weasels.  相似文献   

12.
We hypothesized that as the spatial extent of hypoxic bottom water increased, (1) adult blue crab predator densities would increase in shallow habitats as they avoided hypoxia, and that (2) juvenile blue crabs, which use shallow unvegetated habitat as a predation refuge from adult conspecifics, would experience increased mortality rates during crowding by cannibalistic adult blue crabs. These hypotheses were tested along a depth gradient of sandy-mud shoreline in the Neuse River Estuary (NRE), North Carolina, USA using a combination of (1) hydrographic measurements to characterize the spatial extent of hypoxia, (2) beach seines to quantify the density of adult blue crab predators in relatively shallow water as a function of 1, and (3) tethering experiments to quantify relative rates of predation on juvenile blue crabs as a function of 1 and 2. During our seven tethering experiments, the NRE study site experienced a range of DO scenarios including normoxia, chronic hypoxia, and hypoxic upwelling. No known predators of juvenile blue crabs, other than adult conspecifics, were collected in any of our shallow-water seines. During the transition from normoxia to chronic hypoxia, blue crab predator densities in shallow refuge habitats increased 4-fold, and relative mortality rates of juvenile blue crabs in shallow habitats increased exponentially with the density of adult conspecifics. Conversely, during hypoxic upwelling events, the density of adult blue crabs in shallow water declined, which may explain why the relative mortality of juvenile crabs did not increase significantly with the increasing spatial extent of hypoxia. Thus, juvenile blue crabs may be relatively safe from adult conspecifics during hypoxic upwelling events, but not during chronic hypoxia. These experimental results highlight the need to consider the effects of dynamic water quality on mobile consumers emigrating from degraded habitats when considering indirect trophic impacts beyond the immediate area of impact.  相似文献   

13.
Blue crabs Callinectes sapidus are voracious predators in Chesapeake Bay and other estuarine habitats. The rapa whelk Rapana venosa is native to Asian waters but was discovered in Chesapeake Bay in 1998. This predatory gastropod grows to large terminal sizes (in excess of 150 mm shell length (SL)) and has a thick shell that may contribute to an ontogenetic predation refuge. However, juvenile rapa whelks in Chesapeake Bay may be vulnerable to predation by the blue crab given probable habitat overlap, relative lack of whelk shell architectural defenses, and the relatively large size of potential crab predators. Feeding experiments using three size classes of blue crab predators in relation to a size range of rapa whelks of two different ages (Age 1 and Age 2) were conducted. Blue crabs of all sizes tested consumed Age 1 rapa whelks; 58% of all Age 1 whelks offered were eaten. Age 2 rapa whelks were consumed by medium (67% of whelks offered were eaten) and large (70% of whelks offered were eaten) blue crabs but not by small crabs. The attack methods of medium and large crabs changed with whelk age and related shell weight. Age 1 whelks were typically crushed by blue crabs while Age 2 whelk shells were chipped or left intact by predators removing prey. Rapa whelks less than approximately 35 mm SL are vulnerable to predation by all sizes of blue crabs tested. Rapa whelk critical size may be greater than 55 mm SL in the presence of large blue crabs indicating that a size refugia from crab predation may not be achieved by rapa whelks in Chesapeake Bay until at least Age 2 or Age 3. Predation by blue crabs on young rapa whelks may offer a natural control strategy for rapa whelks in Chesapeake Bay and other estuarine habitats along the North American Atlantic coast.  相似文献   

14.
Abstract. Blue crabs (Callinectes sapidus) prey on hooked mussels (Ischadium recurvum) growing epizoically on oyster clumps in estuaries along the Louisiana coast. In prey size‐selection experiments, blue crabs preferred small mussels (<30‐mm shell length) to larger mussels, possibly because handling time increased with mussel size. When crabs were given a choice of solitary mussels versus mussels in clumps on oysters in the laboratory, mortality was lower by 86% in clumped mussels. However, no size selection by crabs occurred with mussels in clumps, likely because smaller mussels escaped predation in crevices between larger mussels or oysters. When individuals of two size classes of mussels were exposed to water containing the scent of crabs and of mussels consumed by blue crabs, an increase in byssal thread production was induced in all mussels, but byssal thread production rate was higher for small mussels than for large mussels. We conclude that increased predation risk for small mussels has resulted in higher size‐specific production of byssal threads, and that predator‐induced production of byssal threads, which may increase clumping behavior, may reduce their risk of mortality to predatory blue crabs.  相似文献   

15.
Finke DL  Denno RF 《Oecologia》2006,149(2):265-275
The ability of predators to elicit a trophic cascade with positive impacts on primary productivity may depend on the complexity of the habitat where the players interact. In structurally-simple habitats, trophic interactions among predators, such as intraguild predation, can diminish the cascading effects of a predator community on herbivore suppression and plant biomass. However, complex habitats may provide a spatial refuge for predators from intraguild predation, enhance the collective ability of multiple predator species to limit herbivore populations, and thus increase the overall strength of a trophic cascade on plant productivity. Using the community of terrestrial arthropods inhabiting Atlantic coastal salt marshes, this study examined the impact of predation by an assemblage of predators containing Pardosa wolf spiders, Grammonota web-building spiders, and Tytthus mirid bugs on herbivore populations (Prokelisia planthoppers) and on the biomass of Spartina cordgrass in simple (thatch-free) and complex (thatch-rich) vegetation. We found that complex-structured habitats enhanced planthopper suppression by the predator assemblage because habitats with thatch provided a refuge for predators from intraguild predation including cannibalism. The ultimate result of reduced antagonistic interactions among predator species and increased prey suppression was enhanced conductance of predator effects through the food web to positively impact primary producers. Behavioral observations in the laboratory confirmed that intraguild predation occurred in the simple, thatch-free habitat, and that the encounter and capture rates of intraguild prey by intraguild predators was diminished in the presence of thatch. On the other hand, there was no effect of thatch on the encounter and capture rates of herbivores by predators. The differential impact of thatch on the susceptibility of intraguild and herbivorous prey resulted in enhanced top-down effects in the thatch-rich habitat. Therefore, changes in habitat complexity can enhance trophic cascades by predator communities and positively impact productivity by moderating negative interactions among predators.  相似文献   

16.
The expression of prey antipredator defenses is often related to ambient consumer pressure, and prey express greater defenses under intense consumer pressure. Predation is generally greater at lower latitudes, and antipredator defenses often display a biogeographic pattern. Predation pressure may also vary significantly between habitats within latitudes, making biogeographic patterns difficult to distinguish. Furthermore, invasive predators may also influence the expression of prey defenses in ecological time. The purpose of this study was to determine how these factors influence the strength of antipredator responses. To assess patterns in prey antipredator defenses based upon geographic range (north vs. south), habitat type (wave-protected vs. wave-exposed shores), and invasive predators, we examined how native rock (Cancer irroratus) and invasive green (Carcinus maenas) crab predators influence the behavioral and morphological defenses of dogwhelk (Nucella lapillus) prey from habitats that differ in wave exposure across an ~230 km range within the Gulf of Maine. The expression of behavioral and morphological antipredatory responses varied according to wave exposure, geographic location, and predator species. Dogwhelks from areas with an established history with green crabs exhibited the largest behavioral and morphological antipredator responses to green crabs. Dogwhelk behavioral responses to rock crabs did not vary between habitats or geographic regions, although morphological responses were greater further south where predation pressure was greatest. These findings suggest that dogwhelk responses to invasive and native predators vary according to geographic location and habitat, and are strongly affected by ambient predation pressure due to the invasion history of an exotic predator.  相似文献   

17.
Top-down effects of predators in systems depend on the rate at which predators consume prey, and on predator preferences among available prey. In invaded communities, these parameters might be difficult to predict because ecological relationships are typically evolutionarily novel. We examined feeding rates and preferences of a crab native to the Pacific Northwest, Cancer productus, among four prey items: two invasive species of oyster drill (the marine whelks Urosalpinx cinerea and Ocenebra inornata) and two species of oyster (Crassostrea gigas and Ostrea lurida) that are also consumed by U. cinerea and O. inornata. This system is also characterized by intraguild predation because crabs are predators of drills and compete with them for prey (oysters). When only the oysters were offered, crabs did not express a preference and consumed approximately 9 juvenile oysters crab−1 day−1. We then tested whether crabs preferred adult drills of either U. cinerea or O. inornata, or juvenile oysters (C. gigas). While crabs consumed drills and oysters at approximately the same rate when only one type of prey was offered, they expressed a strong preference for juvenile oysters over drills when they were allowed to choose among the three prey items. This preference for oysters might negate the positive indirect effects that crabs have on oysters by crabs consuming drills (trophic cascade) because crabs have a large negative direct effect on oysters when crabs, oysters, and drills co-occur.  相似文献   

18.
Abstract. We examined claw characteristics of mud crabs (Eurypanopeus depressus, Rhithropanopeus harrisii) to determine if one crab species was potentially more powerful than the other. We related our findings to the abilities of individuals of each species to open epifaunal mytiliform bivalves (Ischadium recurvum; Mytilopsis leucophaeata) that occur on beds of eastern oysters (Crassostrea virginica) in mesohaline Chesapeake Bay. There were high correlations between claw width or height and claw length, and between claw length and carapace width for both mud crab species. The mechanical advantage or “grip strength’ of the crusher and cutter claws of both species did not change with crab size (carapace width) and did not differ between sexes in each species, nor did the cutter data differ between species. However, individuals of E. depressus had a significantly stronger crusher claw grip than did those of R. harrisii. Data on mechanical advantage for both species were similar to values reported in the literature for members of other xanthid crab species. These values in turn overlapped those reported for calappid, cancrid, majid, and grapsid crabs, and were greater than those of various species of portunid crabs and individual species of fiddler crab, lobster, crayfish, and ghost shrimp. When simultaneously presented with the two species of bivalves, the mud crabs E. depressus chose mussels of M. leucophaeata first and crabs of R. harrisii chose mussels of I. recurvum first about two‐thirds of the time; ultimately, the crabs ate both bivalve species in >50% of the choice experiments. The size range in E. depressus was greater than that in R. harrisii, and crabs of E. depressus opened larger bivalves than did crabs of R. harrisii, although similar‐sized individuals of the two crab species overlapped in their ability to open bivalves of both species. In Mytilopsis leucophaeata, there is probably no size refuge from predation by the mud crabs whereas the larger mussels of I. recurvum do have a refuge in size.  相似文献   

19.
The strong impact of non‐native predators in aquatic systems is thought to relate to the evolutionary naiveté of prey. Due to isolation and limited dispersal, this naiveté may be relatively high in freshwater systems. In this study, we tested this notion by examining the antipredator response of native mosquitofish, Gambusia holbrooki, to two non‐native predators found in the Everglades, the African jewelfish, Hemichromis letourneuxi, and the Mayan cichlid, Cichlasoma urophthalmus. We manipulated prey naiveté by using two mosquitofish populations that varied in their experience with the recent invader, the African jewelfish, but had similar levels of experience with the longer‐established Mayan cichlid. Specifically, we tested these predictions: (1) predator hunting modes differed between the two predators, (2) predation rates would be higher by the novel jewelfish predator, (3) particularly on the naive population living where jewelfish have not invaded yet, (4) antipredator responses would be stronger to Mayan cichlids due to greater experience and weaker and/or ineffective to jewelfish, and (5) especially weakest by the naive population. We assayed prey and predator behavior, and prey mortality in lab aquaria where both predators and prey were free‐ranging. Predator hunting modes and habitat domains differed, with jewelfish being more active search predators that used slightly higher parts of the water column and less of the habitat structure relative to Mayan cichlids. In disagreement with our predictions, predation rates were similar between the two predators, antipredator responses were stronger to African jewelfish (except for predator inspections), and there was no difference in response between jewelfish‐savvy and jewelfish‐naive populations. These results suggest that despite the novelty of introduced predators, prey may be able to respond appropriately if non‐native predator archetypes are similar enough to those of native predators, if prey rely on general antipredator responses or predation cues, and/or show neophobic responses.  相似文献   

20.
Aarnio  Katri  Mattila  Johanna 《Hydrobiologia》2000,440(1-3):347-355
Due to increasing eutrophication of the coastal Baltic waters, drifting algae are a common phenomenon. Drifting algal mats accumulate on shallow sandy bottoms in late summer and autumn, and affect the ambient fauna. Juvenile flounder, Platichthys flesus, utilize these habitats during their first few years. They feed on benthic meio- and macrofauna; part of their diet consists of shelled species, such as Ostracods, and juvenile Hydrobia spp. and Macoma balthica. Earlier studies have shown that up to 75% of ostracods and 92% of hydrobiids survive the gut passage of juvenile flounder, while all M. balthica are digested by the fish. We conducted laboratory experiments to study how the shelled prey responded to a drift algal mat, and the predation efficiency of juvenile P. flesus on these prey species on bare sand and with drifting algae (50% coverage). Hydrobia spp. utilized the drift algae as a habitat and, after 1 h, 50% had moved into the algae; ostracods and M. balthica were more stationary and, after 96 h, only 23 and 12%, respectively, were found in the algae. For the predation efficiency of P. flesus, a two-way ANOVA with habitat (algae, bare sand) and predation (fish, no fish) as factors revealed that both algae and predation affected negatively the survival of all three prey species. The algae, thus, affected the predation efficiency of juvenile P. flesus and the consumption of prey was much reduced in the algal treatments compared to the bare sand. This was due probably to increased habitat complexity and the ability of prey, especially hydrobiids, to use the algal mat as a refuge. Altered habitat structure due to drift algae, together with the resultant changes in habitat (refuge) value for different prey species, may profoundly change the structure of benthic communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号