首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Non‐consumptive predator effects (NCEs) are now widely recognised for their capacity to shape ecosystem structure and function. Yet, forecasting the propagation of these predator‐induced trait changes through particular communities remains a challenge. Accordingly, focusing on plasticity in prey anti‐predator behaviours, we conceptualise the multi‐stage process by which predators trigger direct and indirect NCEs, review and distil potential drivers of contingencies into three key categories (properties of the prey, predator and setting), and then provide a general framework for predicting both the nature and strength of direct NCEs. Our review underscores the myriad factors that can generate NCE contingencies while guiding how research might better anticipate and account for them. Moreover, our synthesis highlights the value of mapping both habitat domains and prey‐specific patterns of evasion success (‘evasion landscapes’) as the basis for predicting how direct NCEs are likely to manifest in any particular community. Looking ahead, we highlight two key knowledge gaps that continue to impede a comprehensive understanding of non‐consumptive predator–prey interactions and their ecosystem consequences; namely, insufficient empirical exploration of (1) context‐dependent indirect NCEs and (2) the ways in which direct and indirect NCEs are shaped interactively by multiple drivers of context dependence.  相似文献   

2.
Large-scale exploitation of higher trophic levels by humans, together with global-scale nutrient enrichment, highlights the need to explore interactions between predator loss and resource availability. The hypothesis of exploitation ecosystems suggests that top–down and bottom–up control alternate between trophic levels, resulting in a positive relationship between primary production and the abundance of every second trophic level. Specifically, in food webs with three effective trophic levels, primary producers and predators should increase with primary production, while in food webs with two trophic levels, only herbivores should increase. We provided short-term experimental support for these model predictions in a natural benthic community with three effective trophic levels, where the number of algal recruits, but not the biomass of gastropod grazers, increased with algal production. In contrast, when the food web was reduced to two trophic levels by removing larger predators, the number of algal recruits was unchanged while gastropod grazer biomass increased with algal production. Predator removal only affected the consumer-controlled early life-stages of algae, indicating that both the number of trophic levels and the life-stage development of the producer trophic level determine the propagation of trophic cascades in benthic systems. Our results support the hypothesis that predators interact with resource availability to determine food-web structure.  相似文献   

3.
1. Many taxa can be found in food webs that differ in trophic complexity, but it is unclear how trophic complexity affects the performance of particular taxa. In pond food webs, larvae of the salamander Ambystoma opacum occupy the intermediate predator trophic position in a partial intraguild predation (IGP) food web and can function as keystone predators. Larval A. opacum are also found in simpler food webs lacking either top predators or shared prey. 2. We conducted an experiment where a partial IGP food web was simplified, and we measured the growth and survival of larval A. opacum in each set of food webs. Partial IGP food webs that had either a low abundance or high abundance of total prey were also simplified by independently removing top predators and/or shared prey. 3. Removing top predators always increased A. opacum survival, but removal of shared prey had no effect on A. opacum survival, regardless of total prey abundance. 4. Surprisingly, food web simplification had no effect on the growth of A. opacum when present in food webs with a low abundance of prey but had important effects on A. opacum growth in food webs with a high abundance of prey. Simplifying a partial IGP food web with a high abundance of prey reduced A. opacum growth when either top predators or shared prey were removed from the food web and the loss of top predators and shared prey influenced A. opacum growth in a non-additive fashion. 5. The non-additive response in A. opacum growth appears to be the result of supplemental prey availability augmenting the beneficial effects of top predators. Top predators had a beneficial effect on A. opacum populations by reducing the abundance of A. opacum present and thereby reducing the intensity of intraspecific competition. 6. Our study indicates that the effects of food web simplification on the performance of A. opacum are complex and depend on both how a partial IGP food web is simplified and how abundant prey are in the food web. These findings are important because they demonstrate how trophic complexity can create variation in the performance of intermediate predators that play important roles in temporary pond food webs.  相似文献   

4.
Animal species differ considerably in their response to predation risks. Interspecific variability in prey behaviour and morphology can alter cascading effects of predators on ecosystem structure and functioning. We tested whether species‐specific morphological defenses may affect responses of leaf litter consuming invertebrate prey to sit‐and‐wait predators, the odonate Cordulegaster boltonii larvae, in aquatic food webs. Partly or completely blocking the predator mouthparts (mandibles and/or extensible labium), thus eliminating consumptive (i.e. lethal) predator effects, we created a gradient of predator‐prey interaction intensities (no predator < predator – no attack < predator – non‐lethal attacks < lethal predator). A field experiment was first used to assess both consumptive and non‐consumptive predator effects on leaf litter decomposition and prey abundances. Laboratory microcosms were then used to examine behavioural responses of armored and non‐armored prey to predation risk and their consequences on litter decomposition. Results show that armored and non‐armored prey responded to both acute (predator – non‐lethal attacks) and chronic (predator – no attack) predation risks. Acute predation risk had stronger effects on litter decomposition, prey feeding rate and prey habitat use than predator presence alone (chronic predation risk). Predator presence induced a reduction in feeding activity (i.e. resource consumption) of both prey types but a shift to predator‐free habitat patches in non‐armored detritivores only. Non‐consumptive predator effects on prey subsequently decreased litter decomposition rate. Species‐specific prey morphological defenses and behaviour should thus be considered when studying non‐consumptive predator effects on prey community structure and ecosystem functioning.  相似文献   

5.
Changes in the strength of trophic cascades over time have been associated with dramatic shifts in community structure and function. However, the pattern, process, and potential underlying mechanism of temporal variation in trophic cascades remains relatively unexplored. A top–down trophic cascade has been documented for the effects of predacious weaver ants Oecophylla smaragdina on the success of fig tree Ficus racemosa seed production. Ants cause high mortality of non‐pollinating fig wasps Sycophaga mayri that parasitize fruits, leading to greater success for the pollinating fig wasp–fig tree mutualists. Here, using a design in which pairs of branches were selected on a tree, and ants were excluded from one of each pair, we quantified the magnitude of the trophic cascade in the cool–dry, hot–dry and rainy (hot–wet) seasons in Xishuangbanna, southwest China. We also recorded the daily behavioral dynamics of ants and fig wasps in different seasons and analyzed the correlation between behavioral, activity and trophic cascade strength. We found that the strength of the trophic cascade was strong in the hot–dry season, diminished in the rainy season and disappeared in the cool–dry season in this system. The strength of species interactions between ants and non‐pollinating fig wasps, is positively correlated with trophic cascade strength, indicating that trophic cascade strength is determined by a top–down process when the community is well established. Moreover, because pollinating fig wasps, Ceratosolen fusciceps, play a central role in the establishment of fig wasp communities, when C. fusciceps wasps are absent, the community quickly disassembles as is the case in the cool–dry season. In summary, the strength of the trophic cascade is triggered by top–down processes, however, the occurrence of the trophic cascade is determined by a keystone species that plays a central role in assembly of the community.  相似文献   

6.
Stochastic variability of key abiotic factors including temperature, precipitation and the availability of light and nutrients greatly influences species’ ecological function and evolutionary fate. Despite such influence, ecologists have typically ignored the effect of abiotic stochasticity on the structure and dynamics of ecological networks. Here we help to fill that gap by advancing the theory of how abiotic stochasticity, in the form of environmental noise, affects the population dynamics of species within food webs. We do this by analysing an allometric trophic network model of Lake Constance subjected to positive (red), negative (blue), and non‐autocorrelated (white) abiotic temporal variability (noise) introduced into the carrying capacity of basal species. We found that, irrespective of the colour of the introduced noise, the temporal variability of the species biomass within the network both reddens (i.e. its positive autocorrelation increases) and dampens (i.e. the magnitude of variation decreases) as the environmental noise is propagated through the food web by its feeding interactions from the bottom to the top. The reddening reflects a buffering of the noise‐induced population variability by complex food web dynamics such that non‐autocorrelated oscillations of noise‐free deterministic dynamics become positively autocorrelated. Our research helps explain frequently observed red variability of natural populations by suggesting that ecological processing of environmental noise through food webs with a range of species’ body sizes reddens population variability in nature.  相似文献   

7.
1. Predator–prey interactions have traditionally focused on the consumptive effects that predators have on prey. However, predators can also reduce the abundance of prey through behaviourally‐mediated non‐consumptive effects. For example, pea aphids (Acyrthosiphon pisum Harris) drop from their host plants in response to the risk of attack, reducing population sizes as a consequence of lost feeding opportunities. 2. The objective of the present study was to determine whether the non‐consumptive effects of predators could extend to non‐prey herbivore populations as a result of non‐lethal incidental interactions between herbivores and foraging natural enemies. 3. Polyculture habitats consisting of green peach aphids (Myzus persicae Sulzer) feeding on collards and pea aphids feeding on fava beans were established in greenhouse cages. Aphidius colemani Viereck, a generalist parasitoid that attacks green peach aphids but not pea aphids, was released into half of the cages and the abundance of the non‐host pea aphid was assessed. 4. Parasitoids reduced the population growth of the non‐host pea aphid by increasing the frequency of defensive drops; but this effect was dependent on the presence of green peach aphids. 5. Parasitoids probably elicited the pea aphid dropping behaviour through physical contact with pea aphids while foraging for green peach aphids. It is unlikely that pea aphids were responding to volatile alarm chemicals emitted by green peach aphids in the presence of the parasitoid. 6. In conclusion, the escape response of the pea aphid provided the opportunity for a parasitoid to have non‐target effects on an herbivore with which it did not engage in a trophic interaction. The implication is that natural enemies with narrow diet breadths have the potential to influence the abundance of a broad range of prey and non‐prey species via non‐consumptive effects.  相似文献   

8.
This experimental study tests new theory for multiple predator effects on communities by using warming to alter predator habitat use and hence direct and indirect interactions in a grassland food web containing two dominant spider predator species, a dominant grasshopper herbivore and grass and herb plants. Experimental warming further offers insight into how climate change might alter direct and indirect effects. Under ambient environmental conditions, spiders used habitat in spatially complementary locations. Consistent with predictions, the multiple predator effect on grasshoppers and on plants was the average of the individual predator effects. Warming strengthened the single predator effects. It also caused the spider species to overlap lower in the vegetation canopy. Consistent with predictions, the system was transformed into an intraguild predation system with the consequent extinction of one spider species. The results portend climate caused loss of predator diversity with important consequences for food web structure and function.  相似文献   

9.
An important challenge in community ecology is identifying the functional characteristics capable of predicting the nature and strength of predator effects on food webs. We developed an individual‐based model, based on a shallow lake model system, to evaluate the total, consumptive, and non‐consumptive indirect effect that predators have on basal resources when the predators differ in their foraging types (active adaptive foraging or sedentary foraging). Overall, both predator types caused similar total indirect effects on lower trophic levels. However, the nature net effects of predators diverged between predator foraging types. Active predators caused larger non‐consumptive effects, relative to the total indirect effect, irrespective of predation pressure levels. On the other hand, sedentary predators caused larger non‐consumptive effects for lower predation pressure levels, but consumptive effects became more important as predation pressure increased. Our simulations showed that the reliance on a particular mechanism driving consumer–resource interactions is altered by predator foraging behavior and highlight the importance of both prey and predator foraging behaviors to predict the causes and consequences of cascading effects observed in food webs.  相似文献   

10.
Cascading effects of predator diversity and omnivory in a marine food web   总被引:3,自引:1,他引:3  
Over‐harvesting, habitat loss and exotic invasions have altered predator diversity and composition in a variety of communities which is predicted to affect other trophic levels and ecosystem functioning. We tested this hypothesis by manipulating predator identity and diversity in outdoor mesocosms that contained five species of macroalgae and a macroinvertebrate herbivore assemblage dominated by amphipods and isopods. We used five common predators including four carnivores (crabs, shrimp, blennies and killifish) and one omnivore (pinfish). Three carnivorous predators each induced a strong trophic cascade by reducing herbivore abundance and increasing algal biomass and diversity. Surprisingly, increasing predator diversity reversed these effects on macroalgae and altered algal composition, largely due to the inclusion and performance of omnivorous fish in diverse predator assemblages. Changes in predator diversity can cascade to lower trophic levels; the exact effects, however, will be difficult to predict due to the many complex interactions that occur in diverse food webs.  相似文献   

11.
Benthic invertebrates mediate bottom–up and top–down influences in aquatic food webs, and changes in the abundance or traits of invertebrates can alter the strength of top–down effects. Studies assessing the role of invertebrate abundance and behavior as controls on food web structure are rare at the whole ecosystem scale. Here we use a comparative approach to investigate bottom–up and top–down influences on whole anchialine pond ecosystems in coastal Hawai‘i. In these ponds, a single species of endemic atyid shrimp (Halocaridina rubra) is believed to structure epilithon communities. Many Hawaiian anchialine ponds and their endemic fauna, however, have been greatly altered by bottom–up (increased nutrient enrichment) and top–down (introduced fish predators) disturbances from human development. We present the results of a survey of dissolved nutrient concentrations, epilithon biomass and composition, and H. rubra abundance and behavior in anchialine ponds with and without invasive predatory fish along a nutrient concentration gradient on the North Kona coast of Hawai‘i. We use linear models to assess 1) the effects of nutrient loading and fish introductions on pond food web structure and 2) the role of shrimp density and behavior in effecting that change. We find evidence for bottom–up food web control, in that nutrients were associated with increased epilithon biomass, autotrophy and nutrient content as well as increased abundance and size of H. rubra. We also find evidence for top–down control, as ponds with invasive predatory fish had higher epilithon biomass, productivity, and nutrient content. Top–down effects were transmitted by both altered H. rubra abundance, which changed the biomass of epilithon, and H. rubra behavior, which changed the composition of the epilithon. Our study extends experimental findings on bottom–up and top–down control to the whole ecosystem scale and finds evidence for qualitatively different effects of trait‐ and density‐mediated change in top–down influences.  相似文献   

12.
Primary consumers are under strong selection from resource (‘bottom‐up’) and consumer (‘top‐down’) controls, but the relative importance of these selective forces is unknown. We performed a meta‐analysis to compare the strength of top‐down and bottom‐up forces on consumer fitness, considering multiple predictors that can modulate these effects: diet breadth, feeding guild, habitat/environment, type of bottom‐up effects, type of top‐down effects and how consumer fitness effects are measured. We focused our analyses on the most diverse group of primary consumers, herbivorous insects, and found that in general top‐down forces were stronger than bottom‐up forces. Notably, chewing, sucking and gall‐making herbivores were more affected by top‐down than bottom‐up forces, top‐down forces were stronger than bottom‐up in both natural and controlled (cultivated) environments, and parasitoids and predators had equally strong top‐down effects on insect herbivores. Future studies should broaden the scope of focal consumers, particularly in understudied terrestrial systems, guilds, taxonomic groups and top‐down controls (e.g. pathogens), and test for more complex indirect community interactions. Our results demonstrate the surprising strength of forces exerted by natural enemies on herbivorous insects, and thus the necessity of using a tri‐trophic approach when studying insect‐plant interactions.  相似文献   

13.
Sexual differences in parental investment, predation pressure, and foraging efforts are common in nature and affect the trophic flow in food webs. Specifically, the sexual differences in predator and prey behavior change in trophic inflow and outflow, respectively, while those in parental investment alter the reproductive allocation of acquired resources in the population. Consequently, these factors may play an important role in determining the system structure and persistence. However, few studies have examined how sexual differences in trophic flow affect food web dynamics. In this study, I show the ecological role of sex by explicitly incorporating sexual differences in trophic flow into a three‐species food web model. The results demonstrated that the ecological waste of males, that is, the amount of trophic inflow into males with less parental investment, plays an important role in system persistence and structure. In particular, the synergy between sexual differences in parental investment and trophic inflows and outflows is important in determining web persistence: Significant impacts of male‐biased trophic flows require the condition of anisogamy. In addition, the dynamic effects of the ecological waste of males differ with trophic level: The coexistence of a food web occurs more frequently with biased inflows into predator males, but occurs less frequently with biased inflows into consumer males. The model analysis indicates that investigating the pattern of sexual differences among trophic positions can enrich our understanding of food web persistence and structure in the real world.  相似文献   

14.
Trickle-down effects of aboveground trophic cascades on the soil food web   总被引:7,自引:0,他引:7  
Trophic cascades are increasingly being regarded as important features of aboveground and belowground food webs, but the effects of aboveground cascades on soil food webs, and vice versa, remains essentially unexplored. We conducted an experiment consisting of model synthesised communities containing grassland plant and invertebrate species, in which treatments included soil only, soil+plants, soil+plants+aphids, and soil+plants+aphids+predators; predator treatments consisted of the lacewing Micromus tasmaniae and ladybird beetle Coccinella undecimpunctata added either singly or in combination. Addition of Micromus largely reversed the negative effects of aphids on plant biomass, while both of the predator species caused large changes in the relative abundances of dominant plant species. Predators of aphids also affected several components of the belowground subsystem. Micromus had positive indirect effects on the primary consumer of the soil decomposer food web (microflora), probably through promoting greater input of basal resources to the decomposer subsystem. Predator treatments also influenced densities of the tertiary consumers of the soil food web (top predatory nematodes), most likely through inducing changes in plant community composition and therefore the quality of resource input to the soil. The secondary consumers of the soil food web (microbe‐feeding nematodes) were, however, unresponsive. The fact that some trophic levels of the soil food web but not others responded to aboveground manipulations is explicable in terms of top‐down and bottom‐up forces differentially regulating different belowground trophic levels. Addition of aphids also influenced microbial community structure, promoted soil bacteria at the expense of fungi, and enhanced the diversity of herbivorous nematodes; in all cases these effects were at least partially reversed by addition of Micromus. These results in tandem point to upper level consumers in aboveground food webs as a potential driver of the belowground subsystem, and provide evidence that predator‐induced trophic cascades aboveground can have effects that trickle through soil food webs.  相似文献   

15.
Behavioural trophic cascades highlight the importance of indirect/risk effects in the maintenance of healthy trophic‐level links in complex ecosystems. However, there is limited understanding on how the loss of indirect top–down control can cascade through the food‐web to modify lower level predator–prey interactions. Using a reef fish food‐web, our study examines behavioural interactions among predators to assess how fear elicited by top‐predator cues (visual and chemical stimuli) can alter mesopredator behaviour and modify their interaction with resource prey. Under experimental conditions, the presence of any cue (visual, chemical, or both) from the top‐predator (coral trout Plectropomus leopardus) strongly restricted the distance swum, area explored and foraging activity of the mesopredator (dottyback Pseudochromis fuscus), while indirectly triggering a behavioural release of the resource prey (recruits of the damselfish Pomacentrus chrysurus). Interestingly, the presence of a large non‐predator species (thicklip wrasse Hemigymnus melapterus) also mediated the impact of the mesopredator on prey, as it provoked mesopredators to engage in an ‘inspection’ behaviour, while significantly reducing their feeding activity. Our study describes for the first time a three‐level behavioural cascade of coral reef fish and stresses the importance of indirect interactions in marine food‐webs.  相似文献   

16.
Global warming is a nonlinear process, and temperature may increase in a stepwise manner. Periods of abrupt warming can trigger persistent changes in the state of ecosystems, also called regime shifts. The responses of organisms to abrupt warming and associated regime shifts can be unlike responses to periods of slow or moderate change. Understanding of nonlinearity in the biological responses to climate warming is needed to assess the consequences of ongoing climate change. Here, we demonstrate that the population dynamics of a long‐lived, wide‐ranging marine predator are associated with changes in the rate of ocean warming. Data from 556 colonies of black‐legged kittiwakes Rissa tridactyla distributed throughout its breeding range revealed that an abrupt warming of sea‐surface temperature in the 1990s coincided with steep kittiwake population decline. Periods of moderate warming in sea temperatures did not seem to affect kittiwake dynamics. The rapid warming observed in the 1990s may have driven large‐scale, circumpolar marine ecosystem shifts that strongly affected kittiwakes through bottom‐up effects. Our study sheds light on the nonlinear response of a circumpolar seabird to large‐scale changes in oceanographic conditions and indicates that marine top predators may be more sensitive to the rate of ocean warming rather than to warming itself.  相似文献   

17.
Non‐consumptive effects (NCEs) – changes in prey behavior or physiology in response to predator threat – are common and can be as strong as consumptive effects. However, our knowledge of NCEs in arthropod systems is lacking. Factors related to study organism and environment have the potential to influence the occurrence and magnitude of NCEs in arthropod systems. While factors such as coevolutionary history of natural enemies and their prey, predator cue, predator or prey feeding mode, and refuge availability have been theoretically and empirically examined, no trends have been proposed for arthropods. We compiled 62 studies, yielding 128 predator–prey interactions, which explicitly examined NCEs in experiments where arthropods were identified to species, using a previously published database of papers from 1990 to 2005 and a new database of papers published from 2006 to 2015. Using these data, we conducted a meta‐analysis to explore the influence of organismal and environmental characteristics on the magnitude of predator NCEs. Our analysis addressed the following three questions. 1) Does predator–prey coevolution give rise to stronger NCEs than when predator and prey species did not coevolve? 2) What influence does habitat type and refuge availability have on NCEs? 3) How do predator characteristics (cue type, hunting mode and life stage) and prey characteristics (mobility, life stage, specialization, gregariousness and feeding mode) influence NCEs? We found that while NCEs were similar across most measured characteristics, NCEs on prey activity were significantly stronger when predator and prey shared an evolutionary history. Our results support growing evidence that NCEs have a negative effect on prey traits and that behavioral NCEs are stronger than physiological ones. Additional studies are needed to be confident in any emerging patterns, therefore we identify key gaps in the literature on NCEs in arthropod systems and discuss ideas for moving forward.  相似文献   

18.
1. Food web interactions are complex and can respond to environmental changes in unpredictable ways that do not necessarily equate to the individual responses of each of the components of the food web. 2. Biomass can be used to evaluate the productivity of the three individual trophic levels, in the form of the Net Generational Productivity (NGP) and the performance of the entire food web with the newly developed tri‐trophic food web performance ratio (?3t). 3. These parameters were used to evaluate the performance of nine plant‐based tri‐trophic food webs composed of: potato, Solanum tuberosum L. and two cultivars of bell pepper Capsicum annuum L; three biotypes of the aphid Macrosiphum euphorbiae Thomas (Hemiptera: Aphididae) and the parasitoid wasp Aphidius ervi (Haliday) (Hymenoptera: Braconidae). 4. The NGP showed that the thermal window for biomass productivity for each trophic level is different and is reduced by approximately 4 °C with respect to the inferior level. Aphidius ervi had the smallest thermal window for biomass productivity and development. 5. The present results showed that the performance (?3t) of the tested food webs is influenced in a top‐down fashion, where the intra‐specific variation of the food web, namely the host plant, played a major role in the productivity of each of the subsequent trophic levels. 6. The ?3t suggested that exposure to high and low temperatures might severely affect the effectiveness of A. ervi as a biocontrol agent of the aphid M. euphorbiae in bell pepper and potato crops.  相似文献   

19.
There has been a long‐standing debate on what creates stability in food webs. One major finding is that weak interactions can mute the destabilizing potential of strong interactions. Considering that stage structure is common in nature, that existing studies on stability that include population stage structure point in different directions, and the recent theoretical developments in the area of stage structure, there is a need to address the effects of population stage structure in this context. Using simple food web modules, with stage structure in an intermediate consumer, we here begin to theoretically investigate the effects of stage structure on food web stability. We found a general correspondence to previous results such that strong interactions had destabilizing effects and weak interactions that result in decreased energy flux had stabilizing effects. However, we also found a number of novel results connected to stage structure. Interestingly, weak interactions can be destabilizing when they excite other interactions. We also found that cohort cycles and predator–prey cycles did not respond in the same way to increasing interactions strength. We found that the combined effects of two predators feeding on the same prey can strongly destabilize a system. Consistent with previous studies, we also found that stage‐specific feeding can create a refuge effect that leads to a lack of strong destabilization at high interaction strength. Overall, stage structure had both stabilizing and destabilizing aspects. Some effects could be explained by our current understanding of energetic processes; others need additional consideration. Additional aspects such as shunting of energy between stages, control of biomass fluxes, and interactions between lags and energy flux, should be considered.  相似文献   

20.
1. Saprotrophic cord‐forming basidiomycetes are the primary agents of decomposition in forest ecosystems. Collembola and oribatid mites affect fungal growth and foraging, and therefore decomposition, through direct mycelial grazing. 2. Grazing on the fungal species Hypholoma fasciculare, Resinicium bicolor and Phanerochaete velutina by the collembola Folsomia candida, and the oribatid mites Steganacarus magnus, Euzetes globulus and Hermannia gibba was investigated in soil microcosms. 3. Folsomia candida grazed on all fungal species: radial extent of R. bicolor, hyphal coverage of all fungal species, and fractal dimension of R. bicolor and P. velutina were all reduced. Oribatid mites did not graze the fungi but did affect mycelial morphology. Steganacarus magnus caused a reduction in the radial extent of H. fasciculare, and the hyphal coverage and fractal dimension in both H. fasciculare and R. bicolor. Euzetes globulus and H. gibba reduced the hyphal coverage of P. velutina. 4. Oribatid mites are associated with a cornucopia of chemical secretions with possible anti‐fungal properties. Chemical analysis of H. gibba opisthonotal secretions revealed four main compounds, all of which are new to the known spectrum of opisthonotal components. The most abundant was (E)‐β‐farnesene. 5. Treatment effects were species‐specific in terms of both fungal and invertebrate species. This study provides the first evidence of non‐grazing effects of oribatid mites on fungal growth and morphology. This could potentially influence the spatial organisation of mycelium in forest soils and therefore the ability of fungi to locate, colonise and decompose dead organic matter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号