首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Because selection on juvenile life-history stages is likely strong, disproportionately high levels of performance (e.g., sprint speed, endurance, etc.) might be expected. Whereas this phenomenon has been demonstrated with respect to locomotor performance, data for feeding are scarce. Here, we investigate the relationships among body dimensions, head dimensions, and bite force during growth in lizards and turtles. We also investigate whether ontogenetic changes in bite performance are related to changes in diet. Our analyses show that, for turtles, head dimensions generally increase with negative allometry. For lizards, heads scale as expected for geometrically growing systems. Bite force generally increased isometrically with carapace length in turtles but showed significant positive allometry relative to body dimensions in lizards. However, both lizards and turtles display positive allometric scaling of bite force relative to some measures of head size throughout ontogeny, suggesting (1) strong selection for increased relative bite performance with increasing head size and (2) intrinsic changes in the geometry and/or mass of the jaw adductors during growth. Whereas our data generally do not provide strong evidence of compensation for lower absolute levels of performance, they do show strong links among morphology, bite force, and diet during growth.  相似文献   

2.
The importance of allometry as an analytic tool is well recognized in the literature of primate morphology. However, a number of recent studies have illustrated how interpretive difficulties can arise when researchers confound different types of allometric data. Such confusion is due less to carelessness than to uncertainty about how different types of allometry are related. The present study examines the relationship between two types—ontogenetic and interspecific allometry–in the case of organ weight scaling in six species of Old World monkeys. Accepting the interpretation of interspecific allometry as a reflection of functional scaling constraints, the results of this analysis indicate how ontogenetic patterns have been modified in different-sized species to maintain compliance with these constraints. Specifically, for the heart and lungs it appears that vertical transpositions of individual species' ontogenies are dictated by isometric interspecific allometry, while in the case of the kidneys and liver, the relation of negative allometry across species entails alteration of the relative growth coefficients of the individual species. While these conclusions can at present only be applied to organ weight scaling, the approach of examining interspecific patterns in light of developmental differences between species should prove very helpful in our efforts to understand the phenomena of size and scaling.  相似文献   

3.
One of the most studied macroecological patterns is the interspecific abundance-occupancy relationship, which relates species distribution and abundance across space. Interspecific relationships between temporal distribution and abundance, however, remain largely unexplored. Using data for a natural assemblage of tabanid flies measured daily during spring and summer in Nova Scotia, we found that temporal occurrence (proportion of sampling dates in which a species occurred in an experimental trap) was positively related to temporal mean abundance (number of individuals collected for a species during the study period divided by the total number of sampling dates). Moreover, two models that often describe spatial abundance-occupancy relationships well, the He-Gaston and negative binomial models, explained a high amount of the variation in our temporal data. As for the spatial abundance-occupancy relationship, the (temporal) aggregation parameter, k, emerged as an important component of the hereby named interspecific temporal abundance-occurrence relationship. This may be another case in which a macroecological pattern shows similarities across space and time, and it deserves further research because it may improve our ability to forecast colonization dynamics and biological impacts.  相似文献   

4.
1. The size–grain hypothesis maintains that as terrestrial walking organisms decrease in size, their environment becomes less planar and more rugose. The benefits of long legs (efficient, speedy movement over a planar environment) may thus decrease with smaller body size, while the costs (larger cross-sectional area limiting access to the interstitial environment) are enhanced.
2. A prediction from this hypothesis – that leg size should increase proportionately with body mass – is examined. Ants are among the smallest walking animals and extend the size gradient five orders of magnitude beyond the traditional 'mouse to elephant' curve. The mass of 135 species of worker ants spans 3·7 orders of magnitude (0·008–53 mg). Larger ants tended to be slimmer and longer legged. Ant subfamilies varied in their scaling relationships, but four out of five showed a positive allometry for hind leg length ( b > 0·33). Mammals, in contrast, show isometry for leg length over six orders of magnitude.
3. It is suggested that ants make a transition from living in an interstitial environment when small to a planar environment when large, a habit continued by most terrestrial mammals. Head length and pronotum width are robust estimators of mass in ants.  相似文献   

5.
Intraspecific or ontogenetic analyses of mass-metabolism relationships do not often conform to the same allometric correlations as those seen in interspecific analyses. A commonly cited reason for this discrepancy is that ontogenetic studies examine smaller mass ranges than interspecific studies, and are therefore not statistically comparable. In this study the metabolic rate of yellowtail kingfish was measured from 0.6 mg-2.2 kg, a mass range comparable to that between a mouse and an elephant. Linear regression of the log transformed data resulted in a scaling exponent of 0.90 and high correlation coefficient. Statistical and information theory comparisons of three other models showed that a segmented linear regression and curvilinear quadratic function were an improvement over a simple linear regression. This confirmed previous observations that the metabolic scaling exponent of fish changes during ontogeny. Ammonia excretion rates were also measured and scaled linearly with an exponent of 0.87. The data showed that the metabolism of yellowtail kingfish during ontogeny did not scale with the commonly cited 2/3 or 3/4 mass exponent. This demonstrates that differences between interspecific and ontogenetic allometries are not necessarily statistical artefacts.  相似文献   

6.
Metabolism, growth, and the assimilation of energy and materials are essential processes that are intricately related and depend heavily on animal size. However, models that relate the ontogenetic scaling of energy assimilation and metabolism to growth rely on assumptions that have yet to be rigorously tested. Based on detailed daily measurements of metabolism, growth, and assimilation in tobacco hornworms, Manduca sexta, we provide a first experimental test of the core assumptions of a metabolic scaling model of ontogenetic growth. Metabolic scaling parameters changed over development, in violation of the model assumptions. At the same time, the scaling of growth rate matches that of metabolic rate, with similar scaling exponents both across and within developmental instars. Rates of assimilation were much higher than expected during the first two instars and did not match the patterns of scaling of growth and metabolism, which suggests high costs of biosynthesis early in development. The rapid increase in size and discrete instars observed in larval insect development provide an ideal system for understanding how patterns of growth and metabolism emerge from fundamental cellular processes and the exchange of materials and energy between an organism and its environment.  相似文献   

7.
Abstract. 1. We determined mortality and distributional patterns of leaf miners on three oak host species (Quercus falcata, Q.nigra and Q.hemisphaerica) in northern Florida, U.S.A.
2. Patterns of intra- and interspecific occurrence within leaves, and mortality of five most abundant leaf miner species were analysed as a test of competition.
3. Miners co-occurred on leaves more often that expected by chance (P<0.05) in six of ten possible species combinations and log-linear model analysis showed no negative higher-order interactions.
4. All five miner species had highly clumped distributions between leaves (P<0.01).
5. Leaf miner survival was less than expected for four of five species when co-occurring on leaves with conspecifics than when mining with heterospecifics or alone (P<0.05).
6. We conclude that interspecific competition is unapparent within this leaf miner guild and that intraspecific competition occurs in four of the five major leaf miner species. We discuss leaf miner selection of common leaves, perhaps based on chemical/physical leaf characters, as a cause of intra- and interspecific aggregation.  相似文献   

8.
The functional association between body size and metabolic rate (BS-MR) is one of the most intriguing issues in ecological physiology. An average scaling exponent of 3/4 is broadly observed across animal and plant taxa. The numerical value of 3/4 is theoretically predicted under the optimized version of West, Brown, and Enquist's vascular resource supply network model. Insects, however, have recently been proposed to express a numerically different scaling exponent and thus application of the WBE network model to insects has been rejected. Here, we re-analyze whether such variation is indeed supported by a global deviation across all insect taxa at the order and family levels to assess if specific taxa influence insect metabolic scaling. We show that a previous reported deviation is largely due to the effect of a single insect family (Termitidae). We conclude that the BS-MR relationship in insects broadly supports the core predictions of the WBE model. We suggest that the deviation observed within the termites warrants further investigation and may be due to either difficulty in accurately measuring termite metabolism and/or particularities of their life history. Future work on allometric scaling should assess the nature of variation around the central tendencies in scaling exponents in order to test if this variation is consistent with core assumptions and predictions of the WBE model that stem by relaxing its secondary optimizing assumptions that lead to the 3/4 exponent.  相似文献   

9.
The traditional approach to allometric analysis entails the fitting of a straight line to logarithmic transformations of the data, after which parameters in a two-parameter allometric equation are estimated by back-transformation to the original scale. We re-examined published data for dimensions of the limbs in 22 species of varanid lizards to illustrate the biases that can be introduced into allometric analyses by applying the aforementioned protocol. Statistical models fit to the original data by linear and nonlinear regression conformed better with underlying assumptions than did models obtained by back-transformation from logarithms, and the former generally were better than the latter for describing limb dimensions over the full range in body size. Allometric exponents estimated by the traditional method therefore were based on inappropriate and inaccurate statistical models and, consequently, were biased and misleading. Investigators can avoid problems such as these by performing preliminary graphical and statistical analyses on data in their original scale and by validating the fitted model. Logarithmic transformations should be used sparingly and only for cause.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 96 , 296–305.  相似文献   

10.
For almost a century, biologists have used trait scaling relationships(bi-variate scatter-plots of trait size versus body size) tocharacterize phenotypic variation within populations, and tocompare animal shape across populations or species. Scalingrelationships are a popular metric because they have long beenthought to reflect underlying patterns of trait growth and development.However, the physiological mechanisms generating animal scalingare not well understood, and it is not yet clear how scalingrelationships evolve. Here we review recent advances in developmentalbiology, genetics, and physiology as they pertain to the controlof growth of adult body parts in insects. We summarize fourmechanisms known to influence either the rate or the durationof cell proliferation within developing structures, and suggesthow mutations in these mechanisms could affect the relativesizes of adult body parts. By reviewing what is known aboutthese four processes, and illustrating how they may contributeto patterns of trait scaling, we reveal genetic mechanisms likelyto be involved in the evolution of insect form.  相似文献   

11.
12.
The respiration rates R (oxygen uptake per min) and body mass M (mg per individual) of sunflower (Helianthus annuus L.) seedlings were measured for populations raised in the dark (scotomorphogenesis) and for plants subsequently grown in white light (photomorphogenesis) to determine the allometric (scaling) relationship for R vs. M. Based on ordinary least squares and reduced major axis regression protocols, cellular respiration rates were found to increase non-linearly as a ‘broken-stick’ curve of increasing M. During germination, the scaling was ca. 7.5-fold higher than after the emergence of the cotyledons from the seed coat, which can be attributed to the hypoxic conditions of the enclosed embryo. During seedling development, R was found to scale roughly as the 3/7 power of body mass (i.e., RM−3/7), regardless of whether plants were grown in the dark or subsequently in white light. The numerical value of 3/7 statistically significantly differs from that reported across small field- or laboratory-grown plants (i.e., RM−1.0). It also differs from the expectations of recent allometric theory (i.e., RM−0.75 to M−1.0). This difference is interpreted to be the result of species-specific tissue-compositions that affect the volume fractions of metabolically active and less active cells. These findings, which are supported by cytological and ultrastructural observations (i.e., scanning- and transmission electron micrographs), draw attention to the need to measure R of developing plants in a tissue- or organ-specific context.Key words: dark respiration, metabolic scaling, photomorphogenesis, oxygen uptake, skotomorphogenesis  相似文献   

13.
The form and function of the support skeleton, musculature and teeth were examined in an ontogenetic series of Pacific hagfish Eptatretus stoutii spanning about a six-fold range in total length (L(T)). Tooth area, feeding apparatus length, basal plate size, theoretical dental plate retractile force, penetration force and applied tooth stress were measured relative to body size. Morphological variables (e.g. tooth area and basal plate size) scaled with positive allometry and functional variables (e.g. retractile force and applied tooth stress) scaled isometrically with L(T). These results suggest that juveniles do not undergo ontogenetic dietary changes and consume functionally equivalent prey to adults, although adults can grasp proportionally larger portions of food. Low tooth stress in juveniles and adults imposes mechanical constraints to puncturing and tearing, which are circumvented by a preference for softer prey tissue or the inclusion of knotting behaviours for reducing tougher prey.  相似文献   

14.
Ontogenetic studies of African ape skulls lead to an analysis of morphological differences in terms of allometry, heterochrony, and sexual dimorphism. The use of geometric morphometrics allows us 1) to define size and shape variations as independent factors (an essential but seldom respected condition for heterochrony), and 2) to calculate in percentage of shape changes and to graphically represent the parts of shape variation which are related to various biological phenomena: common allometry, intraspecific allometry, and allometric and nonallometric shape discrimination. Three tridimensional Procrustes analyses and the calculation of multivariate allometries, discriminant functions, and statistical tests are used to compare the skulls of 50 Pan troglodytes, and 50 Gorilla gorilla of different dental stages. The results both complement and modify classical results obtained from similar material but with different methods. Size and Scaling in Primate Morphology, New York: Plenum, p. 175-205). As previously described by Shea, the common growth allometric pattern is very important (64% of total shape variation). It corresponds to a larger increase of facial volume than of neurocranial volume, a more obliquely oriented foramen magnum, and a noticeable reshaping of the nuchal region (higher inion). However, the heterochronic interpretation based on common allometry is rather different from Shea. Gorillas differ from chimpanzees not only with a larger magnitude of allometric change (rate peramorphosis), as is classically said, but also grow more in size than in shape (size acceleration). In other words, for a similar stage of growth, gorillas have the size and shape corresponding to older chimpanzees, and for a similar shape, gorillas have a larger size than chimpanzees. In contrast, sexual dimorphism actually corresponds to allometric changes only, as classically demonstrated (time hypermorphosis). Sexual dimorphism is here significant in adult gorillas alone, and solely in terms of allometry (size-related shape and size, given that sagittal and nuchal crests are not taken into account). The study also permits us to differentiate two different shape variations that are classically confused in ontogenetic studies: a very small part of allometric shape change which is specific to each species (1% of the total shape variation), and nonallometric species-specific traits independent of growth (8% of total shape change). When calculated in terms of intraspecific allometries (including common allometry and noncommon allometry), shape changes are more extensive in gorillas (36% of total shape change) than in chimpanzees (29% of total shape change). The allometric differences mainly concern the inion, which becomes higher; the position of the foramen magnum, more dorsally oriented; and the palate, more tilted in adult gorillas than in adult chimpanzees. In contrast, nonallometric species-specific traits in gorillas are the long and flat vault characterized by a prominent occipital region, the higher and displaced backward glabella, and the protrusive nose. Biomechanical schemes built from shape partition suggest that the increased out-of-plumb position of the head during growth is partially compensated in gorillas by a powerful nuchal musculature due to the peculiar shape of the occipital region.  相似文献   

15.
16.
According to common belief, metabolic rate usually scales with body mass to the 3/4-power, which is considered by some to be a universal law of nature. However, substantial variation in the metabolic scaling exponent (b) exists, much of which can be related to the overall metabolic level (L) of various taxonomic groups of organisms, as predicted by the recently proposed metabolic-level boundaries (MLB) hypothesis. Here the MLB hypothesis was tested using data for intraspecific (ontogenetic) body-mass scaling of resting metabolic rate in spiders and boid snakes. As predicted, in both animal groups b varies mostly between 2/3 and 1, and is significantly negatively related to L. L is, in turn, negatively related to species-specific body mass (Mm: estimated as the mass at the midpoint of a scaling relationship), and as a result, larger species tend to have steeper metabolic scaling slopes (b) than smaller species. After adjusting for the effects of Mm, b and L are still negatively related, though significantly only in the spiders, which exhibit a much wider range of L than the snakes. Therefore, in spiders and snakes the intraspecific scaling of metabolic rate with body mass itself scales with interspecific variation in both metabolic level and body mass.  相似文献   

17.
Pretzsch H  Dieler J 《Oecologia》2012,169(3):637-649
General scaling rules or constants for metabolic and structural plant allometry as assumed by the theory of Euclidian geometric scaling (2/3-scaling) or metabolic scaling (3/4-scaling) may meet human's innate propensity for simplicity and generality of pattern and processes in nature. However, numerous empirical works show that variability of crown structure rather than constancy is essential for a tree's success in coping with crowding. In order to link theory and empiricism, we analyzed the intra- and inter-specific scaling of crown structure for 52 tree species. The basis is data from 84 long-term plots of temperate monospecific forests under survey since 1870 and a set of 126 yield tables of angiosperm and gymnosperm forest tree species across the world. The study draws attention to (1) the intra-specific variation and correlation of the three scaling relationships: tree height versus trunk diameter, crown cross-sectional area versus trunk diameter, and tree volume versus trunk diameter, and their dependence on competition, (2) the inter-specific variation and correlation of the same scaling exponents ([Formula: see text] and [Formula: see text]) across 52 tree species, and (3) the relevance of the revealed variable scaling of crown structure for leaf organs and metabolic scaling. Our results arrive at suggesting a more extended metabolic theory of ecology which includes variability and covariation between allometric relationships as prerequisite for the individual plant's competitiveness.  相似文献   

18.
A possible method for detection of wood-boring insects in wood is the measurement of oxygen consumption. In order to develop such a method, several parameters have to be determined first. The most important one is to determine the respiration rate of possible pest species. To obtain the data for establishing the method mentioned above, the respiration rates of the following species were determined: the old house borer, Hylotrupes bajulus, common furniture beetle, Anobium punctatum and subterranean termite, Reticulitermes lucifugus. We compared the O2 consumption between different species as well as between adults and larvae of one species in different environmental conditions (temperature, day/night and light/dark regime). The most intensive respiration rates were found for the larvae of Hylotrupes bajulus (4.0 ml/g h O2) and Anobium punctatum (3.9 ml/g h O2). Less intensive breathing was measured by Reticulitermes lucifugus (workers 2.9 ml/g h, nymphs 2.6 ml/g.h and soldiers 2.0 ml/g h O2). These results indicate that it is possible to detect the presence of wood-boring insects respirometrically. To detect the presence of an individual insect in the wood by means of respirometry, the sensitivity of the instrument for oxygen measurement at the optimal conditions must be around 0.2 ml/h.  相似文献   

19.
The ontogenetic allometry of the lumbar region of 1913 humans (1228 females and 685 males), ranging from newborn to 21-year-old individuals, was studied by means of length, width, projected surface area and bone mineral density of the segment L2 - L4, obtained by dual X-ray absorptiometry (DXA). All these parameters were regressed to body mass and height of the individuals, considered alternatively as the independent variable. Firstly, we addressed the comparison between the results obtained on both sexes in order to elucidate whether ontogenetic differences existed. Length of the segments increased significantly faster in females than in males, independently whether the regression was made against body mass or height, while in both types of regression width scaled in males faster than in females. Regarding bone mineral density, although males increased bone mineral density faster than females, slope differences were not significant. However, y-interception was significantly higher in females than in males when bone mineral density was regressed to body mass. Results on length and width are compared with others from previous research on allometry. Finally, global results are discussed as regards the slope predictions for interspecific scaling.  相似文献   

20.
Researchers have hypothesized that nasal morphology, both in archaic Homo and in recent humans, is influenced by body mass and associated oxygen consumption demands required for tissue maintenance. Similarly, recent studies of the adult human nasal region have documented key differences in nasal form between males and females that are potentially linked to sexual dimorphism in body size, composition, and energetics. To better understand this potential developmental and functional dynamic, we first assessed sexual dimorphism in the nasal cavity in recent humans to determine when during ontogeny male‐female differences in nasal cavity size appear. Next, we assessed whether there are significant differences in nasal/body size scaling relationships in males and females during ontogeny. Using a mixed longitudinal sample we collected cephalometric and anthropometric measurements from n = 20 males and n = 18 females from 3.0 to 20.0+ years of age totaling n = 290 observations. We found that males and females exhibit similar nasal size values early in ontogeny and that sexual dimorphism in nasal size appears during adolescence. Moreover, when scaled to body size, males exhibit greater positive allometry in nasal size compared to females. This differs from patterns of sexual dimorphism in overall facial size, which are already present in our earliest age groups. Sexually dimorphic differences in nasal development and scaling mirror patterns of ontogenetic variation in variables associated with oxygen consumption and tissue maintenance. This underscores the importance of considering broader systemic factors in craniofacial development and may have important implications for the study of patters craniofacial evolution in the genus Homo. Am J Phys Anthropol 153:52–60, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号