首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Our research examined the effect of Azteca sericeasur, a keystone arboreal ant, on the decomposition of leaf litter of the shade tree, Inga micheliana, in coffee agro-ecosystems. This interaction is important in understanding spatial heterogeneity in decomposition. We hypothesized that A. sericeasur could affect leaf litter decomposition by excluding other ants, which could release decomposers, like collembolans, from predation pressure. Determining the relative strengths of these interactions can illuminate the importance of A. sericeasur in decomposition and nutrient cycling processes. We assessed the ant and arthropod communities surrounding 10 pairs of trees, where each pair included one shade tree with an established A. sericeasur nest. Tuna baits were used in conjunction with pitfall traps to assess the ant and arthropod community, and litterbags with I. micheliana leaf litter were used to assess rates of decomposition. The species richness of ants did not change in proximity to A. sericeasur nests, though the ant communities were distinct. Abundance of Collembola and community composition of other invertebrates did not change in the presence of A. sericeasur nests, and there were no differences in leaf litter decomposition rates. This contradicts past studies that suggest A. sericeasur reduces ant species richness in its territory. We suggest that other ants may avoid A. sericeasur by moving within and beneath the leaf litter. Our results indicate that there is no net effect of A. sericeasur on leaf litter decomposition.  相似文献   

2.
Many factors drive the organization of communities including environmental factors, dispersal abilities, and competition. In particular, ant communities have high levels of interspecific competition and dominance that may affect community assembly processes. We used a combination of surveys and nest supplementation experiments to examine effects of a dominant ground‐nesting ant (Pheidole synanthropica) on (1) arboreal twig‐nesting, (2) ground‐foraging, and (3) coffee‐foraging ant communities in coffee agroecosystems. We surveyed these communities in high‐ and low‐density areas of P. synanthropica over 2 years. To test for effects on twig ant recruitment, we placed artificial nesting resources on coffee plants in areas with and without P. synanthropica. The first sampling period revealed differences in ant species composition on the ground, in coffee plants, and artificial nests between high‐ and low‐density sites of P. synanthropica. High‐density sites also had significantly lower recruitment of twig ants and had species‐specific effects on twig ant species. Prior to the second survey period, abundance of P. synanthropica declined in the high‐density sites, such that P. synanthropica densities no longer differed. Subsequent sampling revealed no difference in total recruitment of twig ants to artificial nests between treatments. Likewise, surveys of ground and coffee ants no longer showed significant differences in community composition. The results from the first experimental period, followed by survey results after the decline in P. synanthropica densities suggest that dominant ants can drive community assembly via both recruitment and establishment of colonies within the community.  相似文献   

3.
Shaded coffee agroecosystems traditionally have few pest problems potentially due to higher abundance and diversity of predators of herbivores. However, with coffee intensification (e.g., shade tree removal or pruning), some pest problems increase. For example, coffee leaf miner outbreaks have been linked to more intensive management and increased use of agrochemicals. Parasitic wasps control the coffee leaf miner, but few studies have examined the role of predators, such as ants, that are abundant and diverse in coffee plantations. Here, we examine linkages between arboreal ant communities and coffee leaf miner incidence in a coffee plantation in Mexico. We examined relationships between incidence and severity of leaf miner attack and: (1) variation in canopy cover, tree density, tree diversity, and relative abundance of Inga spp. shade trees; (2) presence of Azteca instabilis, an arboreal canopy dominant ant; and (3) the number of arboreal twig‐nesting ant species and nests in coffee plants. Differences in vegetation characteristics in study plots did not correlate with leaf miner damage perhaps because environmental factors act on pest populations at a larger spatial scale. Further, presence of A. instabilis did not influence presence or severity of leaf miner damage. The proportion of leaves with leaf miner damage was significantly lower where abundance of twig‐nesting ants was higher but not where twig‐nesting ant richness was higher. These results indicate that abundance of twig‐nesting ants in shaded coffee plantations may contribute to maintenance of low leaf miner populations and that ants provide important ecosystem services in coffee agroecosystems.  相似文献   

4.
In natural and managed systems, connections between trees are important structural resources for arboreal ant communities with ecosystem‐level effects. However, ongoing agricultural intensification in agroforestry systems, which reduces shade trees and connectivity between trees and crop plants, may hinder ant recruitment rates to resources and pest control services provided by ants. We examined whether increasing connectivity between coffee plants and shade trees in coffee plantations increases ant activity and enhances biological control of the coffee berry borer, the most devastating insect pest of coffee. Further, we examined whether artificial connections buffer against the loss of vegetation connectivity in coffee plants located at larger distances from the nesting tree. We used string to connect Inga micheliana shade trees containing Azteca sericeasur ant nests to coffee plants to compare ant activity before and after placement of the strings, and measured borer removal by ants on coffee plants with and without strings. Ant activity significantly increased after the addition of strings on connected plants, but not on control plants. Borer removal by ants was also three times higher on connected plants after string placement. Greater distance from the nesting tree negatively influenced ant activity on control coffee plants, but not on connected plants, suggesting that connections between coffee plants and nest trees could potentially compensate for the negative effects that larger distances pose on ant activity. Our study shows that favoring connectivity at the local scale, by artificially adding connections, promotes ant activity and may increase pest removal in agroecosystems. Abstract in Spanish is available with online material.  相似文献   

5.
Interactions among members of biological communities can create spatial patterns that effectively generate habitat heterogeneity for other members in the community, and this heterogeneity might be crucial for their persistence. For example, stage‐dependent vulnerability of a predatory lady beetle to aggression of the ant, Azteca instabilis, creates two habitat types that are utilized differently by the immature and adult life stages of the beetle. Due to a mutualistic association between A. instabilis and the hemipteran Coccus viridis – which is A. orbigera main prey in the area – only plants around ant nests have high C. viridis populations. Here, we report on a series of surveys at three different scales aimed at detecting how the presence and clustered distribution of ant nests affect the distribution of the different life stages of this predatory lady beetle in a coffee farm in Chiapas, Mexico. Both beetle adults and larvae were more abundant in areas with ant nests, but adults were restricted to the peripheries of highest ant activity and outside the reach of coffee bushes containing the highest densities of lady beetle larvae. The abundance of adult beetles located around trees with ants increased with the size of the ant nest clusters but the relationship is not significant for larvae. Thus, we suggest that A. orbigera undergoes an ontogenetic niche shift, not through shifting prey species, but through stage‐specific vulnerability differences against a competitor that renders areas of abundant prey populations inaccessible for adults but not for larvae. Together with evidence presented elsewhere, this study shows how an important predator is not only dependent on the existence of two qualitatively distinct habitat types, but also on the spatial distribution of these habitats. We suggest that this dependency arises due to the different responses that the predator's life stages have to this emergent spatial pattern.  相似文献   

6.
Exploiters of protection mutualisms are assumed to represent an important threat for the stability of those mutualisms, but empirical evidence for the commonness or relevance of exploiters is limited. Here, I describe results from a manipulative study showing that an orb‐weaver spider, Eustala oblonga, inhabits an ant‐acacia for protection from predators. This spider is unique in the orb‐weaver family in that it associates closely with both a specific host plant and ants. I tested the protective effect of acacia ants on E. oblonga by comparing spider abundance over time on acacias with ants and on acacias from which entire ant colonies were experimentally removed. Both juvenile and adult spider abundance significantly decreased over time on acacias without ants. Concomitantly, the combined abundance of potential spider predators increased over time on acacias without ants. These results suggest that ant protection of the ant‐acacia Acacia melanocerus also protects the spiders, thus supporting the hypothesis that E. oblonga exploits the ant–acacia mutualism for enemy‐free space. Although E. oblonga takes advantage of the protection services of ants, it likely exacts little to no cost and should not threaten the stability of the ant–acacia mutualism. Indeed, the potential threat of exploiter species to protection mutualisms in general may be limited to species that exploit the material rewards traded in such mutualisms rather than the protection services.  相似文献   

7.
The mutualistic association between some ant species and honeydew‐producing Hemiptera has been shown to influence the distribution patterns and abundance of these hemipterans and their natural enemies. We studied the spatial distribution patterns of three ant species, mealybugs and mealybug parasitoids for two consecutive growing seasons on three wine grape farms in the Western Cape, South Africa. During the study period, no ant or mealybug controls were applied. Ant and mealybug monitoring was conducted on a total of 21 ha using a presence/absence sampling system, while parasitoids were collected from infested mealybug females. Spatial analysis by distance indices was used to analyse spatial distribution of insects and ArcView? was used to map the gap, patch and local association indices where significant association and disassociation occurred. Significant associations were found between some ants and parasitoids, while significant disassociations between the ants Crematogaster peringueyi and Linepithema humile; and also between Crematogaster peringueyi and Anoplolepis steingroeveri were found. Interspecific competition between ant species could play a role in the distribution of parasitoids and mealybugs. Our results stress the importance of monitoring for ants and mealybugs and further highlight the importance of restricted chemical applications against ants during the growing season.  相似文献   

8.
Invasive species often displace native species and can affect ecological processes in invaded habitats. If invasive species become abundant, changes in prey availability may be particularly harmful to specialist predators. The Argentine ant, Linepithema humile Mayr, is an important invasive species on nearly all continents. Spiders of the genus Zodarion are specialised ant-eating predators native to the Mediterranean yet it is unknown if they can exploit invasive ant species. Here we studied spatial and temporal abundance of this invasive ant and the native spider, Zodarion cesari Pekár, during 4?years in four citrus groves. Circadian activity of both spiders and ants, and capture efficiency and prey specificity of the predator were also evaluated. The abundance of Z. cesari was strongly correlated to L. humile abundance. The predatory activity of spiders varied seasonally with differences on the relative frequency of spiders capturing ants depending on the time of the year. In laboratory, Z. cesari displayed most efficient capture upon the native ant Tapinoma nigerrimum (Nylander) and the invasive ant L. humile in comparison with five other native ant species. These results demonstrate that the native spider Z. cesari is successfully exploiting the invasive ant species L. humile and is likely a locally monophagous predator. We suggest that Z. cesari shifted away from native T. nigerrimum post invasion as both ant species are phylogenetically related and of similar size.  相似文献   

9.
Spatial structure can have a profound, but often underappreciated, effect on the temporal dynamics of ecosystems. Here we report on a counterintuitive increase in the population of a tree-nesting ant, Azteca sericeasur, in response to a drastic reduction in the number of potential nesting sites. This surprising result is comprehensible when viewed in the context of the self-organized spatial dynamics of the ants and their effect on the ants’ dispersal-limited natural enemies. Approximately 30% of the trees in the study site, a coffee agroecosystem in southern Mexico, were pruned or felled over a two-year period, and yet the abundance of the ant nests more than doubled over the seven-year study. Throughout the transition, the spatial distribution of the ants maintained a power-law distribution – a signal of spatial self organization – but the local clustering of the nests was reduced post-pruning. A cellular automata model incorporating the changed spatial structure of the ants and the resulting partial escape from antagonists reproduced the observed increase in abundance, highlighting how self-organized spatial dynamics can profoundly influence the responses of ecosystems to perturbations.  相似文献   

10.
The aim of this study was to analyze: i) the spider community in vegetative and reproductive branches of Psychotria carthagenensis concerning relative abundance, guild composition and body size distribution; ii) ant abundance in different types of branches and iii) the spider behavior when experimentally put in contact with inflorescences covered with ants. There was no difference between vegetative and reproductive branches in relation to spider abundance, composition of guilds and body size distribution of spiders. However, there was a significant difference in ant abundance. In the behavioral experiment, 90% of the spiders were expelled from inflorescences by ants; in control treatment, 100% remained in the inflorescences. The ant density in different parts of the plant may explain the spider distribution.  相似文献   

11.
We studied the association between the honeydew-producing membracid Guayaquila xiphias and its tending ants in the cerrado savanna of Brazil, during 1992 and 1993. Results showed that ants attack potential enemies of G. xiphias, and that increased ant density near the treehoppers affects the spatial distribution of parasitoid wasps on the host plant, keeping them away from brood-guarding G. xiphias females. Controlled ant-exclusion experiments revealed that ant presence (seven species) reduces the abundance of G. xiphias’ natural enemies (salticid spiders, syrphid flies, and parasitoid wasps) on the host plant. The data further showed that ant-tending not only increased homopteran survival, but also conferred a direct reproductive benefit to G. xiphias females, which may abandon the first brood to ants and lay an additional clutch next to the original brood. Two years of experimental manipulations, however, showed that the degree of protection conferred by tending ants varies yearly, and that at initially high abundance of natural enemies the ant species differ in their effects on treehopper survival. Ant effects on treehopper fecundity also varied with time, and with shifts in the abundance of natural enemies. This is the first study to simultaneously demonstrate conditionality in ant-derived benefits related to both protection and fecundity in an ant-tended Membracidae, and the first to show the combined action of these effects in the same system. Received: 19 October 1999 / Accepted: 14 February 2000  相似文献   

12.
Batesian mimics typically dupe visual predators by resembling noxious or deadly model species. Ants are unpalatable and dangerous to many arthropod taxa, and are popular invertebrate models in mimicry studies. Ant mimicry by spiders, especially jumping spiders, has been studied and researchers have examined whether visual predators can distinguish between the ant model, spider mimic and spider non‐mimics. Tropical habitats harbour a diverse community of ants, their mimics and predators. In one such tripartite mimicry system, we investigated the response of an invertebrate visual predator, the ant‐mimicking praying mantis (Euantissa pulchra), to two related ant‐mimicking spider prey of the genus Myrmarachne, each closely mimicking its model ant species. We found that weaver ants (Oecophylla smaragdina) were much more aggressive than carpenter ants (Camponotus sericeus) towards the mantis. Additionally, mantids exhibited the same aversive response towards ants and their mimics. More importantly, mantids approached carpenter ant‐mimicking spiders significantly more than often that they approached weaver ant‐mimicking spiders. Thus, in this study, we show that an invertebrate predator, the praying mantis, can indeed discriminate between two closely related mimetic prey. The exact mechanism of the discrimination remains to be tested, but it is likely to depend on the level of mimetic accuracy by the spiders and on the aggressiveness of the ant model organism.  相似文献   

13.
 Spiders and ants are potential competitors and mutual predators. Indirect evidence from previous research has suggested that ant foraging may significantly lower the abundance of arboreal spiders in young Douglas-fir plantations in western Oregon. This study tested the effect of foraging by ants, dominated by Camponotus spp., on spider assemblages in Douglas-fir canopies in a 5-month ant-exclusion experiment. The biomass of potential prey organisms on foliage, dominated by Psocoptera, increased significantly by 1.9- to 2.4-fold following ant exclusion. The removal of ants did not affect the abundance of flying arthropods in the vicinity of tree canopies as indicated by sticky trap catches. The abundance of hunting spiders, the majority being Salticidae, increased significantly by 1.5- to 1.8-fold in trees without ants in the late summer; neither the abundance of web-building spiders nor the average body size of hunting and web-building spiders were significantly affected by ant removal. Spider diversity and community structure did not differ significantly between control and ant-removal trees. The majority of prey captured by ants were Aphidoidea (48.1%) and Psocoptera (12.5%); spiders represented only 1.4% of the ants’ diet. About 40% of observed ants were tending Cinara spp. aphids. Our observations suggest that the lower abundance of hunting spiders in control canopies with ants may be due to interference competition with ants resulting from ant foraging and aphid-tending activities. Direct predation of spiders by ants appeared to be of minor importance in this study system. This study did not provide sufficient evidence for exploitative competition for prey between ants and spiders. Received: 21 February 1996 / Accepted: 14 August 1996  相似文献   

14.
15.
Species’ functional traits are an important part of the ecological complexity that determines the provisioning of ecosystem services. In biological pest control, predator response to pest density variation is a dynamic trait that impacts the provision of this service in agroecosystems. When pest populations fluctuate, farmers relying on biocontrol services need to know how natural enemies respond to these changes. Here we test the effect of variation in coffee berry borer (CBB) density on the biocontrol efficiency of a keystone ant species (Azteca sericeasur) in a coffee agroecosystem. We performed exclosure experiments to measure the infestation rate of CBB released on coffee branches in the presence and absence of ants at four different CBB density levels. We measured infestation rate as the number of CBB bored into fruits after 24 hours, quantified biocontrol efficiency (BCE) as the proportion of infesting CBB removed by ants, and estimated functional response from ant attack rates, measured as the difference in CBB infestation between branches. Infestation rates of CBB on branches with ants were significantly lower (71%-82%) than on those without ants across all density levels. Additionally, biocontrol efficiency was generally high and did not significantly vary across pest density treatments. Furthermore, ant attack rates increased linearly with increasing CBB density, suggesting a Type I functional response. These results demonstrate that ants can provide robust biological control of CBB, despite variation in pest density, and that the response of predators to pest density variation is an important factor in the provision of biocontrol services. Considering how natural enemies respond to changes in pest densities will allow for more accurate biocontrol predictions and better-informed management of this ecosystem service in agroecosystems.  相似文献   

16.
In tropical rain forests, high canopy trees have diverse and abundant populations of ants and spiders. However, accessing high trees and their fauna remains difficult; thus, how ants and spiders interact in the canopy remains unclear. To better understand the interspecific interactions between these two dominant arthropod groups, we investigated their spatial distributions at the canopy surface in a tropical rain forest in Borneo. We sampled ants and spiders six times between 2009 and 2011 by sweeping with an insect net at the tree crown surfaces of 190 emergent or tall (≥20 m in height) trees. We collected 438 ant individuals belonging to 94 species and 1850 spider individuals (1630 juveniles and 220 adults) belonging to 142 morphospecies (adults only) from a total of 976 samples. The fact that we collected four times more spider individuals than ant individuals suggests that fewer ants forage at the tree crown surface than previously thought. The number of spider individuals negatively correlated with the number of ant individuals and the number of ant species, indicating significant exclusivity between ant and spider spatial distributions at the tree crown surface. Niche‐overlap between the two taxa confirmed this observation. Although our data do not address the causes of these spatial distributions, antagonistic interspecific interactions such as interference behaviors and intra‐guild predation are ecological mechanisms that give rise to exclusive spatial distributions.  相似文献   

17.
Stacy M. Philpott 《Oikos》2010,119(12):1954-1960
One commonly studied driver of community assembly is the effect of dominant species on subordinate species. Dominant species may impact community assembly during competitive sorting, or recruitment. For ants, important and abundant species in the tropics, several factors may drive community assembly including competition, dispersal, priority effects, and environmental conditions. Although competition is a hallmark of ant ecology, few have examined the influence of patchily distributed dominant ants on other ant species and diversity, especially at the recruitment stage. Here, I consider the impacts of a canopy dominant ant species, Azteca instabilis, and changes in vegetation on twig‐nesting ant colony founding and ant community assembly in a coffee agroecosystem. I added artificial nests to coffee plants in areas with and without A. instabilis four times over a year, and then examined the occupation rate and identity of species colonizing nests. I also examined vegetation characteristics of sites where nests were added. The presence of A. instabilis on coffee plants drastically lowered colonization rates, but nest occupation increased with tree density, and with decreasing proportion of Inga spp. trees in the canopy. The presence of A. instabilis limited the number of nests occupied by six of the ten most common species; most rare species, however, were not affected by A. instabilis presence. Richness of colonizing ants in areas with A. instabilis was lower, but these effects did not significantly affect richness across broader scales. Despite large effects on individual species, species composition did not differ greatly in areas with and without A. instabilis, but some vegetation characteristics (basal area and tree richness) were predictive of ant composition. These results suggest that A. instabilis strongly affects founding events especially for common twig‐nesting species and that both vegetation and influences from this dominant species affect community assembly of twig‐nesting ants at the local scale.  相似文献   

18.
Aim Owing to their role as insect predators, web‐building spiders can be important biological control agents within agricultural systems. In complex tropical agroecosystems such as agroforests, management determines plant architecture, vegetation composition and associated ant density, but little is known on how these attributes, together with landscape context, determine spider web density. We hypothesized that all three spatial scales and the presence of Philidris ants significantly contribute to the explanation of spider web density with web types being differently affected. Location In 42 differently managed cacao agroforestry systems in Sulawesi, Indonesia. Methods We surveyed the distribution of five spider‐web types on 420 cacao trees to determine how these relate to habitat variables and a numerically dominant ant species at three different spatial scales, comparing tree, plot and landscape features. We fitted linear mixed‐effects model, selected the best model subset using information‐theoretic criteria and calculated the model‐averaged estimates. We used non‐metric multidimensional scaling (NMDS) to determine and visualize guild level responses to the effects of the tree, plot and landscape‐scale variables. Results The five spider guilds preferred different features of cacao tree architecture. Most frequently recorded webs belonged to the line‐ and orb‐web type. At the tree scale, overall web density was positively related to canopy openness. At the plot scale, a higher number of shade trees was related to a higher web density. At the landscape scale, the altitude determined the distribution patterns of web‐building spiders. Presence of Philidris ants was positively associated with density of orb webs, while no pattern was found for other web types. Main conclusions Results suggest spider web density could be increased by pruning of cacao trees while keeping shade trees at high density in cacao plots. The results emphasize the need to consider scale dependency of crop management and web‐guild‐specific responses that may be related to different functional roles of spiders as a high‐density predator group in agroforestry.  相似文献   

19.
The distribution, diversity, and assembly of tropical insects have long intrigued ecologists, and for tropical ants, can be affected by competitive interactions, microhabitat requirements, dispersal, and availability and diversity of nesting sites. Arboreal twig‐nesting ants are limited by the number of hollow twigs available, especially in intensive agricultural systems. Ant diversity and abundance may shift along elevation gradients, but no studies have examined if the proportion of occupied twigs or richness of arboreal twig‐nesting ants vary with elevation. In coffee agroecosystems, there are over 40 species of arboreal twig‐nesting ants. We examined communities of twig‐nesting ants in coffee plants along an elevational gradient to answer the following questions: (1) Do species richness and colony abundance decline with elevation or show a mid‐elevation peak? (2) Does community composition change with elevation? (3) Is elevation an important predictor of change in ant abundance, richness, and relative abundance of common species? We surveyed 42 10 × 10 m plots in 2013 from 450 to1550 m elevation across a coffee landscape in Chiapas, Mexico. We sampled a total of 2211 hollow coffee twigs, 77.1 percent of which were occupied by one of 28 species of ants. Pseudomyrmex simplex was more abundant in lower elevations, whereas Pseudomyrmex ejectus dominated in high elevations. Species richness and the percent of occupied hollow twigs both peaked at mid‐elevations (800–1050 m). In sum, we found that species richness, abundance, and composition of arboreal twig‐nesting ants shift with elevation. These findings may provide important insights for understanding ant communities in coffee agroecosystems.  相似文献   

20.
Abstract The influence of the architecture of vegetative branches on the distribution of plant‐dwelling spiders has been intensively studied, and the effects on the aggregation of individuals in several spider species on plants include variation in prey abundance, availability of predator‐free refuges and smoother microclimate conditions. The emergence of inflorescences at the reproductive time of the plants changes branch architecture, and could provide higher prey abundance for the spiders. The distribution of spiders between inflorescences and vegetative branches was compared on four widespread plant species in a Brazilian savannah‐like system. Inflorescences attracted more spiders than vegetative branches for all plant species sampled. The influence of branch type (inflorescence and vegetative) on spider distribution was also evaluated by monitoring branches of Baccharis dracunculifolia DC. in vegetative and flowering periods for 1 year, and through a field experiment carried out during the same period where artificial inflorescences were available for spider colonization. Artificial inflorescences attached to B. dracunculifolia branches attracted more spiders than non‐manipulated vegetative branches for most of the year. However, this pattern differed among spider guilds. Foliage‐runners and stalkers occurred preferentially on artificial inflorescences relative to control branches. The frequencies of ambushers and web‐builders were not significantly different between treatment and control branches. However, most ambush spiders (65%) occurred only during the flowering period of Bdracunculifolia, suggesting that this guild was influenced only by natural inflorescences. The experimental treatment also influenced the size distribution of spiders: larger spiders were more abundant on artificial inflorescences than on vegetative branches. The hypothesis that habitat architecture can influence the spider assemblage was supported. In addition, our observational and experimental data strongly suggest that inflorescences can be a higher quality microhabitat than non‐reproductive branches for most plant‐dwelling spiders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号